

ENVIRONMENTAL SITE ASSESSMENT COOKS COVE DEVELOPMENT ZONE PREPARED FOR COOK COVE INLET PTY LTD

CES Document Reference: CES130608-BP-AR

Written by: Dr V. Arias

E lave

SC41156 & CEnvP (General) 682

Reviewed by: T. Goodbody

Authorised by: D. Lowe

Client: Cook Cove Inlet Pty Ltd

Level 3, 161 Castlereagh Street

Sydney, NSW, 200

Date: 31 March 2023

Telephone: 02 8569 2200 • Fax: 02 9983 0582 0 • ABN 67 151 524 757
55-65 Grandview Street • Pymble NSW 2073 • Australia • www.consultingearth.com.au
© Consulting Earth Scientists Pty Ltd ALL RIGHTS RESERVED
UNAUTHORISED REPRODUCTION OR COPYING STRICTLY PROHIBITED

DOCUMENT CONTROL

ENVIRONMENTAL SITE ASSESSMENT COOKS COVE DEVELOPMENT ZONE PREPARED FOR COOK COVE INLET PTY LTD

CES Document Reference: CES130608-BP-AR

Distribution Register

Hard Copy	Digital copy	Recipient	Location
	1	Peter Bettridge	Cook Cove Inlet Pty Ltd
	1	CES Library	CES Pty Ltd

Revision Register

Revision Number	Revision Date	Description
0.0	12/5//2017	Environmental Site Assessment Report (CES Document Reference: CES130608-BP-AR)
1.0	15/02/2023	Updated (2023) Environmental Site Assessment Report (CES Document Reference: CES130608-BP-AR)
2.0	23/02/2023	Updated (2023) Environmental Site Assessment Report (CES Document Reference: CES130608-BP-AR)
3.0	08/03/2023	Updated (2023) Environmental Site Assessment Report (CES Document Reference: CES130608-BP-AR)
3.0	31/03/2023	Updated (2023) Environmental Site Assessment Report (CES Document Reference: CES130608-BP-AR)

The revision register tracks changes to the document.

The latest revision of this document supersedes all previous revisions. It is the responsibility of the recipient to ensure that superseded revisions of this document are removed from circulation.

Documents are only valid if they are signed, original documents issued by CES. CES does not accept any liability for actions taken based upon incomplete photocopies of this document.

CES Document Reference: CES130608-BP-AR Page 2 of 100

ENVIRONMENTAL SITE ASSESSMENT COOKS COVE DEVELOPMENT ZONE PREPARED FOR COOK COVE INLET PTY LTD

CES Document Reference: CES130608-BP-AR

EXECUTIVE SUMMARY

This report has been prepared by Consulting Earth Scientists Pty Ltd (CES), on behalf of Cook Cove Inlet Pty Ltd (the Client), to support the public exhibition and assessment of the Cooks Cove Planning Proposal (PP-2022-1748), which was issued a Gateway Determination by the Department of Planning and Environment on 5 August 2022. The proposal seeks to amend Bayside Local Environmental Plan 2021 (BLEP 2021) to rezone and insert planning controls for certain land known as Cooks Cove within the BLEP 2021.

The Cooks Cove Planning Proposal aims to facilitate the long-planned transformation of 36.2ha of underutilised and strategically important land at Arncliffe, located to the north of the M5 Motorway and adjacent the western foreshore of the Cooks River. The project seeks a renewed focus on delivering a contemporary logistics and warehousing precinct within a well-connected location, surrounded by enhanced open space provisions. The site forms part of the broader Bayside West 2036 Precincts and generally comprises the footprint of the former Kogarah Golf Club, now in part occupied by a temporary M6 Stage 1 construction compound.

The Environmental Site Assessment (ESA) and subsequent Remediation Action Plan are required to satisfy State Environmental Planning Policy (Resilience and Hazards) 2021 former State Environmental Planning Policy No 55—Remediation of Land (SEPP 55).

The Cooks Cove Master Plan 2022, as prepared by Hassell, represents an optimised and refined reference scheme, to guide best practice design and the preparation of detailed planning controls to achieve an attractive precinct with high amenity. Key features of the Cooks Cove Master Plan are:

- A net development zone of approximately 15ha with up to 343,250m² Gross Floor Area (GFA) comprising
 - o 290,000m² of multi-level logistics and warehousing;
 - o 20,000m² for hotel and visitor accommodation uses;
 - o 22.350m² for commercial office uses:
 - o 10,900m² of retail uses;
- Multi-level logistics with building heights generally up to 5 storeys (approx. 48m)
- A retail podium with commercial office and hotel above, up to a total of 12 storeys (approx. 51m)
- Built form of a scale and composition which caters for the generation of approximately 3,300 new jobs

CES Document Reference: CES130608-BP-AR

Page 3 of 100

- A surrounding open space precinct including:
- A highly activated waterfront including the Fig Tree Grove outdoor dining and urban park precinct
- A significant contribution to the extension of the regional Bay to Bay cycle link, 'Foreshore Walk', including active and passive recreational uses, together with environmental enhancements
- Master planned and Council-owned 'Pemulwuy Park' with an agreed embellishment outcome of passive open space and environmental enhancements to be delivered in stages post construction of the M6 Stage 1 Motorway
- Complementary on and off-site infrastructure to be delivered by way of State and Local Voluntary Planning Agreements.

Cooks Cove is located in the suburb of Arncliffe within the Bayside Council Local Government Area (LGA). The site is located to the west of the Cooks River, approximately 10 km south of the Sydney Central Business District (CBD). The site enjoys adjacency to key trade-related infrastructure being immediately west of Sydney Kingsford Smith International Airport and approximately 6 km west of Port Botany.

Cooks Cove is strategically located within close proximity to a number of railway stations including Banksia, Arncliffe, Wolli Creek and the International Airport Terminal, which vary in distance from the site between 700m and 1.1km. The M5 Motorway, providing regional connectivity to the Sydney Metropolitan area, runs in an east-west direction immediately to the south of the site. The M8 and M6 Motorways are, and will be, constructed in tunnels approximately 60 metres beneath the adjoining Bayside Council 'Trust' lands. The Sydney Gateway project, presently under construction to the immediate north of Cooks Cove and Sydney Airport, will substantially improve future accessibility to the St Peters interchange and the wider M4/M5 WestConnex network, via toll free connections, as well as the Domestic Airport and Port Botany.

The Cooks Cove Development Zone is located to the north of the Southern and Western Suburbs Ocean Outfall Sewer (SWSOOS), and is generally bound by the Cooks River to the east and Marsh Street to the north and west. The site is approximately 36.2ha and is owned and managed by a number of landowners, both public and private. Surrounding development includes the Sydney Airport International Terminal precinct, Mercure Sydney Airport, an area of low density dwellings presently transitioning to medium-high density residential flat buildings, recreation and open space facilities and road and airport related infrastructure.

The 2008 environmental site assessments of the site (identified as Area A and Area B at the time) determined the area of the site referred to as, and currently occupied by, the WestConnex M8 and M6 Stage 1 Motorway Temporary Compound, as suitable for use as public open space. No knowledge of further contaminating sources had been introduced between 2008 and 2023 and as such the suitability

CES Document Reference: CES130608-BP-AR

of the site for the proposed use remained the same. It is understood by CES that Westconnex took possession of the site in 2016 and as such committed to returning the site to a suitable condition for use as public open space at the completion of their works. Therefore, CES has not included the current Westconnex temporary compound in this environmental assessment.

The temporary construction compound for the WestConnex M8 and M6 Stage 1 Motorway tunnelling works was originally established in June 2016. The temporary construction facility occupies approximately 7.5ha and is expected to remain until 2025. At this time the facility will reduce to 1.5ha to accommodate the permanent Arncliffe Motorway Operations Complex (MOC), located in the western corner of the site, adjacent Marsh Street. The complex will house ventilation and water treatment plant and maintenance equipment for both the M6 and M8 sub-grade motorways.

This report comprises a consolidation of the previous Area A and Area B ESAs (CES Document References: CES050706-BCC-17-F, Rev. 1 and CES050706-BCC-18-F Rev. 2, both dated 28 July 2008). This consolidation has required the following changes:

- An amendment to the site boundaries was required since a portion of the site will be temporarily occupied (during the construction of the WestConnex M8 and M6 Stage 1 Motorway project) by the WestConnex M8 and M6 Stage 1 Motorway Temporary Compound (WTC) and will be permanently occupied by the Arncliffe Motorway Operations Complex (MOC). These areas are defined in Figure 2. After completion of the WestConnex project, the WTC will be returned by the current occupants to its previous condition and handed back for incorporation into the Cooks Cove Precinct for use as passive open space to be known in the future as Pemulwuy Park. The MOC area will be retained permanently, and as such is no longer part of the site.
- The proposed development in 2008, comprised a Trade and Technology Zone. The current Cooks Cove Planning Proposal comprises a mixed use concept including recreational, commercial, retail, hotel and multi-level logistics and warehousing land uses. site.
- To assess whether any additional contaminants of potential concern may have been introduced
 to the soil and groundwater since 2008, a review of the land use and land uses changes has
 been undertaken. No changes were identified since the site has been used as a golf course
 during the period between 2008 and 2023;
- In order to check whether there had been any material change to the groundwater quality between 2008 and 2017, an additional groundwater sampling round was undertaken in February 2017.
- The consolidation revises the adopted screening criteria used in 2008, which were used to
 assess the soil and groundwater concentrations detected by the laboratory and replaces them
 with the investigation and screening levels presented in Schedule B1, Guideline on
 Investigation Levels for Soil and Groundwater (National Environmental Protection Measure

CES Document Reference: CES130608-BP-AR

Page 5 of 100

(NEPM) 2013). The assessment of the data was then checked, and any changes made to the summary and recommendations made in 2008.

The site has been extensively landscaped to attain its current levels and landforms consistent with use as a golf course. Fill material on the site comprises mainly dredged material from the adjacent Cooks River that was placed on the site during works to re-align the river during the 1950s.

The site is currently zoned for Open Space, Trade and Technology and Special Use land use under the State Environmental Planning Policy (Precincts—Eastern Harbour City) 2021 and is occupied by the Kogarah Golf Club for its golf course.

It is proposed to rezone the site for Infrastructure, Public Recreation and Enterprise uses as presented in Planning Proposal Justification Report, as prepared by Ethos Urban.

Soil Assessment

With the exception of copper, nickel, zinc, lead, benzo(a)pyrene and BTEX, the soil assessment criteria were not exceeded in the collected natural soil and fill samples that were scheduled for analysis. The elevated concentrations of copper and lead were detected at sampling location AMW207 and were associated with isolated metal impact within the fill material at a depth of 0.5-0.7 mBGL.

The assessment criteria for heavy metals (copper, nickel, zinc, and lead) were exceeded in eighteen fill samples across the site. Three zinc concentrations in the fill exceeded the adopted ecologicalbased SAC. These exceedances lie within proposed Block 3C – Logistics hub and were at a depth below the top 2 metres of soil. As the zinc concentrations did not exceed adopted health-based SAC and were identified below this depth remediation is not considered necessary. Two lead concentrations in the fill material exceeded the adopted heath-based SAC and these lie within proposed Block 3C – Logistics hub. These samples (located in BBH430 and BBH433 bores) were collected from fill material a depth of between 2.4 and 2.6 mBGL. Considering these are located at a depth of between 2.4 metres and 2.6 metres and will be capped during construction of proposed buildings (i.e. Block 3C), it is not considered likely to cause a risk to human health of the future receptors, and as such does not require remediation. However, a management strategy for lead contaminated soils will be included in the Remediation Action Plan (RAP). Eight Copper concentrations in the fill material exceeded the adopted ecological-based SAC and varied in depth ranging between 0.2 m BGL and 2.6 m BGL. As the copper concentrations did not exceed adopted health-based SAC, it is not considered likely to cause a risk to human health of the future receptors and remediation is not considered necessary. Four nickel concentrations in the fill material exceeded the adopted ecological-based SAC and varied in depth ranging between 0.5 m BGL and 2.6 m BGL. As the nickel concentrations did not exceed adopted health-based SAC, and the 95% UCL calculation

CES Document Reference: CES130608-BP-AR

Page 6 of 100

for nickel in the fill material of 8.36 mg/kg was less than the adopted EILs, it is not considered likely to cause a risk to human health of the future receptors and remediation is not considered necessary.

The assessment criteria for BTEX were exceeded in four fill samples in the immediate vicinity of the underground storage tanks located close to the maintenance sheds at the northern end of the site and lie within proposed Fig Tree Grove pavilion.

As a result of the elevated concentrations of BTEX, remediation and/or management measures are required to ensure protection of the environment and human health. The removal of the bowsers, USTs, associated pipework and impacted soil will be required under a Remediation Action Plan (RAP) as part of the redevelopment of the site.

Two Benzo(a)pyrene TEQ exceeded the adopted health-based SAC and lie within the proposed Flora Street intersection upgrade and extension in the east side of the site. These samples (located in BBH453 and BBH402) were collected from fill material a depth of between 0.2-0.3 mBGL in BBH453 and 0.5-0.6 mBGL in BBH402. As a result of the elevated concentrations of Benzo(a)pyrene TEQ, remediation and/or management measures are required to ensure protection of the environment and human health. The removal of the impacted soil will be required under a Remediation Action Plan (RAP) as part of the redevelopment of the site. Benzo(a)pyrene TEQ concentrations were not detected at depths greater than 0.3 mBGL in BBH453 and 0.6 mBGL in BBH402 and consequently the contamination is unlikely to extend underneath those depths.

Asbestos fibres were not found in near-surface fill during drilling works, however fragments of fibrous cement sheeting were found in surface fill in a limited number of locations across the site within fill on unsealed surface areas. Small scale remediation (localised) or management of the ACM fragments prior to the commencement of development construction will be required.

Potential Acid Sulfate Soils (PASS) are present in natural material below the water table. If these materials are not disturbed during the development process, they will not pose a risk to the local environment. However, it is expected that the planned development of the site may result in disturbance of the PASS, therefore, an acid sulfate soils management plan (ASSMP) will be required.

Groundwater Assessment

Sixteen groundwater wells were installed along the boundary of the site and within the site to assess whether contamination resulting from the presence of landfills to the south was migrating onto the site. Of the suite of substances analysed in the groundwater samples, copper, lead, nickel, zinc and ammonia were detected at concentrations that exceeded the SAC established for groundwater, while TPH C₆-C₁₄ and ethylbenzene concentrations above the laboratory detection limit were detected around the USTs adjacent to the maintenance shed.

CES Document Reference: CES130608-BP-AR Page 7 of 100

With respect to the concentrations of TPH and BTEX exceeding the laboratory reporting limit, as the concentrations of these substances was only detected within ABH202 and ABH2105, which are located close to the western end of the maintenance shed (northern tanks) and were not detected in the down gradient groundwater well, the potential for migration of contaminants appears to be limited. In addition, the contaminant concentrations have decreased between 2008 and 2017 – and are no longer exceeding the reporting limit in ABH202 and are below the screening criteria in ABH2105.

With respect to metal concentrations, given the nature of the fill materials identified, and that the concentrations identified are unlikely to occur naturally in the soil types in the area, it is considered likely that metals contamination in groundwater were possibly sourced from dredged sediments and pore water placed on the site during the realignment of Cooks River.

With respect to the low concentrations of ammonia detected in groundwater, it is considered likely that the potential source of ammonia is naturally occurring organic content in the dredged material placed on the site during the realignment of Cooks River and minor impact of fertilizers used during maintenance of the golf course. It is noted that ammonia concentrations in the wells have reduced between 2008 and 2017 – and given a pH adjustment (average of 6.7), are below the relevant screening criteria (marine of 0.91 mg/L) or are unlikely to adversely impact the Cooks River.

Ground Gas Assessment

Concentrations of methane, carbon dioxide and oxygen in the gas extracted from six subsurface gas monitoring wells installed along the southern perimeter of the site were not indicative of the presence of landfill gas. There was no evidence that the former landfills to the south of the site are impacting on soil gas in the Cooks Cove Development Zone.

Summary and Recommendations

With the exception of BTEX impact in fill material surrounding bowsers and USTs located within the Kogarah Golf Club House car park and benzo(a)pyrene, copper and lead identified hotspots, the soil across the site does not contain contamination such that extensive remediation would be necessary to make the site suitable for the proposed mixed land use. However, it will be necessary prior to redevelopment of the site to remediate the impacted areas by decommissioning and removing the USTs and associated infrastructure; removing/managing benzo(a)pyrene, copper, and lead impacted soils and to ensure that fragments of Asbestos Containing Materials present in mainly surface fill in limited areas across the site are managed and disposed safely and in accordance with regulations.

It is recommended that a Remediation Action Plan (RAP) be prepared to address hydrocarbon-impacted areas associated with refuelling infrastructure in the Kogarah Golf Clubhouse car park, the areas of the benzo(a)pyrene, copper and lead hotspots, and the presence of fragments of asbestos cement sheeting on the site.

CES Document Reference: CES130608-BP-AR

Page 8 of 100

ENVIRONMENTAL SITE ASSESSMENT COOKS COVE DEVELOPMENT ZONE PREPARED FOR COOK COVE INLET PTY LTD

CES Document Reference: CES130608-BP-AR

TABLE OF CONTENTS

1	INTRODUCTION	16
2	OJECTIVES AND SCOPE	20
3	DATA QUALITY OBJECTIVES	23
4	SUMMARY OF PREVIOUS INVESTIGATIONS	27
	1.1 Data Quality Review of Previous Investigations	28
4.2 5	SITE INFORMATION SITE INFORMATION	30 32
5.1	COOKS COVE PLANNING PROPOSAL	32
	1.1 Site Description	32
5.2	SITE IDENTIFICATION	33
5.3	SITE ZONING AND LAND USE	34
5.4	TOPOGRAPHY	34
5.5	GEOLOGY	34
5.6	Hydrogeology	34
5.0	6.1 Regional Hydrogeology	34
5.0	6.2 Local Hydrogeology	35
5.7	ACID SULFATE SOIL RISK	35
6	SITE HISTORY	36
6.1	HISTORICAL AERIAL PHOTOGRAPHS	36
19	930 (DLWC)	36
19	043 (DMR)	36
19	251 (DLWC)	37
19	061 (DLWC)	37
19	070 (DLWC)	37
19	078 (DLWC)	37
19	986 (DLWC)	38
	999 (DLWC)	38
	99- 2022 (Nearmap)	38
6.2	SUMMARY	38
7	SITE CONDITION AND SURROUNDING ENVIRONMENT	40

CES Document Reference: CES130608-BP-AR

7.1	C	CURRENT OWNER, OCCUPIER AND OPERATIONS	40
7.2	S	ITE DESCRIPTION	40
7.3	T	ANKS AND ASSOCIATED SERVICES	40
7.4		URROUNDING LAND-USE	41
7.5		ISW EPA CONTAMINATED LAND RECORD	41
7.6	Iì	NTEGRITY ASSESSMENT	41
8		CONCEPTUAL MODEL OF POTENTIAL CONTAMINATION	42
8.1	P	OTENTIAL SOURCES OF CONTAMINATION AND ASSOCIATED COPC	42
8.	1.1	Underground Storage Tanks	42
8.	1.2	Use of Dredged Material as Fill	42
8.	1.3	Market Gardens	42
8.	1.4	Reclaimed Land	43
8.	1.5	Landfill Activities	43
8.	1.6	Golf Course Activities	43
8.	1.7	Presence of Unlined Landfills on Adjacent Blocks	43
8.	1.8	Summary of Chemicals of Potential Concern	43
8.2	C	CHARACTERISTICS OF CHEMICALS OF POTENTIAL CONCERN	44
8.	2.1	Metals and Metalloids	44
8.	2.2	Nutrients	44
8.	2.3	Total Petroleum Hydrocarbons (TPHs) and BTEX Compounds	45
8.	2.4	Polycyclic Aromatic Hydrocarbons (PAHs)	45
8.	2.5	Organochlorine Pesticides (OCPs) and Organophosphate Pesticides (OPPs)	45
8.	2.6	Polychlorinated Biphenyls (PCBs)	45
8.	2.7	Volatile Organic Compounds (VOCs)	46
8.	2.8	Phenoxyacetic Acid Herbicides	46
8.	2.9	Phenols	46
8.	2.10	Asbestos Containing Materials (ACMs)	46
8.3	S	ITE CONDITIONS	47
8.4	A	APPROACH OF INVESTIGATION	47
9		SAMPLING, ANALYSIS AND QUALITY PLAN	48
9.1	S	OIL SAMPLING PROGRAMME	49
	1.1	Sampling numbers, pattern and location	50
9.	1.2	Sampling Depths	50
9.		Sampling Methodology	51
		Decontamination Procedures	52
	1.5	Sample Containers, Method of Sample Storage and Handling	53
		Documentation	53
		Sample Logging	54
9.2		GROUNDWATER SAMPLING PROGRAMME	54
		Well Construction	54

9.2.2	2 Locations and Number of Sampling Points	55
9.2.3	3 Sampling Methodology	55
9.2.4	4 Decontamination Procedures	55
9.2.5	5 Method of Sample Storage and Handling	56
9.2.6	6 Documentation	56
9.3	SUB-SURFACE GAS MONITORING	57
9.3.1	l Well Construction	57
9.3.2	2 Locations and Number of Sampling Points	57
9.3.3	3 Sampling Methodology	57
9.4	ANALYTICAL PROGRAMME	59
9.4.1	l Soil	59
9.4.2	2 Groundwater	60
9.4.3	3 Landfill Gas	61
9.5	ANALYTICAL METHODS	61
9.5.1	l Soil	61
9.5.2	2 Groundwater	61
10	SITE ASSESSMENT CRITERIA	62
10.1	SOIL CONTAMINATION	62
10.1	.1 Aesthetics	62
10.1	.2 Ecologically based Soil Site Assessment Criteria	62
10.1	.3 Health-based Soil Site Assessment Criteria	62
10.1	.4 Asbestos in Soil Site Assessment Criteria	63
10.1	.5 Acid Sulfate Soils	63
10.1	.6 Soil Salinity	63
10.2	GROUNDWATER	64
10.3	GROUND GAS	65
10.4	VOLATILE ORGANIC COMPOUNDS IN LANDFILL GAS	66
11	QA/QC DATA EVALUATION	67
11.1	SOIL QA/QC ASSESSMENT	67
11.1	.1 Sample Preservation and Sample Holding Times	67
	2.2 Field QA/QC Assessment	67
	.3 Laboratory QA/QC Assessment	70
11.2	GROUNDWATER QA/QC ASSESSMENT	72
11.2	2.1 Sample Preservation and Sample Holding Times	72
	2.2 Field QA/QC Assessment	72
11.3	LABORATORY QA/QC ASSESSMENT	73
	2.1 Laboratory Duplicates	74
	2.2 Laboratory Control Samples	74
	2.3 Surrogates	74
	2.4 Matrix Snikes	75

11.3.5 Method Blanks	75
11.3.6 Sample Holding Times	75
11.3.7 Sample Condition	75
11.4 LANDFILL GAS QA/QC ASSESSMENT	75
11.4.1 Field Instrument Calibration	75
11.5 LABORATORY QA/QC ASSESSMENT	75
11.5.1 Laboratory Control Samples	76
11.5.2 Surrogates	76
11.5.3 Matrix Spikes	76
11.5.4 Method Blanks	76
11.6 DATA USEABILITY ASSESSMENT	76
11.6.1 Assessment of Field QA/QC Data	76
11.6.2 Assessment of Laboratory QA/QC Data	76
11.6.3 Overall Data Assessment	76
12 RESULTS	78
12.1 SITE STRATIGRAPHY AND AESTHETICS	78
12.2 SOIL PID ANALYSIS	78
12.3 SOIL ANALYTICAL RESULTS	79
12.3.1 Metals and Metalloids	79
12.3.2 TPH and BTEX	80
12.3.3 Polycyclic Aromatic Hydrocarbons (PAHs)	81
12.3.4 Organochlorine Pesticides (OCPs)	82
12.3.5 Organophosphate Pesticides (OPPs)	82
12.3.6 Polychlorinated Biphenyls (PCBs)	82
12.3.7 Phenols	83
12.3.8 Nutrients and Salinity	83
12.3.9 Volatile Organic Compounds (VOCs)	84
12.3.10 Phenoxyacetic Acid Herbicides (PAAH)	85
12.3.11 Asbestos	85
12.3.12 Acid Sulfate Soils (SPOCAS)	85
12.3.13 Hotspots	86
12.3.14 95 % Upper Confidence Limit (UCL) Calc	ulations 87
12.4 GROUNDWATER	88
12.4.1 Field Parameters	89
12.4.2 Analytical Data	89
12.4.3 Sub-Surface Gas Monitoring	92
12.5 VOLATILE ORGANIC COMPOUNDS	93
13 DISCUSSION AND SITE CHARACTERIS	SATION 93
13.1 Soil	93
13.2 GROUNDWATER	95

13.3	Landfill Gas	96
14	CONCLUSIONS AND RECOMMENDATIONS	97
14.1	Conclusions	97
14.2	RECOMMENDATIONS	97
15	LIMITATIONS OF THIS REPORT	98
16	REFERENCES	99
	LIST OF FIGURES	
Figure 1	: Site Location	
•	2: Site layout and sampling locations	
Figure 2	a: Site layout and sampling locations – UST area	
Figure 3	S: Soil contamination hotspots	
Figure 3	a: Soil contamination hotspots – UST area	
Figure 4	: Groundwater contours and SAC exceedances	
Takla 1.	LIST OF TABLES	
	Summary of sampling information	
	Summary of sampling information Containers, preservation requirements and holding times - Soil	
	Containers, preservation requirements and holding times – Son Containers, preservation requirements and holding times – Groundwater	
	Containers and preservation requirements—Gas	
	Analytical parameters, PQLs and methods – Soil	
	Analytical parameters, PQLs and methods – Groundwater	
	Site Assessment criteria – Soil	
Table 9:	Action criteria based on ASS soil analysis	
Table 10	9: Summary of site assessment criteria – Groundwater	
Table 1	1: Soil analytical results – metals	
Table 12	2: Soil analytical results – TPH/BTEX	
Table 13	3: Soil analytical results – PAH	
Table 14	4: Soil analytical results – OCP	
	5: Soil analytical results – OPP	
	6: Soil analytical results – PCB	
	7: Soil analytical results – Phenols	
	8: Soil analytical results – Nutrients and Salinity	
	9: Soil analytical results – VOC	
Table 20): Soil analytical results – PAAH	

CES Document Reference: CES130608-BP-AR Page 13 of 100

Table 21: Asbestos results

Table 22: Soil analytical results – POCAS

Table 23: Groundwater field parameters and analytical results – Anion and cation

Table 24: Groundwater analytical results – Dissolved metals

Table 25: Groundwater analytical results – TPH/BTEX

Table 26: Groundwater analytical results – PAH

Table 27: Groundwater analytical results – Nutrients

Table 28: Groundwater analytical results – VOC

Table 29: Groundwater analytical results – OCP

Table 30: Groundwater analytical results – OPP

Table 31: Groundwater analytical results – PCB

Table 32: Subsurface gas results

LIST OF APPENDICES

Appendix 1: Sampling Analysis and Quality Plan (CES, 2006)

Appendix 2: Tabulated QA/QC data

Appendix 3: Laboratory Certificates of Analysis (Please find on attached CD)

Appendix 4: Field Data Sheets

Appendix 5: Borehole Logs

Appendix 6: Summary of 95% UCL calculations

CES Document Reference: CES130608-BP-AR

LIST OF ABBREVIATIONS

ACM Asbestos Containing Material

ASS Acid Sulfate Soil

CCI Cook Cove Inlet Pty Ltd

BTEX Benzene, Toluene, Ethylbenzene and Total Xylenes

CES Consulting Earth Scientists Pty Ltd
CLM Contaminated Land Management

COC Chain of Custody

CT Contaminant Threshold
CV Coefficient of Variation
DQO Data Quality Objectives

EIL Ecologically-based Investigation Level

EPA Environment Protection Authority
HIL Health-based Investigation Level

mBGL metres Below Ground Level mAHD metres Australian Height Datum

nd not detectable
NSW New South Wales

OCP Organochlorine Pesticide

PAH Polycyclic Aromatic Hydrocarbon PAAH Phenoxyacetic Acid Herbicides

PCB Polychlorinated Biphenyl
PQL Practical Quantitation Limit

QA/QC Quality Assurance and Quality Control

RPD Relative Percentage Difference

SAC Site Assessment Criteria

SD Standard Deviation

TPH Total Petroleum Hydrocarbons

UCL Upper Confidence Limit

USEPA United States Environmental Protection Agency

VOC Volatile Organic Compound

ENVIRONMENTAL SITE ASSESSMENT COOKS COVE DEVELOPMENT ZONE PREPARED FOR COOK COVE INLET PTY LTD

CES Document Reference: CES130608-BP-AR

1 INTRODUCTION

This report has been prepared by Consulting Earth Scientists Pty Ltd (CES), on behalf of Cook Cove Inlet Pty Ltd (the Client), to support the public exhibition and assessment of the Cooks Cove Planning Proposal (PP-2022-1748), which was issued a Gateway Determination by the Department of Planning and Environment on 5 August 2022. The proposal seeks to amend Bayside Local Environmental Plan 2021 (BLEP 2021) to rezone and insert planning controls for certain land known as Cooks Cove within the BLEP 2021.

The Cooks Cove Planning Proposal aims to facilitate the long-planned transformation of 36.2ha of underutilised and strategically important land at Arncliffe, located to the north of the M5 Motorway and adjacent the western foreshore of the Cooks River. The project seeks a renewed focus on delivering a contemporary logistics and warehousing precinct within a well-connected location, surrounded by enhanced open space provisions. The site forms part of the broader Bayside West 2036 Precincts and generally comprises the footprint of the former Kogarah Golf Club, now in part occupied by the a temporary M6 Stage 1 construction compound.

The Environmental Site Assessment (ESA) and subsequent Remediation Action Plan are required to satisfy State Environmental Planning Policy (Resilience and Hazards) 2021 former State Environmental Planning Policy No 55—Remediation of Land (SEPP 55).

The Cooks Cove Master Plan 2022, as prepared by Hassell, represents an optimised and refined reference scheme, to guide best practice design and the preparation of detailed planning controls to achieve an attractive precinct with high amenity. Key features of the Cooks Cove Master Plan are:

- A net development zone of approximately 15ha with up to 343,250m² Gross Floor Area (GFA) comprising
 - o 290,000m² of multi-level logistics and warehousing;
 - o 20.000m² for hotel and visitor accommodation uses;
 - o 22,350m² for commercial office uses;
 - o 10,900m² of retail uses;
- Multi-level logistics with building heights generally up to 5 storeys (approx. 48m)
- A retail podium with commercial office and hotel above, up to a total of 12 storeys (approx.
 51m)
- Built form of a scale and composition which caters for the generation of approximately 3,300 new jobs

CES Document Reference: CES130608-BP-AR Page 16 of 100

- A surrounding open space precinct including:
- A highly activated waterfront including the Fig Tree Grove outdoor dining and urban park precinct
- A significant contribution to the extension of the regional Bay to Bay cycle link, 'Foreshore Walk', including active and passive recreational uses, together with environmental enhancements
- Master planned and Council-owned 'Pemulwuy Park' with an agreed embellishment outcome of passive open space and environmental enhancements to be delivered in stages post construction of the M6 Stage 1 Motorway
- Complementary on and off-site infrastructure to be delivered by way of State and Local Voluntary Planning Agreements.

Cooks Cove is located in the suburb of Arncliffe within the Bayside Council Local Government Area (LGA). The site is located to the west of the Cooks River, approximately 10 km south of the Sydney Central Business District (CBD). The site enjoys adjacency to key trade-related infrastructure being immediately west of Sydney Kingsford Smith International Airport and approximately 6 km west of Port Botany.

Cooks Cove is strategically located within close proximity to a number of railway stations including Banksia, Arncliffe, Wolli Creek and the International Airport Terminal, which vary in distance from the site between 700m and 1.1km. The M5 Motorway, providing regional connectivity to the Sydney Metropolitan area, runs in an east-west direction immediately to the south of the site. The M8 and M6 Motorways are, and will be, constructed in tunnels approximately 60 metres beneath the adjoining Bayside Council 'Trust' lands. The Sydney Gateway project, presently under construction to the immediate north of Cooks Cove and Sydney Airport, will substantially improve future accessibility to the St Peters interchange and the wider M4/M5 WestConnex network, via toll free connections, as well as the Domestic Airport and Port Botany.

The Cooks Cove Development Zone is located to the north of the Southern and Western Suburbs Ocean Outfall Sewer (SWSOOS) and is generally bound by the Cooks River to the east and Marsh Street to the north and west. The site is approximately 36.2ha and is owned and managed by a number of landowners, both public and private. Surrounding development includes the Sydney Airport International Terminal precinct, Mercure Sydney Airport, an area of low density dwellings presently transitioning to medium-high density residential flat buildings, recreation and open space facilities and road and airport related infrastructure.

The 2008 environmental site assessments of the site (identified as Area A and Area B at the time) determined the area of the site referred to as, and currently occupied by, the WestConnex M8 and M6 Stage 1 Motorway Temporary Compound, as suitable for use as public open space. No knowledge of further contaminating sources had been introduced between 2008 and 2023 and as such the suitability

of the site for the proposed use remained the same. It is understood by CES that Westconnex took possession of the site in 2016 and as such committed to returning the site to a suitable condition for use as public open space at the completion of their works. Therefore, CES has not included the current Westconnex temporary compound in this environmental assessment.

The temporary construction compound for the WestConnex M8 and M6 Stage 1 Motorway tunnelling works was originally established in June 2016. The temporary construction facility occupies approximately 7.5ha and is expected to remain until 2025. At this time the facility will reduce to 1.5ha to accommodate the permanent Arncliffe Motorway Operations Complex (MOC), located in the western corner of the site, adjacent Marsh Street. The complex will house ventilation and water treatment plant and maintenance equipment for both the M6 and M8 sub-grade motorways.

This updated report comprises a consolidation, update and review of the previous Area A and Area B ESAs (CES Document References: CES050706-BCC-17-F, Rev. 1 and CES050706-BCC-18-F Rev. 2, both dated 28 July 2008).

A Stage I Environmental Site Assessment was conducted by CES (2001). Pursuant to the Stage I report, additional investigation works required were specified in a detailed Sampling, Analysis and Quality Plan (SAQP) prepared by CES (CES, 2005; Appendix 1).

The additional investigation works were carried out in accordance with the SAQP (2006) and SAQP (2005), which was reviewed by the former Site Auditor for the Cooks Cove Development Zone, Dr Bill Ryall, ENSR Australia. The site Auditor's Preliminary Comments on Draft SAQP: *Environmental Site Assessment, Area A, Cook Cove Development Site*, dated 28 June 2006, and *Environmental Site Assessment, Area B, Cook Cove Development Site*, dated 3 November 2005, were also considered when undertaking this investigation.

Additional groundwater sampling was undertaken in 2017 to quantify any changes to groundwater chemistry since the previous investigation.

It is noted that the Cooks Cove Planning Proposal (PP-2022-1748) site boundary shown on the plans in Figure 2 has been revised since the previous assessment. The revised boundary excludes 7 boreholes (BBH416, BBH424, BH437, BBH444, BBH449, BBH454, BBH459), from which soil samples were included in the previous assessment. As these soil sampling locations are outside of the revised site boundary, they have been removed from the updated assessment. One groundwater well (BMW403) and three gas wells (BLG401, BLG402, BLG403) are also outside the revised boundary, however, these have been retained as the information from sampling of groundwater and gas is relevant to the revised subject site

This report has been prepared in general accordance with the CES Area A and Area B Sample Analysis and Quality Plans (SAQP) (Ref: CES050706-BCC-01-F and CES050706-BCC-02-F), and

CES Document Reference: CES130608-BP-AR

Page 18 of 100

with the requirements specified for a Site Investigation as published by the NSW Environment Protection Authority (EPA) *Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites* (State of NSW and Office of Environment and Heritage (OEH)), 2011 and the National Environmental Protection Measure (NEPM) *Guideline on Site Characterisation (Schedule B2) 1999, as amended 2013.*

It is noted that the *Contaminated Sites Sampling Design Guidelines* (NSW EPA, 1995) have been superseded by the new *Contaminated Land Guidelines Sampling Design Part 1 – Application* (NSW EPA 2022) and *Contaminated Land Guidelines Sampling Design Part 2 – Interpretation* (NSW EPA 2022).

It is also noted that the *Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites* (State of NSW and Office of Environment and Heritage (OEH)), 2011 have been superseded by the NSW EPA, *Contaminated Land Guidelines: Consultants Reporting on Contaminated Land* (NSW EPA, 2020).

Based on a review of the new guidelines, overall, the investigation has been completed in general accordance with the updated guidelines and not impacted the assessment.

This report has formed the basis for preparation of the Cooks Cove Development Zone Remediation Action Plan (RAP) (CES Document Reference: CES130608-BP-AS) for the site redevelopment.

CES Document Reference: CES130608-BP-AR Page 19 of 100

2 OJECTIVES AND SCOPE

In accordance with the SAQP's (Appendix 1) objectives of the investigation were to:

- Provide a broad-scale assessment of soil and groundwater quality across the site;
- Address existing information gaps on soil and groundwater conditions across the site;
- Undertake a preliminary Acid Sulfate Soil (ASS) Assessment of the site;
- Undertake a preliminary Salinity Assessment of the site; and
- Assess whether the site is suitable for the proposed mixed land use.

To achieve this objective, in accordance with the SAQP's (Appendix 1) CES undertook the following scope of works:

- Preparation of the SAQPs;
- Drilled at sampling locations set out in a grid pattern across the site so that statistical analysis could be employed to assess the suitability of the site for the proposed use. A total of 182 sample locations (which equates to a sample density of 5 sample points per hectare or a sampling grid of approximately 45m) were drilled. Applying Procedure 'F' of the EPA (1995) guidelines, the sampling pattern equates with a 95% probability that a circular hotspot with a 53 m diameter would be detected. The sample density was less than the minimum sampling points for site characterisation recommended in the NSW EPA (1995) *Contaminated Sites: Sampling Design Guidelines*. A reduced sampling density is appropriate considering that the land is being redeveloped for a less sensitive land use and that the risk of high-level contamination at the site is low;

It is noted that the Contaminated Sites Sampling Design Guidelines (NSW EPA, 1995) have been superseded by the new Contaminated Land Guidelines Sampling Design Part 1 – Application (NSW EPA 2022) and Contaminated Land Guidelines Sampling Design Part 2 – Interpretation (NSW EPA 2022). The sample density was less than the minimum sampling points for site characterisation recommended in the NSW EPA (2020), however, is still considered appropriate considering:

- land is being redeveloped for a less sensitive land use,
- a review of the sampling locations (Figure 2) indicated a comprehensive site coverage
- the guidelines allow for judgemental/targeted sampling based on knowledge of the probable distribution of contaminants at the site, with known or suspected areas of contamination being specifically targeted based on the CSM.
- Fifteen of the boreholes were converted into groundwater monitoring wells and ten into gas monitoring wells. The boreholes for the sub-surface gas wells were extended to the water table

CES Document Reference: CES130608-BP-AR

Page 20 of 100

while the groundwater wells were extended to base of fill or 1 m below the observed water table;

- Soil/fill samples were analysed for metals and metalloids (As, Cd, Cr, Cu, Ni, Pb, Zn and Hg), Total Petroleum Hydrocarbons (TPH), the monocyclic aromatic hydrocarbons of Benzene, Toluene, Ethylbenzene and total Xylenes (BTEX), Polycyclic Aromatic Hydrocarbons (PAHs), Organochlorine Pesticides (OCPs), Polychlorinated Biphenyls (PCBs), Phenols, Phenoxyacetic Acid Herbicide (PAAHs), nutrients (ammonia, nitrite, nitrate, TKN and total phosphorus) and asbestos fibres. In addition, pieces of potential Asbestos Containing Materials (ACM) were analysed as appropriate;
- Soil samples collected as part of the ASS assessment were field screened, with selected samples submitted for Suspension Peroxide Oxidation Combined Acidity and Sulfate (SPOCAS) analysis;
- Soil samples collected as part of the salinity assessment were analysed for pH, electrical conductivity, salinity, resistivity, texture, soluble sulfate and chloride;
- Wells were installed using Geoprobe prepacked screens, and were developed prior to sampling. Groundwater sampling was undertaken using low-flow methods ensuring minimal drawdown;
- Groundwater samples were analysed for field parameters (depth to water table, temperature, pH, electrical conductivity, dissolved oxygen and redox potential), dissolved metals and metalloids, major ions, nutrients, TPH, BTEX and PAHs;
- As part of the salinity assessment, groundwater samples were also analysed for pH, electrical conductivity, salinity, total dissolved solids, resistivity, saturation index, alkalinity, ammonia, sulfate and chloride;
- Gas wells were monitored to assess concentrations of methane, carbon dioxide, oxygen and combustible gasses as well as formation gas pressures and gas flow rates;
- The results of the environmental assessment were prepared into a report outlining the results of the former investigations along with the results of the current investigation. In the report the data were assessed to allow conclusions about the suitability of the site for commercial/industrial land use or to recommend any further investigations or remediation which may be required; and
- A registered surveyor was engaged by the project manager, Cadence Australia Pty Ltd (Cadence) to survey all borehole locations both spatially and to Australian Height Datum.

The preparation of this consolidated report has required the following scope of works:

CES Document Reference: CES130608-BP-AR

Page 21 of 100

- An amendment to the site boundaries was required since a portion of the site will be temporarily occupied (during the construction of the WestConnex M8 and M6 Stage 1 Motorway projects) by the WestConnex M8 and M6 Stage 1 Motorway Temporary Compound (WTC) and will be permanently occupied by the Arncliffe Motorway Operations Complex (MOC) and Cooks Cove Planning Proposal (PP-2022-1748) presents a revised boundary to the south of the site. These areas are defined in Figure 2. After completion of the WestConnex project, the WTC will be returned by the current occupants to its previous condition and handed back for incorporation into the park land adjoining development. The MOC area will be retained permanently, and as such is no longer part of the site.
- The current Cooks Cove Planning Proposal comprises a mixed use concept including commercial, retail, hotel and multi-level logistics and warehousing land uses within the site.
- An assessment of whether any additional contaminants of potential concern may have been introduced to the soil and groundwater since 2008;
- An additional groundwater sampling round was undertaken in February 2017 to check whether there had been any material change to the groundwater quality between 2008 and 2017; and
- The consolidation revises the adopted screening criteria used in 2008, which were used to assess the soil and groundwater concentrations detected by the laboratory and replaces them with the investigation and screening levels presented in Schedule B1, *Guideline on Investigation Levels for Soil and Groundwater* (National Environmental Protection Measure (NEPM 2013). The assessment of the data was then checked and any changes made to the summary and recommendations, which was made in 2008.

CES Document Reference: CES130608-BP-AR

Page 22 of 100

3 DATA QUALITY OBJECTIVES

The DQOs have been formulated by experienced CES Environmental Scientists.

Step 1 – State the Problem

The problem is that the limited investigations undertaken on the site to date do not provide sufficient information to adequately characterise soil and groundwater quality. Further, there has been a limited assessment of whether the site has been impacted by landfill gas migrating from the landfills located to the south of the site.

Based on historical use of the site as a golf course, the risk of high-level contamination at the site is considered to be low.

Step 2 – Identify the Decision Statement

The aim of this step is to identify what questions this program will attempt to resolve and to discuss what actions may result.

The primary question that this programme will attempt to resolve is:

What is the extent of soil, groundwater and landfill gas contamination on the site, if any, as a result of previous land uses on both this and adjacent sites?

By resolving this question, it will be possible to develop focussed remediation requirements and options for the site.

Step 3 – Identify inputs to the decision

The following data are required to resolve the decision question(s):

- The key contaminants of concern as identified from the findings from previous consultant investigations and more recently by CES;
- The drilling of boreholes across the site, with fifteen boreholes converted to groundwater monitoring wells and ten boreholes converted to gas monitoring wells. In addition, it will be attempted to locate four existing groundwater monitoring wells installed on the site during previous investigations;
- Collection of soil samples at regular depth intervals in each borehole;
- Collection of groundwater samples from each of the groundwater monitoring wells following development and purging in accordance with appropriate methods;
- Standing water levels to be recorded in each monitoring well prior to sampling;

CES Document Reference: CES130608-BP-AR Page 23 of 100

- Monitoring of landfill gas characteristics in each of the sub-surface gas monitoring wells;
- Analysis of both soil and groundwater samples for the contaminants of concern and other analytes which will assist in developing remediation techniques;
- Comparison of the results with relevant site assessment criteria (ie. NEPM (2013) Investigation Levels for Soil and Groundwater and ANZG 2018 water quality guidelines; and
- Obtain survey data, including the position and relative heights, for each of the monitoring wells. When combined with the water level data and analytical results this will enable a determination of the spatial and vertical extent of contaminant plumes and direction of groundwater flow.

It is noted that ANZECC (2000) water quality guidelines have been superseded by the Water Quality Guidelines, ANZG (2018). Additional comments are presented in Section 10.2.

Step 4 - Define the boundaries of the study

The site has been referred to as the Cooks Cove Development Zone. It is located to the north of the Southern and Western Suburbs Ocean Outfall Sewer (SWSOOS), and is generally bound by the Cooks River to the east and Marsh Street to the north and west. The site is approximately 36.2ha. The site boundary is presented on Figure 2.

The legal description of the developable land is Part of Lot 1 Deposited Plan (DP) 329283, Part of Lot 1 DP 108492, Part of Lot 14 DP 213314, Lot 31 DP1231486, and Lot 100 DP1231954. It is located within the Local Government Area (LGA) of Bayside, Parish of St George, County of Cumberland.

It is anticipated that the vertical extent of the study will be the top approximately 10 m, with this depth considered sufficient to provide an assessment of natural soil as well as intercept the shallow groundwater zone.

The fieldwork undertaken by CES as described in this report was carried out during April, May and June 2008 and February 2017.

Step 5 - Develop a decision rule

The purpose of this step is to define the parameters of interest, specify the action levels and combine the outputs of the previous DQO steps into an "if…then…" decision rule that defines the conditions that would cause the decision maker to choose alternative actions.

The parameters of interest (or contaminants of concern) in the soil for this investigation are metals and metalloids, TPH, BTEX, PAHs, OCPs, OPPs, VOCs, PAAHs, phenols, nutrients and asbestos. For the groundwater investigation, the contaminants of concern are metals and metalloids, nutrients,

CES Document Reference: CES130608-BP-AR

Page 24 of 100

TPH, BTEX, PAHs, OCPs, OPPs, VOCs and phenols. In addition to soil and groundwater, landfill gas is also a contaminant of concern.

The action level which will be used to decide if the parameter represents an unacceptable risk for the proposed land-use are provided as Investigation Criteria in Section 10 of this document.

If the 95% Upper Confidence Level (UCL) of the mean of a population of a measured concentration of a parameter or compound in soil exceeds the SAC, then this is deemed to present an unacceptable risk if the Site is redeveloped for commercial/industrial land-use. Unlike soils, it is not appropriate to assess groundwater and landfill gas concentrations by comparing the UCL with guideline levels. The level of impact on groundwater and from landfill gas will need to be assessed at each monitoring location.

The types of data quality required during the fieldwork component of the investigation and for the laboratory analyses are specified in Section 11. The acceptable limits for this data are defined in Tables 8 - 10.

Based on these data quality types and limits the following decision rules will apply:

- Impacted soil will be identified by concentrations exceeding the assessment criteria;
- Impacted groundwater will be identified by concentrations exceeding the assessment criteria;
- The presence of elevated concentrations of landfill gas (from landfills in the Southern Precinct to the south) will be identified by concentrations exceeding the assessment criteria;
- If contaminants of concern are detected in the trip blanks, then potential cross contamination may have occurred during sample transport. To assess whether this is the case, CES will check the trip blank results with the laboratory and compare the results with other blanks provide by the same laboratory. It is possible that detections in trip blanks may reflect background concentrations in laboratory-supplied water or analytical error. If it is concluded that decontamination procedures were inadequate CES will assess the severity of the cross contamination and subsequent impacts on the ability to resolve the decision question. Possible actions may include the raising of working detection limits or the collection of replacement data;
- If RPDs for blind replicates or split samples are outside the acceptable limits, then there may be errors in laboratory analysis process. When assessing duplicate pairs with elevated RPDs, CES will check the results with the laboratory(ies) and examine the nature of the sample being assessed, since heterogeneous samples can often provide high RPDs. If it is believed that

CES Document Reference: CES130608-BP-AR

Page 25 of 100

irreversible errors have occurred during the laboratory process then additional investigation will be required to resolve the decision question; and

• If any of the laboratory data quality tests do not meet the acceptable limits, the laboratory will be requested to retest samples or provide justification for the results.

Step 6 - Specify acceptable limits on decision errors

There are two types of errors:

- a) Deciding that the site is acceptable for the mixed development land use when it actually is not (Type I error). The consequence of this error may be unacceptable ecological or health risk for future users of the site.
- b) Deciding that the site is unacceptable for the mixed development land use when it is acceptable (Type II error). The consequence of this error is that the client will pay for further investigation / remediation that is not necessary.

The more severe consequence is with decision error (a) since the risk of jeopardising human health outweighs the consequences of paying more for remediation.

It will not be possible to conduct statistical hypothesis tests as the proposed sampling programme consists of the collection of one round of samples only. With groundwater, unlike soils, it is not generally appropriate to compare guideline levels with Upper Confidence Limits (UCLs) for the mean of measured concentrations. Consequently, the level of impact on groundwater and from landfill gas will need to be assessed at each monitoring well.

Step 7 - Optimising the Design for Obtaining Data

The purpose of this step is to identify a resource-effective data collection design for generating data that are expected to satisfy the DQOs.

The resource effective data collection design that is expected to satisfy the DQOs is described in detail in Section 9. To ensure the design satisfies the DQOs a comprehensive Quality Assurance and Quality Control plan will be implemented as described in Section 9.

CES Document Reference: CES130608-BP-AR Page 26 of 100

4 SUMMARY OF PREVIOUS INVESTIGATIONS

The following environmental and geotechnical investigation reports have been prepared for the entire Cook Cove Development Site.

- Consulting Earth Scientists (April 2001). "Site Contamination Issues Paper: Cook Cove Development Site. Prepared for Trafalgar Properties Pty Ltd and Page Kirkland Management Pty Ltd";
- Keighran Geotechnics (August 2001). "Preliminary Site Investigation, Cook Cove Industrial Development, Kogarah Golf Club, Arncliffe";
- Consulting Earth Scientists (August 2001). "Phase 1 Environmental Site Assessment: Cook
 Cove Development Site. Prepared for Trafalgar Properties Pty Ltd and Page Kirkland
 Management Pty Ltd";
- Consulting Earth Scientists (September 2001). "Report on Wetland Sampling Conducted 26 August 2001";
- Consulting Earth Scientists (October 2001). "Report on Well Installation and Groundwater Sampling Programme: Cooks River Development Site. Prepared for Trafalgar Properties Pty Ltd and Page Kirkland Management Pty Ltd"; and
- Golder Associates (January 2002). "Contamination Investigation and Conceptual Remediation Approach for Cooks River Development, Arncliffe".

The main conclusions drawn from these reports with respect to contamination and other environmental constraints associated with the proposed development are outlined below:

- The site has been subjected to extensive landscaping to form the golf course;
- The site is underlain by sand fill to depths of 0.2 to 0.8 metres below ground level (mBGL) overlying alluvial sands and clays. Sandstone bedrock was encountered at depth ranging from 0.9 mBGL near the existing clubhouse to 10.5 mBGL in the flatter sections of the site;
- Contaminating activities currently and historically known to have occurred on the site include reclamation works adjacent to adjoining water bodies, disposal of dredged material and canal sediments, use as a night sullage depot, market gardens and activities/operations associated with the maintenance of the golf course;
- The former Unhealthy Building and notice registry (repealed by the Contaminated Land Management Act) managed by the NSW EPA noted the presence of "garbage and industrial waste disposal areas" in areas to the south of the Cooks Cove Development Zone;

CES Document Reference: CES130608-BP-AR Page 27 of 100

- The site adjoins several environmentally sensitive receptors including wetlands, surface water bodies and residential premises;
- No leachate controls have been constructed within any of the areas subjected to landfilling (which are located offsite to the south of the Cooks Cove Development Zone);
- Contamination typically associated with the landfilling of waste materials (putrescible and uncontrolled landfilling) has been detected in soils and groundwater offsite to the south of the Cooks Cove Development Zone
- Landfill gas (containing methane) has been detected at concentrations above the Lower Explosive Limit (LEL) beneath the former landfills to the south of the site. Buildings, tunnels and services present beneath and adjacent to the site could potentially be impacted by the migration of landfill gas from the site;
- Virtually the entire site is thought to be underlain by Potential Acid Sulfate Soils (PASS).
 Acid Sulfate Soils (ASS) could also be present within the stockpile of material generated during the construction of the M5 Tunnel; and

4.1.1 Data Quality Review of Previous Investigations

4.1.1.1 *CES* (August, 2001)

Although the formal seven step Data Quality Objectives (DQOs) were not prepared prior to undertaking the investigation, the CES (August, 2001) investigation met the majority of the critical components of the DQO approach. This included:

- The objectives and scope of the investigation were stated;
- The appropriate type of samples were collected for the purposes of the investigation;
- Appropriate site investigation criteria were adopted for the proposed future land-use;
- Chain of Custody documentation was used to track all samples during transport to the laboratory;
- Samples were appropriately preserved and maintained during transport to the laboratory;
- Samples were analysed within the recommended holding times by a NATA accredited laboratory using NATA accredited methodologies;
- Detection limits for the chemicals of potential concern were appropriate for the site investigation criteria;
- Field duplicates, rinsate blanks, trip blanks and trip spikes were collected during the investigation; and
- The laboratory QA/QC included analysis of laboratory duplicates, matrix spikes, surrogates, laboratory control samples and laboratory blanks.

CES Document Reference: CES130608-BP-AR

Page 28 of 100

The above QA/QC programme is generally acceptable for the purposes of the investigation. The only major QA/QC component not undertaken or addressed was the collection of split sample(s) for interlaboratory analysis.

4.1.1.2 *Golders* (2002)

A data quality and sampling plan was prepared by Golders prior to commencement of the project. CES have not seen a copy of this plan. A Field and Laboratory Quality Control Report is provided in Appendix C of the report which summarises the results of the QA/QC programme.

The stated Data Quality Objectives of the project (Section 7.1) were:

"...to generate data quality that was consistent with the objectives of the investigation. This mainly consisted of generating quality data on the soil and groundwater conditions in the areas targeted for sampling. The key elements to achieve the DQO related to implementation of the field work, collection of quality control samples and generation of internal laboratory quality control data to support the reported results and the assessment of laboratory results."

The Golders (2002) investigation met the majority of the critical components of the DQO approach. This included:

- The objectives and scope of the investigation were stated;
- The appropriate type of samples were collected for the purposes of the investigation;
- Appropriate site investigation criteria were adopted for the proposed future land-use;
- Chain of Custody documentation was used to track all samples during transport to the laboratory;
- Samples were appropriately preserved and maintained during transport to the laboratory;
- Samples were analysed within the recommended holding times by a NATA accredited laboratory using NATA accredited methodologies;
- Detection limits for the chemicals of potential concern were appropriate for the site investigation criteria;
- Two field duplicates (10 %), a rinsate blank and a trip spike were collected during the soil sampling programme and five field duplicates (~10 %), one trip blank and two trip spikes were collected during the water sampling programme; and
- The laboratory QA/QC included analysis of laboratory duplicates, matrix spikes, surrogates, laboratory control samples and laboratory blanks.

CES Document Reference: CES130608-BP-AR

Page 29 of 100

The above QA/QC programme is generally acceptable for the purposes of the investigation. QA/QC components that were not undertaken or addressed were the absence of split samples during the soil and water sampling programme and the absence of a trip blank during the soil sampling programme. It was concluded that the data are reliable as background information in terms of the DQOs adopted for the current project.

4.2 SITE INFORMATION REVIEW SUMMARY

From the information review, the site has been subjected to a number of potentially contaminating activities including agricultural activities (entire area), reclamation of land using dredged sediments (eastern and southern boundary), miscellaneous landscaping (entire area) and activities/operations associated with the maintenance of the golf course. It is possible that the southern portion of the site has been subjected to, and/or affected by, the landfilling activities known to have occurred on the adjoining Southern Precinct.

Boreholes drilled across the site reported underlying stratigraphy consisting of sand fill and shell matter (consistent with dredged material) overlying natural alluvium (sand and silt) and weathered clays beneath the eastern portion of the site. The dredged fill was not encountered within the central portion of the southern half of the site. No waste materials were encountered within any of the boreholes/testpits excavated within the site. The previous sampling and analysis undertaken within the southern half of the site reported concentrations of ammonia (in groundwater) above the respective guideline levels.

The following points outline the gaps in the information already obtained for the site which will need to be addressed in order to assess the suitability of this area for its proposed mixed development land use:

- Seventeen boreholes/testpits have been excavated across Area B. However, information has only been made available on four. The remaining thirteen boreholes/testpits are located adjacent to the southern border of the southern half of the site and do not offer adequate site coverage. In consideration of the size of the area (approximately 9.5 hectares), the sampling density is significantly lower than the recommended minimum sampling density outlined in the NSW EPA (1995) Sampling Design Guidelines;
- The boreholes excavated have not targeted all the areas of concern which could have been impacted by historical contaminating activities;
- Only a limited number of groundwater monitoring wells has been installed in the southern half of the site. The information available from these wells indicates that groundwater is impacted with ammonia. The extent of the groundwater contamination beneath the southern half of the site has not been adequately assessed; and

CES Document Reference: CES130608-BP-AR Page 30 of 100

• Limited landfill gas testing has been undertaken within the southern half of the site. The landfill gas testing undertaken has reported elevated concentrations. However, Golder noted that these may be due to natural methane generation being emitted from estuarine soils. The extent of the landfill gas migration beneath the southern half of the site has not been adequately assessed.

Data provided in previous reports has not been used to characterise the site. Consequently, a data quality review of these reports is not required.

5 SITE INFORMATION

5.1 COOKS COVE PLANNING PROPOSAL

5.1.1 Site Description

Cooks Cove

Cooks Cove is located in the suburb of Arncliffe within the Bayside Council Local Government Area (LGA). The site is located to the west of the Cooks River, approximately 10km south of the Sydney Central Business District (CBD). The site enjoys adjacency to key trade-related infrastructure being immediately west of Sydney Kingsford Smith International Airport and approx 6km west of Port Botany.

Cooks Cove is strategically located within close proximity to a number of railway stations including Banksia, Arncliffe, Wolli Creek and the International Airport Terminal, which vary in distance from the site between 700m and 1.1km. The M5 Motorway, providing regional connectivity to the Sydney Metropolitan area, runs in an east-west direction immediately to the south of the site. The M8 and M6 Motorways are, and will be, constructed in tunnels approximately 60 metres beneath the adjoining Bayside Council 'Trust' lands. The Sydney Gateway project, presently under construction to the immediate north of Cooks Cove and Sydney Airport, will substantially improve future accessibility to the St Peters interchange and the wider M4/M5 WestConnex network, via toll free connections, as well as the Domestic Airport and Port Botany.

The Cooks Cove Development Zone is located to the north of the Southern and Western Suburbs Ocean Outfall Sewer (SWSOOS), and is generally bound by the Cooks River to the east and Marsh Street to the north and west. The site is approximately 36.2ha and is owned and managed by a number of landowners, both public and private. Surrounding development includes the Sydney Airport International Terminal precinct, Mercure Sydney Airport, an area of low density dwellings presently transitioning to medium-high density residential flat buildings, recreation and open space facilities and road and airport related infrastructure.

Kogarah Golf Club

Kogarah Golf Club was established in 1928, with the Club occupying the land subject to the Planning Proposal boundary since 1955. At this time, the Cooks River was reconfigured to its current alignment to accommodate the expansion of Sydney Airport. The land presents a highly modified environment, with relatively flat topography, gently moulded fairways and greens, separated by strips of vegetation and man-made water bodies. The golf course clubhouse, car park and maintenance facilities are located in the northern corner of the site, adjacent the Cooks River. Access is provided via Levey Street. The members of Kogarah Golf Club will relocate from the site in May 2024 to new playing facilities.

Arncliffe Motorway Operation Complex

The temporary construction compound for the WestConnex M8 and M6 Stage 1 Motorway tunnelling works was originally established in June 2016. The temporary construction facility occupies approximately 7.5ha and is expected to remain until 2025. At this time the facility will reduce to 1.5ha

CES Document Reference: CES130608-BP-AR

Page 32 of 100

to accommodate the permanent Arncliffe Motorway Operations Complex, located in the western corner of the site, adjacent Marsh Street. The complex will house ventilation and water treatment plant and maintenance equipment for both the M6 and M8 sub-grade motorways.

RTA Frog Ponds

The site contains the existing RTA Frog Ponds, located in the south-west corner of the site, adjacent Marsh Street and SWSOOS. The two fenced areas contain ponds, constructed by the RTA as part of the M5 Motorway construction in 2002, as compensatory habitat for the Green and Golden Bell Frog.

Easements and Affectations

The Sydney Desalination Plant pipeline runs through the development zone, north-south adjacent the Cooks River. The pipe has a diameter of 1.8m and sits within an easement of 6-9m in width. From south to north the pipeline is constructed in a combination of trench and above ground with mounded cover and then transitions to micro-tunnel and typical depth of circa 11m. The Moomba to Sydney Pipeline, containing ethane gas, follows a similar general alignment north-south adjacent the Cooks River. The pipe has a nominal 225mm diameter, within an easement generally 5m wide and with the pipe located at a depth of 1.2m-2.3m..

5.2 SITE IDENTIFICATION

The site is referred to as the Cooks Cove Development Zone, Cooks Cove, NSW. The site was previously referred to as the Northern Precinct and prior to that Areas A and B, but have been consolidated as one portion of land in this report.

The site covers an area of approximately 36 Ha of which 15 ha is proposed to be developed with the remainder utilised to accommodate infrastructure and recreation facilities.

This report details the assessment of the site area covering approximately 26 ha of the site of which does not include the current Westconnex M8 and M6 Stage 1 Motorway temporary compound (WTC) or the parcel of land legally identified as Lots 14 DP213314 and Lot 31 DP1231486.

It is understood by CES that the area occupied by the WTC has been disturbed by recent site works and no longer indicative of the prior ground conditions. It is understood that Westconnex has committed to returning the site to a suitable condition for use as public open space at the completion of their works. Lots 14 DP213314 and Lot 31 DP1231486 have been subject to its own Environmental Site Assessment Report (CES Document Reference CES130608-BP-AT). The legal description of the developable land is Part of Lot 1 Deposited Plan (DP) 329283, Part of Lot 1 DP 108492, Part of Lot 14 DP 213314, and Lot 100 DP1231954. It is located within the Local Government Area (LGA) of Bayside, Parish of St George, County of Cumberland.

A plan showing the site layout is presented in Figure 2.

5.3 SITE ZONING AND LAND USE

The site is currently zoned a combination of Open Space, Trade and Technology and Special Use land use under the State Environmental Planning Policy (Precincts—Eastern Harbour City) 2021. It is proposed to rezone the site for SP2 Infrastructure, RE1 Public Recreation and SP4 Enterprise uses.

5.4 TOPOGRAPHY

A review of the Botany Bay 1:25000 Topographic map (9130-3-S) indicated that the site elevation ranges from 0 to 10 m above Australian Height Datum (AHD). The site topography has been significantly modified through the placement of fill material over the original swamp and delta. An undulating surface has been created to form the golf course including several small lakes as shown on Figure 2.

The site generally drains in an easterly direction towards the Cooks River, although localised flow paths occur across the golf course, including an un-named intermittent stream draining the golf course shown on the 1:25000 Topographic Map. In addition, the central portion of the golf course drains internally towards a series of lakes.

5.5 GEOLOGY

A review of the Sydney 1:100 000 Geological Series map indicated that the site is underlain by silty to peaty quartz sand, silt and clay. Ferruginous and humic cementation occurs in places with common shell layers also reported. This material is most likely of alluvial origin, deposited as sub-aerial and sub-aqueous components of the Cooks River delta. This deposit was reworked significantly last century as part of river diversion and training works. These works would have involved significant dredging operations.

An outcrop of Hawkesbury Sandstone is also shown in the location of the existing Kogarah Golf Club House. A review of the Sydney 1: 100 000 Soil Landscape Sheet 9130 indicated that the site is underlain by anthropogenic fill material. The southern portion of the site is underlain by sandy soils which are believed to have been dredged from the Cooks River and deposited on the site to form the KGC golf course.

5.6 HYDROGEOLOGY

5.6.1 Regional Hydrogeology

The groundwater at this site is expected to lie within a shallow unconfined aquifer, although localised layers of low permeability (*eg.* clay, peat and layers of localised iron-cemented sand) may act as local confining layers. Groundwater at the site is expected to flow in an easterly direction towards the Cooks River.

CES Document Reference: CES130608-BP-AR

Page 34 of 100

The Cooks River, Muddy Creek and the Spring Street Canal are tidal in the study area. It is expected that saline or brackish intrusion occurs around the periphery of the site. Diurnal fluctuations in groundwater levels in the peripheral areas are also expected to occur in response to tidal cycles.

5.6.2 Local Hydrogeology

CES (2001) undertook a search of the groundwater database at the DLWC (now Department of Planning and Environment (DPE). A total of 66 registered groundwater wells were identified within a 2 km radius of the centre of the Cooks Cove Development Zone site. Work summaries are presented in the SAQP (2006), Appendix 1. Twenty five wells are registered for "General Use" with a further seventeen registered for "Domestic Use". Wells for general use were registered between 1950 and 1969 while wells for domestic use were registered between 1991 and 2000. It is proposed that general and domestic wells refer to use by private persons for non-potable use. The different classes are attributed to a change in well classification methods by the DLWC.

Three wells are registered for recreational or irrigation use. All of these wells are registered to local sporting facilities, including the Kogarah Golf Club (installed in 1966). Twenty one of the wells are registered for environmental monitoring or testing. Sixteen of these wells are registered in association with the M5 East Motorway.

The only well registered in the site is GW027664 which is registered to Kogarah Golf Club for irrigation purposes. It is located in the north western corner of the golf course and was drilled to a depth of 6 m, which was equal to the depth of bedrock.

Inspection of DLWC work summaries reveals reported well yields of up to 3.0 L s⁻¹, with most yields of the order of 0.5 L s⁻¹. The salinity of wells installed is reported as "good". These data indicate that the study area is surrounded and underlain by relatively permeable strata. Low ("good") salinity of water extracted from the wells indicates that saline or brackish intrusion is likely to be limited to peripheral areas adjacent to the Cooks River and tidal reaches of tributaries thereof.

5.7 ACID SULFATE SOIL RISK

A review of the Botany Bay Acid Sulfate Soil Risk Map (2nd Ed, 1997) produced by the DLWC indicated that the site is located in an area of "...high probability of occurrence of acid sulfate soil materials. The environment of deposition has been suitable for the formation of acid sulfate soil materials. Acid sulfate soils materials are widespread or sporadic and may be buried by alluvium or windblown sediments". If present, acid sulfate soil is expected to be between 1 and 3 m below the ground surface.

Although extensive filling has occurred across the site, the fill material is most likely to consist of sediments dredged from the Cooks River. Therefore, this material, although technically fill, has the potential to be acid sulfate in nature.

CES Document Reference: CES130608-BP-AR

Page 35 of 100

6 SITE HISTORY

6.1 HISTORICAL AERIAL PHOTOGRAPHS

Historical aerial photographs from the Department of Land and Water Conservation were examined. Aerial surveys have typically been conducted every 8-10 years with the earliest photographs being taken in 1930. The following photographs were examined for this report: 1930; 1951; 1961; 1970; 1978; 1986 and 1999. In addition, the 1943 aerial photograph acquired by the Department of Main Roads (DMR), now Roads and Marine Services (RMS), was also examined. Conversations with lifelong members, present and former staff of the KGC assisted with the historical over view of the site.

The findings of air photo investigations are as presented below:

1930 (DLWC)

Cooks River is more torturous than at present day and does not adjoin the north-eastern section of the site as it does today. Muddy Creek and lower Cooks River are very thin and appear to be small tributaries off the main river only. The Cooks River outlet to Botany Bay is further north than presently located.

The site has been subdivided. The northern half of the area presently occupied by Kogarah Golf Club, appears to be comprise paddocks (possibly market gardens). The house in the north eastern part of the site presently utilised as the clubhouse has been built and may be surrounded by a few smaller buildings and a number of large trees. The southern half of the present day golf course and the area to the south has been subdivided and appears sandy with some scrubby vegetation.

The water main easement running across the Cooks River from the western to the eastern banks is present. Although property to the north west of the southern half of the site adjoining the river appears to comprise sand it does seem to have been landscaped. River bank is in the present day location. Neighbouring areas to the west and northwest are predominantly paddocks although some industrial buildings are present. Land south west of the southern portion of the site has been urbanised. East of the southern portion of the site across the lower Cooks River and Muddy Creek, the land is comprised of large subdivided blocks of dunes with some grass. White sand dunes occur on the north eastern side of the Cooks River.

1943 (DMR)

The 1943 aerial photograph indicates that the Cooks River is still fairly torturous in comparison to the aligned state of the present day. The golf club is present on the northern half of the site, with what appears to be the present day club house in position. The northern portion is generally covered in vegetation with some patches of sandy areas and some sealed sections around the clubhouse.

Market Gardens are present to the south of the southern half of the site, residential property to the west, open space to the north and the Kingsford Smith International Airport to the east.

CES Document Reference: CES130608-BP-AR

Page 36 of 100

1951 (DLWC)

The shape of Cooks River has been altered extensively with the lower parts of the river now bounding the property. Muddy Creek has been considerably widened and canalised. Spring Street Canal has been constructed, as has the present day channel opening of the Cooks River into Botany Bay. Dredges and sand stockpiles in the photo indicate that these works were still in progress at the time.

The entire area of the present day Kogarah Golf Club appears to have reverted back to grass-and scrub-covered sand dunes, with the southern half being sandier.

There is a continued build-up of industry in the neighbouring area to the northwest and airport developments on the eastern side of the river are continuing.

1961 (DLWC)

The Cooks River has been reshaped and repositioned since the 1951 photograph. The north eastern side of the property now bounds the river. In addition Muddy Creek has been significantly narrowed.

The northern half of the site is now occupied by the golf course and is close to the present day layout. Numerous vehicles were noted around the golf club.

To the north of the site, land on the rivers edge has been landscaped and some small buildings erected. Additional factories and houses have been built on properties to the northwest and numerous trucks and smaller vehicles are visible around these buildings. Airport runways and aircraft hangars have been completed on the eastern bank of the Cooks River and are in operation with numerous planes visible in this area.

1970 (DLWC)

Additional alterations to the Cooks River have been performed since the 1961 photograph with the river essentially as in its present day form. Further industrial development has occurred to the north west of the site as well as superficial changes to other buildings in this area.

The construction of the airport overpass at the north eastern end of Marsh Street has commenced. Numerous construction site sheds are visible in on the north eastern corner of the Kogarah Golf Club. The golf course area is essentially the same as in the 1961 photograph although looking a little more grassy and with the addition of numerous small ponds.

1978 (DLWC)

The Kogarah Golf Club has been further landscaped with areas having been built up and additional ponds put in place. The western-most section of this area, previously occupied by market gardens is now included as part of the golf course.

CES Document Reference: CES130608-BP-AR Page 37 of 100

To the north of the site demolition and construction of industrial buildings has occurred. The main span of the Marsh Street airport overpass has been constructed. Remaining neighbouring property appear essentially the same.

1986 (DLWC)

The site in general has not undergone many changes since the 1978 photograph.

To the north west of the site across Marsh Road, tennis courts have been built, as has the Airport Hilton in the place of the demolition area noted in the last photo. In addition, superficial changes have been made to other buildings in this area. A central section of the Marsh Street overpass to the airport has been constructed.

1999 (DLWC)

On the Kogarah Golf Course a large maintenance shed has been constructed on the northern most part of the property next to Marsh Street. From interviews with lifelong members, present and former staff, CES understand that two USTs were installed and the maintenance shed was constructed in the early 1990's. In addition, a small building in the middle of the golf course was constructed at a similar time.

On neighbouring properties to the north small-scale construction and demolition works have been carried out. Houses on the corner of Marsh and West Botany Streets have been demolished. Directly north of the site across the river, some construction works or redevelopment activities are being carried out. The central section of the Marsh Street overpass to the airport has been completed.

1999- 2022 (Nearmap)

A review of the historical photographs produced on Nearmap (accessed 3 February2023) was undertaken. The review indicated no significant change to the site or its surrounds between the dates of 14 November 2009 and November 2022, with the exception of the construction of the Westconnex M8 and M6 Stage 1 Motorway Temporary Compound during August 2016 to date. The remaining data gap between the dates of 1999 and 2009 were unable to be addressed due to lack of photographic evidence, however the site did not appear to have significantly changed during this period when comparing the 1999 and 2009 aerial photographs.

6.2 SUMMARY

A summary of the aerial photographs indicates that the site was part of the Cooks River floodplain prior to its reclamation and development. The golf course has been required to move over time in concert with reclamation activities of former mangrove areas. Therefore, although the golf course has been present in the area since circa 1930, it has not always been in its existing location.

The following potentially contaminating activities have been carried out on the site:

- Introduction of contaminants in fill material. The most probable source of fill material is dredged spoil from the Cooks River and its delta;
- Market gardening activities; and
- Chemical inputs associated with the golf course such as fertilisers and pesticides.

In addition, the site is located to the immediate north of a number of former municipal landfill sites. These former landfills are located to the south of the site. It is understood that neither leachate nor gas management systems were constructed on these landfills. Consequently, the potential exists for either leachate or landfill gas to have migrated onto the site.

7 SITE CONDITION AND SURROUNDING ENVIRONMENT

Descriptions of site and background information were previously presented in the Phase 1 Environmental Site Assessment (ESA) undertaken by CES (2001) on the entire former Cook Cove Development Site. It is not intended to fully replicate this information herein. However, a summary is provided below.

7.1 CURRENT OWNER, OCCUPIER AND OPERATIONS

The Site is currently on land owned by Kogarah Golf Club Limited (Lot 100/DP1231954 and Lot 31/DP1231486), with a section along Marsh Street on the western and southern boundary owned by The Municipality of the Council of Bayside (Lot 1 DP108492 and 14 DP213314), and a section along the southern western boundary (Lot 1 DP329283) owned by TfNSW/ Roads and Traffic Authority. The site is currently occupied by Kogarah Golf Club for a 15 hole golf course operation, with the balance occupied for use as the temporary M6 and M8 construction compound and associated permanent Motorway Operations Centre .

7.2 SITE DESCRIPTION

The following description of the site is based upon a site inspection and information provided in previous reports.

Current access to the site is from Marsh Street via an underpass that crosses beneath the bridge that traverses the Cooks River. A car park, Club House and maintenance shed are located at the north eastern corner of the site. The remainder of the site consists of features typical of a golf course such as greens, fairways, sand bunkers and surface water bodies.

Vegetation on the site generally appeared to be healthy during fieldwork. No odours indicative of contamination or landfill gas were noted on the site (excluding during drilling and sampling within the Club House car park).

With the exception of the car park and access roads, the majority of the site is unsealed and used for a golf course. The areas encompassing the Club House and maintenance shed were sealed bitumen pavements with brick paths leading to the Club House from the course. All bituminous surfaces were in adequate conditions with no cracking or staining that was not associated with general everyday activities.

7.3 TANKS AND ASSOCIATED SERVICES

Prior to commencement of the field programme it was understood that one Underground Storage Tank (UST) was present in the north eastern corner of the site. During the investigations field scientists were informed of the presence of further three USTs within the Club House car park (Figure 3a).

CES Document Reference: CES130608-BP-AR Page 40 of 100

One UST containing unleaded fuel and one UST containing diesel fuel, two bowsers and associated pipes were located adjacent to the maintenance shed and used to fuel the various items of plant operated by the course curators. A further UST was located within the centre of the Club House car park but was not in use. However, it is not known if the tank has been decommissioned. A waste oil UST was located between the course maintenance shed and the KGC entry. This tank is currently in use. The location of the USTs is shown in Figure 3a.

7.4 SURROUNDING LAND-USE

Without gaining access, the properties immediately surrounding the site are as follows.

- North Marsh Street forms the northern boundary of the site. To the north of Marsh Street are the Mercure Hotel and St George Rowing Club;
- South The M5 East and SWSOOS easements adjoin the southern boundary of the site;
- East The Cooks River forms the eastern boundary of the site. To the east of the Cooks River is the International Terminal of Kingsford Smith Airport; and
- West Marsh Street also forms the western boundary of the site. Residential properties are located on the western side of Marsh Street.

7.5 NSW EPA CONTAMINATED LAND RECORD

A search of the NSW EPA Contaminated Land Record was undertaken by CES for the Bayside (formerly Rockdale City) Council Local Government Area. It indicated that there are no notices relevant to the site on the Record.

7.6 INTEGRITY ASSESSMENT

Historical and site information was sourced from NSW Government departments with no known interest in the site. CES have relied on the accuracy of the documentation provided and our experience in historical document interpretation. Whilst there is a small margin for error in interpretation, CES consider the information presented in this assessment to be accurate.

CES Document Reference: CES130608-BP-AR

Page 41 of 100

8 CONCEPTUAL MODEL OF POTENTIAL CONTAMINATION

The conceptual model of potential contamination has been developed to provide an understanding of the critical parameters required to understand the contamination status of the site. Its purpose is to develop a hypothesis on the contamination of the site which can be tested through a programme of soil, groundwater and landfill gas testing.

The model has been developed from a review of background information, historical documents and a detailed site inspection. It includes potential sources of contamination and their associated Contaminants of Potential Concern (CoPC), characteristics of the CoPC, site conditions and a summary of the approach of the investigation.

8.1 POTENTIAL SOURCES OF CONTAMINATION AND ASSOCIATED COPC

A review of background information, historical documents and a detailed site inspection indicate that the following potential sources of contamination are present at the site or its immediate surrounds.

8.1.1 Underground Storage Tanks

Four known USTs are located in the north eastern corner of the site within the Club House car park. Three are currently in use, it is not known if the fourth has been appropriately decommissioned.

The CoPC includes metals and lead, TPH, BTEX and PAHs.

8.1.2 Use of Dredged Material as Fill

The southern portion of the site has been filled as part of the re-alignment of the Cooks River during the 1950s. The fill material is believed to comprise spoil dredged from the River, its tributaries and it's delta in Botany Bay.

Given the historical industrial activities carried out on the Cooks River the CoPC include metals and metalloids, TPH, BTEX, PAHs, OCPs, OPPs, PCBs and VOCs.

8.1.3 Market Gardens

There was a market garden in southern corner in the 1930s and 1940s. Aerials photographs indicated it was removed by 1950s. This market garden may have included the addition of fertilisers and pest control agents to the soil.

The CoPCs include metals and metalloids, nutrients, OCPs, OPPs and PAAHs.

CES Document Reference: CES130608-BP-AR Page 42 of 100

8.1.4 Reclaimed Land

The Cooks River has been extensively altered over the past century. River training works may have utilised dredged sediments or imported fill material. Therefore, an investigation is required in order to assess the type of material used in the reclamation.

The CoPC includes metals and metalloids, nutrients, TPH, BTEX, PAHs, VOCs, phenols and ACMs.

8.1.5 Landfill Activities

Former municipal waste disposal landfills located to the south of the site are known not to have had leachate and landfill gas management systems installed and there is the potential for landfill gas and leachate to have migrated on the site. Although the site was not an official landfill, anecdotal evidence from members of the KGC indicated that waste material had been exposed during on-site excavations.

The CoPC includes metals and metalloids, nutrients, TPH, BTEX, PAHs, OCPs, OPPs, PAAHs, VOCs, phenols, ACMs and landfill gas.

8.1.6 Golf Course Activities

The sites historical and current use as a golf course may have resulted in the application of fertilisers and pest control agents. In addition past development activities on the golf course including the importation of fill for landscaping and the construction and maintenance of tracks and the construction of out buildings and renovation of the clubhouse has the potential for placement of fill material containing building demolition materials, including asbestos containing materials.

The CoPCs include metals and metalloids, nutrients, asbestos, OCPs and OPPs.

8.1.7 Presence of Unlined Landfills on Adjacent Blocks

The presence of an unlined landfill on the lands offsite to the south of the site indicate that leachate-impacted groundwater or landfill gas has the potential to migrate onto the site.

The CoPC include metals and metalloids, nutrients (including ammonia), TPH, BTEX, PAHs, OCPs, OPPs, PAAHs, VOCs, phenols and landfill gas (including methane).

8.1.8 Summary of Chemicals of Potential Concern

Based on the above, the following CoPC have been identified for the entire site:

- Metals and metalloids;
- Nutrients, including ammonia, nitrate, nitrite, total Kjeldahl nitrogen and total phosphorus;
- Total Petroleum Hydrocarbons (TPH), monocyclic aromatic hydrocarbons (BTEX);
- Polycyclic Aromatic Hydrocarbons (PAHs);

- Organochlorine Pesticides (OCPs);
- Organophosphate Pesticides (OPPs);
- Polychlorinated Biphenyls (PCBs);
- Volatile Organic Compounds (VOCs);
- Phenols:
- Phenoxyacetic Acid Herbicides (PAAHs);
- Asbestos Containing Materials (ACMs); and
- Landfill Gas.

As the land-use of the site has not significantly changed since the 2008 environmental investigations, there are no additional CoPC at the site. It is anticipated that the contamination around the UST's has not migrated.

8.2 CHARACTERISTICS OF CHEMICALS OF POTENTIAL CONCERN

8.2.1 Metals and Metalloids

The metals and metalloids analytical suite generally consists of arsenic, cadmium, chromium, copper, lead, nickel, zinc and mercury. They all tend to bind strongly to soil particles and will dissolve in water. Both mercury and zinc accumulate in animal tissue while the others will not. The mobility of all metals increases with increasing acidity.

Additional considerations include testing for the presence for hexavalent chromium and methyl mercury where land use indicates that this is prudent. These two forms of the metals have a much greater toxicity than that analysed for in a standard metals and metalloids analysis.

8.2.2 Nutrients

Nitrogen and phosphorus species are the main nutrients of concern, with ammonia (a nitrogen compound) the most likely to be present as a result of the former landscaping and filling activities both on the site and on adjacent sites.

The concentrations of the nitrogen species will vary depending on site conditions, especially the oxidative environment. For example, ammonia is a main indicator of landfill leachate which is a low oxygen or reducing environment. Nitrate is highly mobile in water and will rarely adsorb to particular matter.

Phosphorus is readily adsorbed to soil particles and as such is often not detected in groundwater.

CES Document Reference: CES130608-BP-AR Page 44 of 100

8.2.3 Total Petroleum Hydrocarbons (TPHs) and BTEX Compounds

TPH and BTEX compounds are mostly associated with petroleum products. TPHs are divided into the C_6 - C_9 , C_{10} - C_{14} , C_{15} - C_{28} and C_{29} - C_{36} fractions based upon the number of carbon atoms within the compound. The C_6 - C_9 fraction is considered to be the volatile fraction, with volatility decreasing and density increasing with increasing number of carbon atoms. The BTEX compounds and TPH are less dense than water and will be present within the upper component of the aquifer.

The BTEX compounds are volatile and less dense than water and as such will behave in a similar fashion to the TPH C_6 - C_9 fraction.

8.2.4 Polycyclic Aromatic Hydrocarbons (PAHs)

PAHs are essentially a by-product of incomplete combustion, either by natural or anthropogenic sources. Common sources are coal, soot, charcoal and bitumen. The PAH analytical suite consists of the 16 USEPA priority PAHs which are listed in order of decreasing volatility, with naphthalene being the most volatile. There are hundreds of PAHs in existence.

PAHs are very stable and persistent in the environment as well as being carcinogenic. Most PAHs adsorb strongly to soil particles, although some are capable of migrating into groundwater. They do not dissolve easily in water and are most likely to be associated with particulate matter.

8.2.5 Organochlorine Pesticides (OCPs) and Organophosphate Pesticides (OPPs)

OCPs are chlorine-based pesticides which are now generally banned from use in most parts of the world due to their environmental impact and bioaccumulative potential within fatty tissue. Only minor concentrations of OCPs would be expected to be detected in groundwater as they do not dissolve easily.

The OPPs are phosphate-based pesticides used widely in agricultural activities. They tend to dissolve easily in water and are degraded rapidly in the environment into harmless breakdown products. They do not tend to accumulate within animal or plant foods.

8.2.6 Polychlorinated Biphenyls (PCBs)

PCBs are chlorine-based, manmade compounds which are chemically stable, unreactive and have high electrical resistivity. They are commonly used in capacitors and transformers, hydraulic fluids, adhesives, plasticizers, heat transfer fluids, wax extenders, lubricants, cutting oils and flame retardants.

PCBs are fat soluble and bio-accumulate in the fatty tissue of aquatic and terrestrial organisms and are biomagnified through the food chain. PCBs are transported through water and soil and occasionally through the air when waste materials containing PCBs are burned.

CES Document Reference: CES130608-BP-AR

Page 45 of 100

8.2.7 Volatile Organic Compounds (VOCs)

VOCs is the general term provided to a suite of organic compounds that are volatile in nature and frequently toxic. They include products used as solvents and fumigants. Many VOCs have a density greater than 1 and thus are termed Dense Non-Aqueous Phase Liquids (DNAPLs). Due to their greater density they are expected to accumulate at the bottom of the aquifer or in areas of lower permeability. Thus it becomes important to understand the location and extent of layers of differential permeability (eg. peat and clay) across the site.

VOCs may be degraded under certain conditions, therefore, if present, breakdown products of the original contaminants may also be present.

VOCs are generally not adsorbed onto the soil matrix so it is unlikely that they will be present within soil samples.

8.2.8 Phenoxyacetic Acid Herbicides

The Phenoxyacetic Acid Herbicide (PAAHs) group is mostly used in agriculture and horticulture for their selective action against broad-leaved weeds. It includes herbicides such as 2,4-D, Dicamba and MCPA.

They will degrade in soil through microbial action and will adsorb to soils with higher organic content. Residence time in soils is generally short-lived and in the order of weeks to months. Leaching into groundwater may occur in coarse sandy environments although the residence time is generally similar to that of soils.

8.2.9 Phenols

Phenols are produced during a number of industrial processes (*eg* coke processing, wood and iron/steel industry), in cigarette smoke and in smoked food products. Phenols have an objectionable smell and taste so human exposure is often limited by these early warning symptoms.

Phenols are highly mobile in soil and are not likely to persist in the environment or bio-accumulate.

8.2.10 Asbestos Containing Materials (ACMs)

ACMs are man-made materials that contain asbestos. They include fibrous cement sheeting, fire retardants and lagging of piping and other structures.

Degradation of ACMs may result in the release of microscopic asbestos fibres which can be harmful to human health and potentially result in lung diseases. Asbestos can be present either as fibres within soil or in pieces of ACM.

CES Document Reference: CES130608-BP-AR

Page 46 of 100

8.3 SITE CONDITIONS

Based on a site inspection, preliminary site works and knowledge of regional geology and hydrogeology, the following is understood about the site conditions likely to be encountered:

- Dredged material has the potential to cover the majority of the site;
- Results of previous investigations suggest that the dredged material comprises sand and silt and includes shell material; and
- Groundwater is likely to be encountered at less than 3 m below ground level.

The site conditions described above indicate that any contamination on the site could easily migrate both vertically downwards and horizontally. It is possible that peat layers may be present in underlying natural soils, which would impede contaminant migration. The presence of surface water receptors along the eastern boundary indicates that horizontal migration of contamination would be likely to cause off-site impacts.

8.4 APPROACH OF INVESTIGATION

The investigation outlined in the SAQP is designed to broadly characterise soil and groundwater conditions of the site, provide a preliminary characterisation of the fill (dredged) material at the southern portion to delineate the lateral and vertical extent of impacted soil and groundwater across the site, if any, as a result of past site activities, as well as providing an assessment of whether landfill gas and/or leachate is migrating onto the site from landfills located offsite to the south.

CES Document Reference: CES130608-BP-AR Page 47 of 100

9 SAMPLING, ANALYSIS AND QUALITY PLAN

Detailed Sampling, Analysis and Quality Plans (SAQPs) were prepared for the investigations reported herein (CES, 2006). The SAQPs are provided in Appendix 1 and the scope of works undertaken is summarised in Section 2 above. The sampling and monitoring activities of the site were undertaken as two separate programmes, Area A and Area B.

Area A

Soil sampling and the installation of the monitoring wells for Area A were undertaken from the 5 to 21 May 2008, and groundwater sampling was carried out on the 29 and 30 May 2008. Sub-surface landfill gas monitoring for Area A was conducted on 10 June 2008 with sub-surface landfill gas analysis for VOCs undertaken on 17 June 2008.

Area B

Soil sampling and the installation of the monitoring wells in Area B were undertaken on the 28 May to 2 June 2008, and groundwater sampling was carried out on the 17 and 18 June 2008. Sub-surface landfill gas monitoring in Area B was conducted on 10 June 2008.

Fieldwork was undertaken by experienced CES personnel in accordance with documented Quality Work Procedures (QWPs).

The investigation of Area A followed the SAQP with the following exceptions:

- PID screening of soil samples could only be undertaken at a limited number of locations due to the small volume of sample recovered;
- In addition to the programmed sample locations, fourteen additional boreholes were drilled in the vicinity Underground Storage Tanks (UST) in the Club House car park which were brought to field scientist attention once field operations had commenced, four of which were converted into groundwater monitoring wells;
- Due to piping associated with the USTs, underground electrical and water services surrounding the maintenance shed, boreholes in the vicinity of the USTs were extended to 1.2mBGL using vacuum excavation techniques with samples collected from a hand auger. ABH2107, located within the refuelling section of the maintenance shed, was bored using a hand auger and was unable to be extended to below the USTs using a drill rig due to access restrictions:
- Due to insufficient groundwater recovery from monitoring well ABH2100, laboratory analysis was only undertaken for determination of TPH C₆-C₉ and BTEX;
- Groundwater monitoring wells encompassing the USTs (ABH2105, ABH202 and ABH210) were analysed for lead, TPH and BTEX rather than the entire analytical suite;

CES Document Reference: CES130608-BP-AR Page 48 of 100

- Due to insufficient groundwater recovery from monitoring well ABH2110, field measurements were unable to be taken; and
- ABH292 was unable to reach natural soil due to drill rig refusal on sandstone fill at 1.90mBGL.

The investigation of Area B followed the SAQP with the following exceptions:

- The SAQP required that existing groundwater wells be sampled. However, the only existing groundwater well able to be located was BBH304;
- BBH402 and BBH405 were unable to reach natural soil due to drill rig or hand auger refusal on sandstone fill at 2.6 mBGL and 0.5 mBGL respectively;
- In comments on the draft SAQP, the auditor noted that *it appears that an additional groundwater well is required on the eastern boundary in the north-eastern corner of the site.*CES note that sampling of BBH304 was considered sufficient to assess groundwater at the eastern boundary. It is noted however that as part of the ESA on Area A, a groundwater well was located in the south-western corner of Area A and this data, while not reported here within, may be reviewed if required; and
- The SAQP included eighteen borehole sampling locations along the southern boundary adjacent to the SWSOOS, of which three were converted into groundwater monitoring wells and four were converted into subsurface gas monitoring wells. As a result of a subsequent boundary adjustment by the client post field investigations, this area is no longer part of the site. Locations no longer part of the site are BBH416, BBH424, BBH437, BBH444, BBH449, BBH454, BBH459, BMW403, BLG401, BLG402 and BLG403. Soil samples from boreholes outside the updated boundary will be excluded from this report, however, groundwater well BMW403, and ground gas wells BLG401, BLG402 and BLG403 will be retained as the information from sampling of groundwater and gas is relevant to the revised subject site.

9.1 SOIL SAMPLING PROGRAMME

Fieldwork comprised drilling 182 soil boreholes, of which fifteen were converted to groundwater wells and ten converted to sub-surface gas monitoring wells across the site (Figure 2 and 3a). Soil sampling boreholes were drilled with a Mac 2000 direct-push drilling rig supplied and operated by Macquarie Drilling, using a push tube. Bores into which groundwater wells and sub-surface landfill gas wells were installed were drilled using an Intertech i350 drilling rig utilising 125 mm diameter solid flight and 150 mm hollow flight augers.

Soil sampling and logging were carried out by Mr Luke Jenkins and Ms Kelly Weir, experienced Environmental Scientists, who also supervised installation of the groundwater and landfill gas

CES Document Reference: CES130608-BP-AR

Page 49 of 100

monitoring wells. Mr Jenkins or Ms Weir logged the encountered sub-surface lithology and nominated the samples for laboratory chemical analysis. Mr Jenkins carried out the groundwater sampling and gas sampling was carried out by Mr Alex Greenwell under the supervision of Mr Jenkins.

A summary of borehole purpose, depths and screen details is provided in Table 1. Borehole locations are shown on Figure 2 and 3a and borehole logs are provided in Appendix 5.

9.1.1 Sampling numbers, pattern and location

In accordance with the SAQPs sampling locations were arranged on a triangular grid pattern on centres of approximately 45 metres (Figure 2). The site area is approximately 36 hectares. A total of 182 boreholes were drilled, which equates with a probability of 95% that a circular hotspot of approximately 53 m diameter could be identified during the sampling programme (NSW EPA 1995, Procedure F).

In addition to the programmed sample locations, fourteen additional boreholes were drilled in the vicinity of USTs uncovered in the car park of the Club House during field investigations.

A summary of samples collected, is provided in Table 2.

9.1.2 Sampling Depths

The majority of boreholes were extended to at least 0.5m metre into natural soil, as this depth was expected to be the lower limit of the inferred vertical migration zone of contaminants associated with fill material, or drill rig refusal.

Encompassing the USTs in the north eastern corner, five boreholes were extended below the USTs to 4.0mBGL or greater. Three of which were converted to groundwater wells.

The final depth and screened interval of groundwater and subsurface gas monitoring wells was determined by the depth to groundwater. Groundwater wells were extended to 1m below Standing Water Level (SWL) and were screened to 0.5m above SWL. While subsurface gas wells were extended to or just below the SWL and screened to within 0.3mBGL.

In accordance with Schedule B2 *Site Characterisation* (NEPM, 2013), samples were collected from the near surface between 0-150 mm unless there was evidence of a thin superficial layer of impacted material. At greater depths, samples were collected at 0.5-1.0 m intervals or at changes in fill or soil type and so that soil is also collected at depths where the presence of contamination is indicated (*eg.* based on odour indicating contamination, colour, substances, liquids etc).

CES Document Reference: CES130608-BP-AR

Page 50 of 100

9.1.3 Sampling Methodology

Representative samples were collected in general accordance with the SAQPs. Samples were collected by hand directly from the push tubes, solid flight auger or hand auger, placed into laboratory supplied wide-mouth glass sample jars from recently opened polyethylene direct push liners wearing a fresh pair of disposable latex gloves for each sample. Sample collection, handling and preservation were undertaken in accordance with documented CES procedures by appropriately trained personnel. When collecting duplicate samples, samples were not homogenised, rather they were placed directly into sample jars to maintain the concentration of volatile compounds.

Sampling procedures for soil are summarised below:

- 1. Label sample containers with a unique sample identification, project details, date and initials of sampling personnel;
- 2. Collect samples in pre-washed glass jars with Teflon™ lined screw lids in accordance with USEPA methods SW846;
- 3. Ensure minimal head space within the sample jar and seal jar with lid;
- 4. Complete Chain-of-Custody (COC) form;
- 5. Place samples in coolers containing ice;
- 6. Seal coolers with custody seal at the conclusion of sampling; and
- 7. Transport samples to the analytical laboratory under CES COC.

Samples collected from the vicinity of the USTs were generally taken directly from push tube sample liners. However, samples collected from below 3.0 mBGL encompassing the USTs were taken directly from solid flight augers due to no sample recovery within the push tube sample liner as the material was too soft and wet. Location ABH2107 (within the maintenance shed) was extended to only 1.6mBGL due to access restrictions, with samples taken directly from a decontaminated hand auger.

Where there was sufficient sample volume, part of the sample was placed in a re-sealable polyethylene bag for measurement of volatile soil gases using the closed headspace PhotoIonisation Detector (PID) method. The PID is a non-specific detector, as such, the instrument provides a measure of concentrations of total ionisable compounds reported as equivalents of a calibration span gas. Therefore, the data are used to compare Volatile Organic Compounds (VOC) concentrations between samples without an understanding of the specific compounds present.

VOC concentrations detected by PIDs are dependent on a number of factors including:

The concentration and type of VOCs present in soil samples;

CES Document Reference: CES130608-BP-AR

Page 51 of 100

- Soil texture and compaction largely influence the potential for VOCs to be released from samples;
- Time since sample collection; and
- Temperature strongly affects the level of volatilisation of VOCs from soil and fill samples. In fact, temperature changes may result in differences of up to one order of magnitude in levels of VOCs detected using PIDs. Consequently, field screening for VOCs should be undertaken at the same time for all samples in order to produce representative results.

The procedure for soil screening using a PID is summarised as follows:

- 1. A corresponding sample to that selected for possible laboratory analysis was placed into a "snap-lock" or re-sealable plastic bag until half filled, then sealed. As recommended, samples were stored on ice and returned to base.
- 2. Upon returning to base, samples were left to equilibrate to ambient room temperature with occasional agitation to maximise the release of Volatile Organic Compounds (VOC) into the headspace. All samples were screened at the same time.
- 3. The PID instrument was calibrated to ambient air and a span gas comprising 97.5 ppm \pm 10 Isobutylene.
- 4. Background VOC concentrations in ambient air were measured prior to each reading in order to account for sensor drift. Concentrations were recorded on field data sheets along with date, location details, depth and method (HS for headspace method).
- 5. The point of the PID or a knife was used to punch a small hole in the top of the plastic bag. The tip of the PID was pushed into the hole in the bag. the readout monitored and the maximum and minimum concentration during the measurement period were noted.
- 6. The concentrations were noted in field data sheets.
- 7. The process outlined above was repeated for each sample (i.e., background reading followed by sample reading).
- 8. A calibration check was undertaken after every 20 samples and at the completion of field screening. If results of the calibration check varied by more than 10 % from the known concentration of the span gas, the instrument was recalibrated. Calibration checks and recalibrations were recorded on field data sheets.
- 9. Samples with high concentrations of VOCs in headspace gases were included for TPH testing at the laboratory.

9.1.4 Decontamination Procedures

With the exception of samples collected from the hand auger at BBH405, each soil sample was collected directly into the sample jar by hand from the disposable push-tube liner. The method used

CES Document Reference: CES130608-BP-AR

Page 52 of 100

minimises sample disturbance and no decontamination of sampling equipment is required. The hand auger was decontaminated only used at one location and thus decontamination between sampling locations was not required.

In cases where remaining samples were obtained using augers, the hand auger and auger flights were washed between sampling locations with Decon90 and hire pressure washers. A rinsate water sample was collected from the hand auger.

9.1.5 Sample Containers, Method of Sample Storage and Handling

The soil sample jars were glass with TeflonTM-lined lids and were supplied by the primary laboratory. The jars were completely filled with soil, labelled with unique sample identification, project details, date and initials of sampling personnel.

The soil jars, once filled with sample and sealed, were immediately placed in an esky / cool box in which ice had been added. At the end of the day the samples were transported, in the cool box, to the CES office where they were kept on ice until delivered to the laboratory in a cool box to which ice had been added.

Sample holding times, container and preservation requirements in accordance with NEPM (2013) are shown on Table 3.

9.1.6 Documentation

While on site, the supervising scientist noted:

- Time on site;
- Weather;
- Sample details;
- Relevant calibration details for field equipment; and
- Work progress.

All samples were classified in the field based on soil/fill characteristics. Obvious signs of contamination such as discolouration and/or odour were noted during the field work.

All samples, including QC samples, were transported to the laboratory under Chain-of-Custody (COC) procedures and maintained in an esky/cool box containing ice. The following information was recorded on a COC form:

• Site identification;

- The sampler;
- Nature of the sample;
- Collection date;
- Analyses to be performed; and
- Sample preservation method.

9.1.7 Sample Logging

A qualified environmental scientist completed soil borehole logs during drilling operations. The logs recorded the following data:

- Sample number and depth;
- Soil classification, colour, consistency or density, moisture content and obvious indications of contamination;
- Depth of drilling;
- Reason for terminating drilling (eg refusal, programme depth, etc);
- Method of drilling;
- The depth of first encountered free water; and
- If appropriate, well construction details.

9.2 GROUNDWATER SAMPLING PROGRAMME

Fieldwork comprised drilling fifteen groundwater wells across the site in order to ensure adequate site coverage. The location of the groundwater monitoring wells is provided in Figure 2 and 2a.

9.2.1 Well Construction

In accordance with the SAQPs, groundwater wells were constructed using factory-decontaminated, 40 mm internal diameter Schedule 40 PVC Geoprobe[®] slotted pre-packed screen sections, 1 mm sand pack, bentonite seal, steel monument set in concrete block at the surface. The use of pre-packed wells allowed gravel packs to be reliably installed around screens in the potentially collapsing formations.

The final depth and screened interval of groundwater monitoring wells was determined by the depth to groundwater. Groundwater wells were extended to 1m below Standing Water Level (SWL) and were screened to 0.5m above SWL. The depth of each well and screened interval is shown on Borehole Logs in Appendix 5.

A layer of granular bentonite was placed on top of the gravel pack and hydrated with potable water to provide a seal. This seal extended to generally 0.15mBGL with concrete overlying the bentonite.

CES Document Reference: CES130608-BP-AR Page 54 of 100

The wells were completed with a lockable cap, and flush mounted steel gatic cover installed in a concrete pad.

9.2.2 Locations and Number of Sampling Points

The groundwater well installation details are shown on the borehole logs in Appendix 5. A groundwater sample was collected from each well with all samples submitted for laboratory analysis. In addition, a previously installed well was located and sampled (BBH304). The locations of the sampled groundwater wells are shown on Figure 2 and 2a.

An additional sampling event was conducted in February 2017 in accordance with the Auditor request to assess the current status of the groundwater. CES surveyed the existing groundwater monitoring wells across Area A and Area B and identified nine accessible groundwater monitoring wells, eight of which were operational.

9.2.3 Sampling Methodology

The wells were developed on 21 May 2008 and again on 12 June 2008 using Waterra D25 foot valves fitted to new, dedicated polyethylene tubing. The wells sampled during the 2017 sampling event were developed on 16 February 2017 using Waterra D25 foot valves fitted to new, dedicated polyethylene tubing.

The groundwater wells located in the northern portion of the site were sampled on 29 and 30 May 2008, and the wells of the southern portion of the site were sampled on 17 and 18 June 2008 using a peristaltic pump. The wells sampled during the 2017 sampling event were sampled on the 17 February 2017 using a portable micropurge pump and controller. Both sampling methods used flow control operated in a manner that minimised drawdown in accordance with micropurging procedures. A calibrated water-quality meter was used to measure pH, redox potential (Eh), electrical conductivity, dissolved oxygen and temperature during purging of each event. Samples were collected once values of field parameters had stabilised. The sampling techniques adopted minimise the potential for volatile losses during sampling.

Water samples were collected from the pump tubing directly into the appropriate sampling bottles. The calibration record for the water quality meter is provided in Appendix 4.

Field data sheets are included in Appendix 4.

9.2.4 Decontamination Procedures

Wells were purged and sampled with new dedicated tubing, therefore, decontamination of groundwater sampling equipment was not required.

CES Document Reference: CES130608-BP-AR

Page 55 of 100

Page 56 of 100

9.2.5 Method of Sample Storage and Handling

All sample containers were labelled with the sample number, project number, date sampled and initials of sampler. This information was also recorded on the Chain-of-Custody (COC) form.

Once containers were filled, the caps were checked to ensure that they were secure (and that there were no air bubbles/head space) then placed within an esky / cool box in which a cooling medium has been added to keep the samples below a temperature of approximately 4°C. At the end of the day, the cool box was transported to the primary laboratory (ALS).

Sample holding times, container and preservation requirements in accordance with NEPM (2013) are shown in Table 4.

9.2.6 Documentation

While on site, the supervising engineer/scientist filled out a copy of CES 'Groundwater Sampling Field Data Sheet', which documents:

- Time of sample collection;
- Unique sample identification number;
- Sample location and depth;
- Static Water Level:
- Water quality screening results (DO, Temperature, Redox potential, pH and conductivity);
- Presence or absence of odour (nature and intensity);
- Colour of the water;
- Presence or absence of sediment in the well; and
- Well condition and purging volumes.

All samples, including QC samples, were transported to the laboratories under Chain-of Custody procedures and maintained in an ice-filled cooler. The COCs detailed the following information and a copy is attached to the laboratory reports (Appendix 3):

- Site identification;
- The sampler;
- Nature of the sample;
- Collection time and date; and
- Analyses to be performed.

9.3 SUB-SURFACE GAS MONITORING

Ten sub-surface gas monitoring wells were installed at the site to assess whether landfill gas may be migrating onto the site. The locations of the sub-surface gas monitoring wells are provided in Figure 2.

9.3.1 Well Construction

Gas monitoring wells were installed in accordance with the SAQPs utilising solid and hollow flight augers and were constructed of class 18 factory washed 50 mm uPVC pipe. Wells were installed to allow monitoring of soil-vapour quality in the vadose zone. Machine-slotted screen was installed from below 0.3 m below ground surface in each gas well. Typically 1-2 mm diameter gravel was used to backfill the borehole annulus to approximately 0.2 m above the ground surface. A layer of bentonite chips was placed on top of the gravel and hydrated with potable water to provide a seal. The wells were completed with a lockable, gas-tight cap with snap-lock monitoring port, and flush mounted steel gatic cover installed in a concrete pad.

9.3.2 Locations and Number of Sampling Points

Gas monitoring wells were installed in ten of the boreholes drilled along the southern boundary of the investigation area previously identified as Area A (ALG201 – ALG206) and the southern boundary of the site (BLG401 – BLG404). The gas well installation details are shown on the borehole logs in Appendix 3. The well locations are shown on Figure 2.

9.3.3 Sampling Methodology

9.3.3.1 Gas pressure, flow and landfill gas concentrations

Gas wells were sealed with gas-tight caps after installation and left for at least seven days to allow concentrations in the well to equilibrate with the formation. Sub-surface gas monitoring was conducted on 10 June 2008. Monitoring was undertaken in accordance with procedures developed by CES based on techniques for soil-gas studies and landfill surface gas surveys. The procedure for monitoring landfill gas wells involves the following stages:

- Initial measurements and observations;
- Purge well by the application of a vacuum (if required); and
- Gas measurements in the well.

The following initial measurements and observations were made upon arrival at each gas well:

- 1. The concentrations of combustible gases in the ambient air in the vicinity of the well were measured using a calibrated landfill gas analyser. Any detections of methane were recorded;
- 2. The well was inspected;

- 3. The air volume in the gas monitoring well was estimated;
- 4. The formation pressure (gas pressure in well before venting) was measured using a series of pressure gauges connected to the gas-tight well cap using the snap-lock fitting;
- 5. The initial concentrations in the well were measured with a calibrated GA45 Landfill Gas Analyser. The instrument was calibrated using methane (0%, 2.5% and 50%), oxygen (0% and 17%) and carbon dioxide (10%) in accordance with manufacturers instructions by CES personnel;
- 6. The gas was vented from the well. The response of the well to venting was noted (*eg*, no response; brief initial pulse (typically 1-2 s), long pulse (>5 s) or continuous gas emission);
- 7. The flow rate of gas exiting the well was measured with a flow rate meter (where required); and
- 8. When the flow rate was observed to be continuous, flow rates and methane concentrations were measured at regular intervals.

The procedure for purging gas wells is summarised as follows:

- 1. Generate a vacuum in a pressure vessel fitted with a compressor motor;
- 2. Open the vacuum to the well while noting the initial vacuum applied;
- 3. Measure recovery time, defined as the time required for the well to return to atmospheric pressure after vacuum has been applied;
- 4. Measure gas concentrations in the well upon return to atmospheric pressure; and
- 5. Repeat purging and measurement cycle until concentrations stabilise to within +/-10% or three well volumes have been purged.

It should be noted that recovery times of greater than 10 minutes are considered to be suspect, as the effect of sample train leakages is increased with long recovery times. If recovery times of greater than 10 minutes occur, it is concluded that the formation has a low permeability to gas, the final vacuum is recorded and no further action taken.

9.3.3.2 Sampling for VOC analysis

One gas well (BLG402) was sampled for the analysis of Volatile Organic Compounds (VOC). Subsurface gas samples analysed for VOCs were collected directly via the monitoring port into a Tedlar bag contained in an airtight compartment, which had been evacuated to generate negative

CES Document Reference: CES130608-BP-AR

Page 58 of 100

pressure. The sample tubing connecting the gas wells to the bag inlet valve was purged with gas from the wellbeing sampled prior to carrying out the sampling.

9.4 ANALYTICAL PROGRAMME

9.4.1 Soil

The analytes selected for soil testing were determined based on the results of preliminary investigation (CES, 2006b) and comprised:

- Metals and metalloids (arsenic, cadmium, chromium, copper, nickel, lead, mercury and zinc);
- Total Petroleum Hydrocarbons (TPH);
- Monocyclic Aromatic Hydrocarbons of Benzene, Toluene, Ethylbenzene and total Xylenes (BTEX);
- Polycyclic Aromatic Hydrocarbons (PAHs);
- Volatile Organic Compounds (VOCs);
- Organochlorine Pesticides (OCPs);
- Organophosphate Pesticides (OPPs);
- Polychlorinated Biphenyls (PCBs);
- Phenoxyacetic Acid Herbicides (PAAHs);
- Nutrients, including ammonia, nitrate, nitrite, total kjeldahl nitrogen and total phosphorus;
- Phenols:
- Potential Asbestos Containing Materials (ACMs), as required;
- SPOCAS; and
- Salinity indicators such as pH, electrical conductivity, salinity, resistivity, texture, soluble sulfate and chloride

Soil samples were collected for analysis to provide coverage across the site and across a range of depths across the site. Samples were targeted for analysis of specific analytes where indications of contamination were present (e.g. samples with a hydrocarbon odour were submitted for analysis of THP/BTEX and samples which contained ash were submitted for analysis of PAH). Samples to be analysed for OCP, OPP, PCB and PAAH were selected for analysis from surface soils as this depth was considered to be most likely to be impacted by herbicides and pesticides. Samples targeted for analysis of asbestos were targeted in the depths of 0-0.5 m.

CES Document Reference: CES130608-BP-AR Page 59 of 100

9.4.2 Groundwater

9.4.2.1 Field Parameters

Standard field measurements were taken during purging, to ascertain when equilibrium was reached, prior to the collection of groundwater samples. Field measurements included:

- Dissolved oxygen;
- Electrical conductivity;
- Temperature;
- Redox potential; and
- pH.

Field measurements were taken using a calibrated water-quality meter. Calibration was checked by measuring known standard solutions at the end of each day.

9.4.2.2 *Laboratory Testing*

The analytes selected for testing were determined based on the results of the CES (2005) investigation and in general accordance with the SAQPs. Due to insufficient groundwater recovery from monitoring well ABH2100, laboratory analysis was only undertaken for determination of TPH C₆-C₉ and BTEX. Groundwater monitoring wells encompassing the USTs (ABH2105, ABH202 and ABH210) were analysed for lead, TPH and BTEX rather than the entire analytical suite. Due to insufficient groundwater recovery from monitoring well ABH2110, field measurements were unable to be taken. With exceptions mentioned, CES analysed all groundwater samples for:

- Dissolved metals and metalloids (arsenic, cadmium, chromium, copper, nickel, lead, zinc and mercury);
- Total Petroleum Hydrocarbon (TPH);
- Monocyclic Aromatic Hydrocarbons of Benzene, Toluene, Ethylbenzene and total Xylenes (BTEX);
- Polycyclic Aromatic Hydrocarbons (PAHs);
- Organochlorine Pesticides (OCPs);
- Organophosphate Pesticides (OPPs);
- VOCs:
- PAAHs:
- Polychlorinated Biphenyls (PCBs);

- Phenols (AMW203 only);
- Major anions (chloride, sulfate and alkalinity) and cations (sodium, potassium, calcium and magnesium);
- Salinity indicators such as salinity, total dissolved solids, alkalinity, sulfate and chloride; and
- Nutrients, including ammonia, nitrate, nitrite, total Kjeldahl nitrogen and total phosphorus.

Despite the potential for landfill gas to be present at the site, analysis for dissolved methane was not considered necessary. Methane has a high Henry's Constant of 30, which indicates that it has a strong preference for the gaseous phase. Further, the gas monitoring programme provided sufficient assessment as to whether landfill gas is present in the sub-surface.

9.4.3 Landfill Gas

In accordance with the SAQPs, CES monitored sub-surface gas wells for:

- Methane, carbon dioxide and oxygen concentrations;
- Formation pressures; and
- Flow rates.

Methane, carbon dioxide and oxygen concentrations were measured using a Landfill Gas Analyser (LGA).

9.5 ANALYTICAL METHODS

9.5.1 Soil

Soil samples were analysed in accordance with ANZECC (1996) Guidelines for the Laboratory Analysis of Contaminated Soils using USEPA and APHA approved analytical methods as summarised in Table 6. The laboratory Practical Quantitation Limits (PQLs) were also summarised in Table 6.

9.5.2 Groundwater

The water samples were analysed using analytical methods based on USEPA and APHA methods as summarised in Table 7. The corresponding laboratory PQLs were also provided in the Table 7. It is noted that the PQLs for anthracene and benzo(a)pyrene slightly exceed the assessment criteria for these compounds.

CES Document Reference: CES130608-BP-AR Page 61 of 100

10 SITE ASSESSMENT CRITERIA

Site Assessment Criteria (SAC) are presented below. Evaluation against the contaminated site assessment criteria is used to identify levels of contamination that may pose health risks to future users of the site. It is understood that the site will be re-developed for commercial/industrial land use.

10.1 SOIL CONTAMINATION

When determining the significance of any contaminants detected in the soil, it is important to define site assessment criteria that are appropriate for the proposed land use. For recreational open space land use this should include aesthetics (including soil colour and odour), ecological and potential human health issues. For residential/commercial land use this should include aesthetics and potential human health issues. That is, the site assessment criteria should be set at a level that provides confidence that contaminant concentrations below the criteria will not adversely impact human health or be aesthetically adverse.

10.1.1 Aesthetics

Aesthetics on a site to be used for commercial/industrial purposes relate to the generation of odours from soil as a result of contamination. Aesthetic issues were continually addressed during the investigation and are reported on the borehole logs.

10.1.2 Ecologically based Soil Site Assessment Criteria

Potential ecological impacts have to be assessed for soils to be retained on site, which are not underneath buildings or slabs. To address potential ecological impacts of soils, CES compared the analytical testing results against a set of Ecologically-based Investigation Levels (EILs) and Ecological Screening Levels (ESLs), as published in NEPM (2013), that provide confidence that contaminant concentrations below those levels will not adversely impact specific flora proposed for the site. Soil properties for the derivation of Added Contaminant Limits (ACLs) were estimated using the most conservative values for Cation Exchange Capacity (CEC) (5 cmolc/kg) and percentage of clay in soil (1%), and an average value for pH (6.5 pH). The Ambient Background Concentration (ABC) used was adopted from the ambient background concentration (ABC) (25th percentile) outlined in Olszowry et.al (1995) as recommended by NEPM Schedule B5b: *Guideline on Methodology to Derive Ecological Investigation Levels in Contaminated Soils*.

A summary of the adopted ecologically-based SAC is provided in Table 8.

10.1.3 Health-based Soil Site Assessment Criteria

To address potential health impacts at the site, CES compared the analytical testing results against a set of Health-based Soil Investigation Levels (HILs) and Health-based Soil Screening Level (HSL), as published in NEPM (2013), appropriate for the proposed land-use. That is, the HIL and HSL were

CES Document Reference: CES130608-BP-AR Page 62 of 100

set at a level that provides confidence that contaminant concentrations below the HIL and HSL will not adversely affect human or ecological health.

CES adopted the following HIL criteria:

- NEPM (2013) Health-based Investigation Levels (HIL) recommended for exposure setting
 'C' which includes recreational land use; and
- NEPM (2013) Health-based Investigation Levels (HIL) recommended for exposure setting
 'D' which includes commercial/industrial land use.

Additionally, CES adopted the following HSL criteria:

- Health-based Screening Levels (HSLs) for vapour intrusion for exposure setting 'C', which
 includes recreational / open space land use for sand at 0m to <1m; and
- Health-based Screening Levels (HSLs) for vapour intrusion for exposure setting 'D', which
 includes commercial / industrial land use for sand at 0m to <1m.

A summary of the health-based SAC is provided in Table 8.

10.1.4 Asbestos in Soil Site Assessment Criteria

Investigation criteria for asbestos in soil will be adopted from Table 7 of the NEPM (2013) Schedule B1- *Guideline on Investigation Levels for Soil and Groundwater*. The health screening levels used include the fixed Fibrous Asbestos (FA) and Asbestos Fines (AF) criteria of 0.001% w/w and the bonded ACM criteria for Recreational C and Commercial/ Industrial D, as dependant on the area of the proposed mixed development.

10.1.5 Acid Sulfate Soils

ASSMAC (1998) criteria were selected to identify the presence of Acid Sulfate Soils (ASS) on the site. These guidelines provide a series of trigger levels or action criteria, above which an ASS management plan should be prepared and development consent obtained prior to excavation works (Table 9). The trigger levels are based on the percentage of oxidisable sulphur (or equivalent TPA, TAA) for broad categories of soil types. For projects that disturb more than 1000 tonnes of soil with ≥0.03% oxidisable sulphur or equivalent existing acidity, a detailed management plan and development consent will be required (Ahern *et al.*, 1998).

10.1.6 Soil Salinity

In order to establish the soil salinity class as per *Site Investigations for Urban Salinity* published by the Land and Water Conservation (2002), the electrical conductivity results were converted into extract electrical conductivity (EC_E) reported in dS m⁻¹. The EC_E was calculated using a multiplication factor based on the soil texture. The relevant multiplication factors are 14 for sandy loam, 17 for sand,

CES Document Reference: CES130608-BP-AR Page 63 of 100

10 for loam and 8.5 for light clay. Soil is classified as non-saline if the EC_E is less than 2 dS m⁻¹ and highly-saline if the EC_E is greater than 16 dS m⁻¹. The relevant guidelines are presented in Appendix 7.

To determine the aggressiveness of the soil and water environment on concrete or steel piles, the chemical test results are compared to Table6.4.2 (C) from Section 6 of the Australian Standard AS 2159 (2009) *Piling Design and Installation*. Guidelines are presented in Appendix 7. This section provides assessment criteria to assess the 'exposure classification' for a concrete or steel pile. The Standard has two classes of soil conditions:

- (A) high permeability soils below groundwater; and
- (B) low permeability soils and all soils above groundwater.

For this site, condition 'B' is relevant. The corrosion potential of an environment on concrete is dependent on the level of sulphate (of the soil and water), pH (of the soil), and chloride (of the water). It is also noted that the presence of magnesium and ammonium ions can increase the aggressiveness of sulphate on concrete, and the presence of chlorides is only relevant to any steel reinforcement. The corrosion potential on steel is dependent on soil pH, chloride (of the soil and water), and resistivity (of the soil).

Based on this soil condition and the chemical testing results, the standard provides the following range of 'exposure classifications':

- Non-Aggressive;
- Mild;
- Moderate:
- Severe; and
- Very Severe.

For the range of chemical conditions in the soil surrounding the structure, the condition leading to the most severe aggressive conditions is adopted.

10.2 GROUNDWATER

Assessment criteria for groundwater were derived from the NEPM (2011) Schedule B1 Groundwater Investigation Levels (GILs) which encompass the ANZECC (2000) Australian Water Quality Guidelines, NHMRC (2011) Australian Drinking Water Guidelines, and the NHMRC (2008) Guidelines for Managing Risks in Recreational Waters.

CES Document Reference: CES130608-BP-AR Page 64 of 100

Trigger values for marine water were adopted for this study rather than freshwater guidelines, on the basis that the ultimate receiving system for groundwater at the site is the estuarine section of the Cooks River and ultimately Botany Bay. The Cooks River ultimately flows into Botany Bay approximately 2.5 km from the site. Given the distance from the site, CES consider the comparison of groundwater results against recreational water guidelines to not be suitable. Furthermore, given the fact that the Cooks River is free flowing, is not a stagnant water body and that it is highly degraded due to industrial pollution and stormwater run-off, it is therefore not a sensitive receptor.

Groundwater assessment criteria for relevant parameters are summarised in Table 9.

It is noted that ANZECC (2000) Australian Water Quality Guidelines and NHMRC (2011) Australian Drinking Water Guidelines, have been superseded by the Water Quality Guidelines, ANZG 2018, Australian Drinking Water Guidelines 6, 2011 Version 3.8 Updated September 2022, respectively.

A review of current Default Guideline Values (GDVs) reported in the Water Quality Guidelines, ANZG 2018 indicated that there were no changes to those values with the following exceptions:

- zinc (changed from 15 μ g/L to 8 μ g/L),
- nitrate (which was erroneous and in the absence of an ANZG (2018) default guideline value, refer to the "Grading" guideline values published in the report Updating nitrate toxicity effects on freshwater aquatic species, which were used to inform the current New Zealand nitrate toxicity attribute. Changed from 10,000 μg/L to 2,400 μg/L, which is the grading value reported in the guidelines for 95% protection)
- TRH (C6-C36) (not reported in the guideline)
- Ethylbenzene (changed from 5 μg/L to 80 μg/L)
- Total Xylenes (not reported in the guideline).

10.3 GROUND GAS

The assessment of ground gas at the site was made in accordance with NSW EPA (2012) Guidelines for the Assessment and Management of Sites Impacted by Hazardous Ground Gases. The multi-level risk assessment approach, as adopted from the DOP (2011) Assessment Guideline – Multi-level Risk Assessment, was used to determine the potential of risk of ground gas at the site.

It is noted that the NSW EPA (2012) Guidelines for the Assessment and Management of Sites Impacted by Hazardous Ground Gases have been superseded by the NSW EPA 2020 Contaminated Land Guidelines Assessment and management of hazardous ground gases. Overall, risk assessment process remains unchanged, and section referenced has been updated where required.

CES Document Reference: CES130608-BP-AR Page 65 of 100

The first level of assessment, the preliminary screening process, as displayed in section 4.3.1 of NSW EPA (2020), is applied to identify potential sources of ground gas, potential receptors, and possible pathways of gas migration. If a risk is identified, the second level of the assessment is applied with the risk being classified and assessed using the modified Wilson and Card classification (Table 7, NSW EPA (2022)). If required, a third level of assessment is assessed and the risk analysed and management options are considered.

10.4 VOLATILE ORGANIC COMPOUNDS IN LANDFILL GAS

The NSW Department of Environment and Conservation (DEC, now Department of Environment and Climate Change) Approved Methods for the Modelling and Assessment of Air Pollutants in New South Wales (DEC, 2005) only provides impact assessment criteria for VOCs for a one hour averaging period. Therefore, analysis results of VOCs in gas have been used only for screening purposes.

11 QA/QC DATA EVALUATION

All soil samples were collected by experienced environmental scientists/engineers, under established CES protocols. CES personnel have been trained in sample collection and handling techniques.

For the purpose of assessing the quality of data presented in this report, CES collected and analysed various Quality Control (QC) samples (field QC samples), while the laboratory completed their own QC. The current section of this report is focused on the presentation of results of these QC samples and discussion of deviations from the Data Acceptance Criteria (DAC). A description of the DAC, types of QC samples and their purpose is provided in Appendix 2. Tabulated QC data are also presented in Appendix 2.

11.1 SOIL QA/QC ASSESSMENT

11.1.1 Sample Preservation and Sample Holding Times

All samples were delivered to the laboratory with appropriate preservation and analysed within appropriate holding times (Appendix 3).

11.1.2 Field QA/QC Assessment

Field QA/QC data outside the acceptance criteria are presented and discussed below.

11.1.2.1 Blind Replicates

Table A2-1 summarises the number of blind replicate samples collected for each of the substances analysed and their ratio with the number of environmental samples analysed. Ratios of soil replicate sets conformed to or exceeded the QA/QC requirements ($\geq 10\%$) outlined in Appendix 2.

With nine exceptions, Relative Percent Differences (RPDs) calculated for the blind replicate pairs conformed to the Data Acceptance Criteria. The exceptions were:

- RPD of 56 % for copper in sample pair 090508-194/195-KW, however both results were below the SAC of 17000 mg kg⁻¹;
- RPD of 100 % for nickel in sample pair 090508-194/195-KW, however both results were below the SAC of 2100 mg kg⁻¹;
- RPD of 74 % for zinc in sample pair 120508-239/240-KW, however both results were below the SAC of 60 000 mg kg⁻¹;
- RPD of 108 % for zinc in sample pair 070508-55/56-KW, however both results were below the SAC of 60 000 mg kg⁻¹;
- RPD of 75 % for lead in sample pair 150508-352/353-KW, however both results were below the SAC of 1500 mg kg⁻¹; and

CES Document Reference: CES130608-BP-AR

Page 67 of 100

- RPD of 69 % for Arsenic in blind replicate sample pair 290805-39/40-KW, however both results were below the SAC of 300 mg kg⁻¹;
- RPD of 126 % for lead in blind replicate sample pair 010508-122/123-KW, however both results were below the SAC of 1500 mg kg⁻¹;
- RPD of 120 % for zinc in blind replicate sample pair 300408-89/90-KW, however both results were below the SAC of 30000 mg kg⁻¹; and
- RPD of 73% for copper in blind replicate sample pair 300408-101-102-KW, however both results were below the SAC of 17000 mg kg⁻¹.

In each instance the RPD is expected to be a result of the inhomogeneous nature of the fill material at each sample location and as such is not expected to compromise the integrity of the data.

11.1.2.2 Split Samples

Table A2-1 summarises the number of split samples collected for each of the substances analysed and their ratio with the number of environmental samples analysed. With the exception of three substances, ratios of split sample sets conformed to or exceeded the OA/QC requirements (≥5%) outlined in Appendix 2. The exceptions were as follows:

■ PAAH 4.8%; and

Nutrients 3.8%.

These minor non-conformances are considered not to significantly affect the quality of the data.

With seven exceptions, Relative Percent Differences (RPDs) calculated for the split sample pair conformed to the Data Acceptance Criteria. The exceptions were:

- RPD of 112 % for copper in sample pair 150508-385/387-KW, however both results were below the SAC of 17000 mg kg⁻¹;
- RPD of 144 % for nickel in sample pair 150508-385/387-KW, however both results were below the SAC of 2100 mg kg⁻¹;
- RPD of 108 % for lead in sample pair 150508-385/387-KW, however both results were below the SAC of 1500 mg kg⁻¹;
- RPD of 156 % for lead in split sample pair 010508-122/124-KW, however both results were below the SAC of 1500 mg kg⁻¹;
- RPD of 104% for copper in split sample pair 010508-136/138-KW, however both results were below the SAC of 17000 mg kg⁻¹;
- RPD of 143% for lead in split sample pair 010508-136/138-KW, however both results were below the SAC of 1500 mg kg⁻¹;

CES Document Reference: CES130608-BP-AR

Page 68 of 100

■ RPD of 89% for zinc in split sample pair 010508-136/138-KW, however both results were below the SAC of 30000 mg kg⁻¹;and

The slightly elevated RPD is considered to be a result of the inhomogeneous nature of the fill material at this sample location and is not considered to compromise the integrity of the data.

11.1.2.3 Rinsate Blank

One rinsate blank was collected during the soil investigation. The rinsate blank was collected from running laboratory prepared rinsate water directly over a decontaminated hand auger used on 9 June 2008.

With the exception of zinc (5.5 µg L⁻¹) all results were below the laboratory detection limits. As no other analytes were detected within the blank, the detected zinc concentration is likely to be associated with zinc plating of the hand auger, rather than cross contamination. This elevated result is not considered to compromise the integrity of the data.

11.1.2.4 *Trip Blank*

In accordance with the QA/QC plan outlined in Appendix 2, one trip blank was included in each sample batch.

All trip blanks conformed to the Data Acceptance Criteria.

11.1.2.5 Laboratory-Prepared Trip Spike

In accordance with the QA/QC plan outlined in Appendix 2, one trip spike was included in each sample batch.

Nine soil trip spikes were submitted to the primary laboratory on 30 April 2008 and 2, 5, 8, 9, 12, 13, 14 and 16 May 2008. With three exceptions, all trip spikes conformed to the Data Acceptance Criteria. The exceptions were:

Envirolab report 19177

- RPD of 69% for benzene;
- RPD of 64% for toluene;
- RPD of 64% for ethylbenzene;
- RPD of 65% for meta- & para xylene; and
- RPD of 63% for prtho-xylene

Envirolab report 19257

■ RPD of 133% for meta- & para xylene.

Envirolab report 19325

- RPD of 65% for ethylbenzene;
- RPD of 65% for meta- & para xylene; and
- RPD of 60% for ortho-xylene

All BTEX compound exceedences were marginally outside the DAC of 70-130% and are considered not to compromise the integrity of the data as all BTEX compound soil results within Envirolab reports 19177, 19257 and 19325 were below the laboratory reporting limits.

11.1.2.6 Field Instrument Calibration

The Photoionisation Detector (PID) was the only instrument used during the soil investigation. The PID was calibrated in accordance with manufacturer's instructions by CES personnel and the calibration check at the completion of use was within 10 % of the calibration standard. Calibration records were noted on the PID Field Data Sheets. Therefore, field instrument calibration was considered to be satisfactory and no significant drift was encountered during use that would compromise the integrity of the results.

11.1.3 Laboratory QA/QC Assessment

All analysis was undertaken in accordance with the SAQP by NATA accredited laboratories using NATA accredited analytical methods. The following laboratory batches were analysed during the ESA.

ALS Laboratory Reports

ES0805939

ES0806132

ES0806167

ES0807086

ES0807714

EC00006641

ES0806641

ES0806463

ES0806723

ES0806313

ES0806519

ES0806928

ES808708

ES1703949

CES Document Reference: CES130608-BP-AR Page 70 of 100

Envirolab Laboratory Reports

E19177

E18941

E18941-A

E19035

E19035-A

E19069

E19072

E19222

E19257

E19282

E19325

217020

E19429

E19432

E19432-A

E19834

E20315

E162123

Appendix 2 summarises the results of the QA/QC programme completed by the laboratories.

11.1.3.1 Laboratory Duplicates

With the exceptions shown in Appendix 2 laboratory duplicates conformed to the Data Acceptance Criteria in all sample batches. In summary, the RPDs that did not conform to the DAC generally conformed to the laboratory DAC and as such are considered not to significantly compromise the integrity of the data.

11.1.3.2 Laboratory Control Samples

With the exceptions shown in Appendix 2 laboratory control samples conformed to the Data Acceptance Criteria in all sample batches. Considering that recoveries conformed to the laboratory acceptance criteria and that the majority of these chemicals were absent within samples analysed from the site, reported exceedances of the DAC for laboratory control samples would not compromise the integrity of the data.

11.1.3.3 Surrogates

With the exceptions shown in Appendix 2 surrogates conformed to the Data Acceptance Criteria. Considering that the majority of recoveries conformed to the laboratory acceptance criteria, reported exceedances of the DAC for laboratory surrogates do not compromise the integrity of the data.

CES Document Reference: CES130608-BP-AR Page 71 of 100

11.1.3.4 Matrix Spikes

With the exceptions shown in Appendix 2 matrix spike data conformed to the Data Acceptance Criteria. The recoveries of the matrix samples exceeding the DAC generally conformed to the laboratory acceptance criteria (ie. acceptable limits set to measure conformance with QC systems as required by NATA accreditation). Considering that the recoveries conformed to the laboratory acceptance criteria, reported exceedances of the DAC for laboratory surrogates do not compromise the integrity of the data.

11.1.3.5 Method Blanks

With the exceptions in shown in Appendix 2 concentrations of all parameters in method blanks were below the laboratory reporting limits.

11.2 GROUNDWATER QA/QC ASSESSMENT

11.2.1 Sample Preservation and Sample Holding Times

All samples were delivered to the laboratory with appropriate preservation and analysed within appropriate holding times.

11.2.2 Field QA/QC Assessment

Field QA/QC data outside the acceptance criteria are presented and discussed below. Tabulated RPD data is provided in Appendix 2.

11.2.2.1 Blind Replicate

Table A2-1 summarises the number of blind replicate samples collected for each of the substances analysed and their ratio with the number of environmental samples analysed. Four blind replicate samples were collected, providing a ratio of one blind replicate for every 7.5 environmental samples, which exceeds the requirements outlined in Appendix 2 of one blind replicate for every ten environmental samples. All blind Relative Percent Differences (RPDs) calculated for the blind sample pair conformed to the Data Acceptance Criteria.

With one exception, Relative Percent Differences (RPDs) calculated for the blind replicate sample pair conformed to the Data Acceptance Criteria. The exception were:

 RPD of 167 % for Magnesium (II) Ion in sample pair 170608-03/04-KW. There is currently no SAC for Magnesium.

11.2.2.2 *Split Sample*

Table A2-1 summarises the number of split samples collected for each of the substances analysed and their ratio with the number of environmental samples analysed. Two split sample were collected, providing a ratio of one split sample for every 12 environmental samples, which exceeds the requirements outlined in Appendix 2 of one blind replicate for every twenty environmental samples.

CES Document Reference: CES130608-BP-AR Page 72 of 100

With two exceptions, Relative Percent Differences (RPDs) calculated for the split sample pair conformed to the Data Acceptance Criteria. The exceptions were:

- RPD of 69 % for ammonia in sample pair 290508-05/07-KW, both results were above the SAC of 0.91 mg L⁻¹; and
- RPD of 70 % for total phosphorus in sample pair 290508-05/07-KW. There is currently no SAC for total phosphorus.

11.2.2.3 *Trip Blanks*

In accordance with the QA/QC plan outlined in Appendix 2, one trip blank was included in each sample batch.

Two trip blanks were submitted to the laboratory for analysis. The trip blank samples conformed to the nominated Data Acceptance Criteria.

11.2.2.4 Laboratory-Prepared Trip Spike

In accordance with the QA/QC plan outlined in Appendix 2, one trip spike was included in each sample batch.

Three laboratory prepared trip spikes were submitted to the laboratory for analysis. The trip spike sample submitted for each of the sampling events conformed to the nominated Data Acceptance Criteria.

11.2.2.5 Field Instrument Calibration

The Water Quality Meter (WQM) was the only instrument used during the groundwater investigation. The WQM was calibrated in accordance with manufacturer's instructions by CES personnel and the calibration check at the completion of use, was within 10 % of the calibration standards. Calibration records are maintained in the CES office with the WQM.

Therefore, field instrument calibration was considered to be satisfactory and no significant drift was encountered during use that would compromise the integrity of the results.

11.3 LABORATORY QA/QC ASSESSMENT

All analysis was undertaken in accordance with the SAQP by NATA accredited laboratories using NATA accredited analytical methods. The following laboratory batches were analysed during the ESA.

ALS Laboratory Reports

- ES0807714; and
- ES1703949

Envirolab Laboratory Reports

- **19257**;
- **19834**;
- 20315; and
- **1**62123.

11.3.1 Laboratory Duplicates

Where analysed, RPDs for laboratory duplicate samples conformed to the DAC in the following batches.

- **19834**;
- ES0807714;
- ES1703949;
- 20315; and
- **•** 162123.

Table 5 summarises the analytes in each batch that did not meet the DAC for laboratory duplicate RPDs. In summary, the RPDs that did not conform to the DAC generally conformed to the laboratory DAC and as such are considered not to significantly compromise the integrity of the data.

11.3.2 Laboratory Control Samples

Recoveries for laboratory control samples conformed to the DAC in the following batches:

- **19834**;
- ES0807714; and
- **1**62123.

The recoveries of the laboratory control samples outside the DAC conformed to the laboratory acceptance criteria (i.e. acceptable limits set to measure conformance with QC systems as required by NATA accreditation). Considering that recoveries conformed to the laboratory acceptance criteria and that the majority of these chemicals were absent within samples analysed from the site, reported exceedances of the DAC for laboratory control samples would not compromise the integrity of the data.

11.3.3 Surrogates

Recoveries for laboratory surrogate samples conformed to the DAC in the following batches:

- **1**9257;
- **2**0315;
- ES1703949; and
- **1**62123.

The recoveries of the laboratory surrogates exceeding the DAC conformed to the laboratory acceptance criteria (i.e. acceptable limits set to measure conformance with QC systems as required by NATA accreditation). Considering that recoveries conformed to the laboratory acceptance criteria, reported exceedances of the DAC for laboratory surrogates do not compromise the integrity of the data.

11.3.4 Matrix Spikes

Results of matrix spike analyses conformed to DAC in the laboratory batch 19257, 20315 and 162123.

The recoveries of the matrix samples exceeding the DAC generally conformed to the laboratory acceptance criteria (i.e. acceptable limits set to measure conformance with QC systems as required by NATA accreditation). Considering that the recoveries conformed to the laboratory acceptance criteria, reported exceedances of the DAC for laboratory surrogates do not compromise the integrity of the data.

11.3.5 Method Blanks

Method blanks reported analyte concentration below the laboratory LOR and therefore conformed to the DAC.

11.3.6 Sample Holding Times

All samples were extracted and analysed within the specified holding.

11.3.7 Sample Condition

All samples were received by the analytical laboratories in correctly preserved and chilled containers with no reported breakages. Sample receipt advices are presented with the laboratory reports in Appendix 5.

11.4 LANDFILL GAS QA/QC ASSESSMENT

11.4.1 Field Instrument Calibration

The GA45 Landfill Gas Analyser was calibrated prior to field work using methane (0%, 2.5% and 50%), oxygen (0% and 17%) and carbon dioxide (10%) in accordance with manufacturer's instructions by CES personnel. A calibration check was also conducted at the conclusion of monitoring. The calibration sheet is attached in Appendix 4.

11.5 LABORATORY QA/QC ASSESSMENT

Laboratory QA/QC data for laboratory analyses are provided in the laboratory reports (Appendix 3). Those outside the acceptance criteria are presented and discussed below.

CES Document Reference: CES130608-BP-AR Page 75 of 100

11.5.1 Laboratory Control Samples

All laboratory control samples conformed to the Data Acceptance Criteria.

11.5.2 Surrogates

All laboratory surrogates conformed to the Data Acceptance Criteria.

11.5.3 Matrix Spikes

All matrix spike data conformed to the Data Acceptance Criteria.

11.5.4 Method Blanks

Concentrations of all parameters in method blanks were below the laboratory reporting limits.

11.6 DATA USEABILITY ASSESSMENT

11.6.1 Assessment of Field QA/QC Data

The field QA/QC data shows the integrity of the analytical data to be acceptable for use in this assessment.

11.6.2 Assessment of Laboratory QA/QC Data

Envirolab and ALS are NATA accredited for the analytical tests carried out and CES consider all laboratories to be proficient in all tests conducted. A number of test results including reference check sample, daily check sample, laboratory standard charts, standard solution results; method and instrument detection limits are not reported in standard analytical reports. Due to the rigorous NATA accreditation process and in consideration of the laboratory quality sample results reviewed, CES consider the integrity of the analytical data to be suitable for use in the investigation.

11.6.3 Overall Data Assessment

The QA/QC assessment of the field and laboratory data indicated that for the purpose of the assessment, the results of the field and laboratory QA/QC programme were considered acceptable for use as outlined in the data assessment below.

11.6.3.1 **Precision**

The RPD's of the laboratory duplicates were within the DAC, which indicates the sampling and laboratory precision was within acceptable limits.

11.6.3.2 *Accuracy*

Laboratory accuracy was assessed by analysis of laboratory control samples and a method blank and percent recoveries of matrix spikes and surrogates.

CES Document Reference: CES130608-BP-AR Page 76 of 100

With the exceptions noted in Sections 11.1.2 and 11.1.3, these results indicate the accuracy of the analytical results is within acceptable limits.

11.6.3.3 Representativeness

CES consider the samples collected from fill material and natural soil to be representative of the materials present at each of the sampling locations. To this end, CES staff ensured that samples collected were representative of the material observed in each borehole.

11.6.3.4 Completeness

All QAQ/QC documentation, including Chain of Custody forms, Sample Receipt Notices and laboratory quality reports were provided and complete. Required QA/QC data, including both field and laboratory data is also provided and complete.

11.6.3.5 Comparability

Soil samples were collected by Luke Jenkins and Kelly Weir of CES using appropriate CES protocols. With the exception of some samples adjacent to the USTs obtained with a hand auger, all samples were obtained from a direct push drill rig. The use of different personnel and sampling techniques may impact upon data comparability. However, a hand auger was required for OH&S reasons and as both personnel are experienced Environmental Scientists and adopted appropriate CES sampling protocols, the potential for variation has been minimised. It is not possible within the confines of this project to undertake a quantitative comparability assessment of the use of different sampling personnel.

Groundwater samples were collected by Luke Jenkins of CES using a peristaltic pump and flow cell. The flow cell was not used for sampling groundwater from ABH2110 due to the low recharge of this well. Groundwater was pumped directly into two laboratory sample vials. The requirement to place the probe of the water quality meter in a non-flowing groundwater sample may have resulted in no analytical analysis of the groundwater from ABH2110. Groundwater samples were collected by Mitchell Read of CES using low flow sampling techniques during the February 2017 sampling event. CES conclude that data are of acceptable quality for this assessment.

CES Document Reference: CES130608-BP-AR

Page 77 of 100

12 RESULTS

Results from the assessment of the site are presented below. Field Data Sheets (FDS) used during the investigation are presented in Appendix 4.

12.1 SITE STRATIGRAPHY AND AESTHETICS

Borehole logs are presented in Appendix 5. In summary, the stratigraphy encountered in the boreholes comprised silty sand fill overlying natural sand and silty or clayey sand.

Fill ranged from topsoil with grass and rootlets to sand, which ranged in colour from white to light to dark grey and/or brown. Clayey sand was also encountered as fill as well as silty clay and clay. In addition crushed sandstone fill was encountered in a limited number of locations. Suspected Asbestos Containing Materials (ACM) were noted at the surface in a number of locations of the southern portion of the site, typically in fill materials used to surface unsealed pathways, and a fragment of ACM was collected from fill at a depth of 0.6 - 0.7 in BMW401. Isolated metal shavings were noted at AMW207.

During the drilling of boreholes surrounding the USTs within the car park, a hydrocarbon odour was noted from sand fill to a depth of approximately 2.0mBGL within boreholes ABH2107, ABH2108 and ABH2105. A sheen could also be observed on the wet sands from these wells. The hydrocarbon odour was also noted within the groundwater of ABH2105 and ABH202.

A slight to strong hydrogen sulfide odour was also generally noted within the natural sands within the northern portion of the site at depths greater than 2 mBGL.

Natural soil comprised sand and silty or clayey sand ranging in colour from pale to dark grey and brown with shells. Silty clay lenses, clayey sand and clay were encountered in places and were typically dark brown, dense and moist.

12.2 SOIL PID ANALYSIS

PID field data sheets are presented in Appendix 4 and the results are also presented on the borehole logs in Appendix 5.

With the exception of those samples from encompassing the USTs, all samples recorded low PID results (<50 ppm) indicating that soil impacted with volatile compounds were not encountered. It should be noted that the PID is not capable of detecting methane and that its use in this instance was to assess for volatile hydrocarbons, not the presence of methane.

CES Document Reference: CES130608-BP-AR Page 78 of 100

12.3 SOIL ANALYTICAL RESULTS

The analytical results for the soil samples collected across the site are discussed in the following sections. Copies of the laboratory certificates of analysis are presented in Appendix 3. Exceedances of the SAC are shown on Figure 3.

12.3.1 Metals and Metalloids

The concentrations of metals and metalloids in samples of, fill and soil are presented in Table 11.

A total of 223 samples, including QC samples, were analysed for metals and metalloids. Concentrations were generally low and less than the PQL of the analytical method used. With the exception of lead concentrations in two samples, concentrations were less than the human health-based SAC. Eleven samples contained one of more metals or metalloids that exceeded the ecological-based SAC.

Fill Material

The SAC were exceeded in eleven samples collected. The ecologically-based SAC are more sensitive than the health-based SAC and as such are exceeded in each instance where the health-based SAC was exceeded.

The health-based SAC for lead of 1,500 mg kg⁻¹ (HIL-D, commercial/industrial) was exceeded in the following samples of fill:

- 300408-107-KW, lead 2,100 mg kg⁻¹ at a depth of 2.4-2.6m in BBH430; and
- 010508-159-KW, lead 4,400 mg kg⁻¹ at a depth of 2.4-2.5m in BBH433.

In addition to those listed above, the ecologically based SAC were also exceeded in the following samples of fill:

- 080508-161-K, Cu 240 mg kg-1 at a depth of 0.35-0.45 in ABH212
- 120508-219-KW, Cu 7,500 mg kg-1, Ni 59 mg kg-1, 540 Zn mg kg-1 at a depth of 0.5-0.7 m in AMW207.
- 020508-188-KW, Cu 110 mg kg-1 at a depth 1.3-1.4 m in BMW401;
- 290408-39-KW, Cu 160 mg kg-1 at a depth 0.2-0.5 m in BBH409;
- 290408-40-KW, Cu 150 mg kg-1 at a depth 0.2-0.5 m in BBH409;
- 290408-41-KW, Cu 133 mg kg-1 at a depth 0.2-0.5 m in BBH409;
- 300408-107-KW, Cu 260 mg kg-1, Ni 59 mg kg-1, Pb 2,100 mg kg-1, Zn 1,100 mg kg-1 at a depth of 2.4-2.6 m in BBH430;

CES Document Reference: CES130608-BP-AR

Page 79 of 100

- 010508-159-KW, Cu 180 mg kg-1, Zn 7800 mg kg-1 Pb 4,400 mg kg-1 at a depth of 2.4-2.5m in BBH433;
- 010508-155-KW, Zn 420 mg kg-1 at a depth of 2.4-2.5m in BBH429.
- 280408-15-KW, Ni 42 mg kg-1 at a depth 0.0-0.1 m in BBH404; and
- 290408-37-KW, Ni 49 mg kg⁻¹ at a depth 0.8-0.9 m in BBH411.

Natural Soil

The SAC was not exceeded in any of the natural soils.

12.3.2 TPH and BTEX

The concentrations of TPH and BTEX in samples of fill and soil are presented in Table 12.

A total of 125 samples were submitted for TPH/BTEX analysis including QC samples.

Fill Material

Concentrations of benzene, toluene, and xylenes were not detected in any of the samples at concentrations greater than the laboratory reporting limit with the exception of the following samples of fill.

The health-based SAC for benzene of 3 mg kg⁻¹ for commercial / industrial land-use was exceeded in the following samples:

- 150508-333-KW, benzene, 8.9 mg/kg⁻¹ at a depth of 1.4-1.5mBGL in ABH2105;
- 150508-341-KW, benzene, 51 mg/kg⁻¹ at a depth of 1.0-1.1mBGL in ABH2107;
- 150508-342-KW, benzene, 96 mg/kg⁻¹ at a depth of 1.5-1.6mBGL in ABH2107; and
- 150508-345-KW, benzene, 28 mg/kg⁻¹ at a depth of 1.1-1.2.mBGL in ABH2108.

The health-based SAC for xylenes of 230 mg kg^{-1} for commercial / industrial land-use was exceeded in the following samples:

- 150508-341-KW, xylenes, 630 mg/kg⁻¹ at a depth of 1.0-1.1mBGL in ABH2107;
- 150508-342-KW, xylenes, 470 mg/kg⁻¹ at a depth of 1.5-1.6mBGL in ABH2107; and
- 150508-345-KW, xylenes, 338 mg/kg⁻¹ at a depth of 1.1-1.2.mBGL in ABH2108.

The ecological-based SAC for toluene of 135 mg kg⁻¹ for commercial / industrial land-use was exceeded in the following samples:

■ 150508-341-KW, toluene, 390 mg/kg⁻¹ at a depth of 1.0-1.1mBGL in ABH2107;

CES Document Reference: CES130608-BP-AR Page 80 of 100

- 150508-342-KW, toluene, 470 mg/kg⁻¹ at a depth of 1.5-1.6mBGL in ABH2107; and
- 150508-345-KW, toluene, 150 mg/kg⁻¹ at a depth of 1.1-1.2.mBGL in ABH2108.

Natural Soil

Concentrations of TPH C_6 - C_9 and C_{10} - C_{36} and BTEX compounds were not detected at levels greater than the laboratory reporting limit in the samples of natural soil.

12.3.3 Polycyclic Aromatic Hydrocarbons (PAHs)

The concentrations of PAHs in samples of fill and soil are presented in Table 13. A total of 118 samples were submitted for PAH analysis including QC samples.

Fill Material

PAHs were detected at concentrations greater than the laboratory reporting limit in the vast majority of the samples submitted for analysis.

Benzo(a)Pyrene concentrations were detected at levels greater than the assessment criterion in seven samples collected.

The health-based SAC for Benzo(a)Pyrene TEQ of 3 mg kg⁻¹ for HIL Recreational/Open Space C land-use was exceeded in in the following samples:

- 010508-152-KW, 3.846 mg/kg⁻¹ at a depth of 0.0-0.1 mBGL in BBH429; and
- 300408-92-KW, 29.47 mg/kg⁻¹ at a depth of 0.2-0.3 mBGL in BBH453.

The ecological-based SAC for Benzo(a)Pyrene of 0.7 mg kg⁻¹ for ESL commercial / industrial landuse was exceeded in the following samples:

■ 150508-345-KW, 0.8 mg/kg⁻¹ at a depth of 1.1-1.2 mBGL in ABH2108.

The ecological-based SAC for Benzo(a)Pyrene of 0.7 mg kg⁻¹ for ESL Urban Residential and Public Open Space land-use was exceeded in the following samples:

- 280408-06-KW, 2.7 mg/kg⁻¹ at a depth of 0.5-0.6 mBGL in BBH402;
- 130508-283-KW, 2.5 mg/kg⁻¹ at a depth of 0.8-1 mBGL in ABH276;
- 290408-49-KW, 2.3 mg/kg⁻¹ at a depth of 0.4-0.5 mBGL in BBH405;
- 290408-37-KW, 0.9 mg/kg⁻¹ at a depth of 0.8-09 mBGL in BBH411;
- 020508-187-KW, 1 mg/kg⁻¹ at a depth of 0.15-0.5 mBGL in BMW401;
- 020508-188-KW, 1.3 mg/kg⁻¹ at a depth of 1.3-1,4 mBGL in BMW401;
- 010508-152-KW, 1.4 mg/kg⁻¹ at a depth of 0.0-0.1 mBGL in BBH429; and

CES Document Reference: CES130608-BP-AR Page 81 of 100

■ 300408-92-KW, 8.8 mg/kg⁻¹ at a depth of 0.2-0.3 mBGL in BBH453.

Natural Soil

PAHs were not detected at concentrations greater than the laboratory reporting limit in all samples submitted for analysis, with the exception of sample 130508-330-KW at depth 2.1-2.2 mBGL in ABH293.

12.3.4 Organochlorine Pesticides (OCPs)

The concentrations of OCPs in samples of fill and soil are presented in Table 14. A total of 82 samples were submitted for OCP analysis including QC samples.

Fill Material

Concentrations of OCPs were not detected at concentrations greater than the laboratory reporting limit in the samples submitted for analysis and as such were less than the SAC.

Natural Soil

No samples of natural soil were submitted for OCP analysis.

12.3.5 Organophosphate Pesticides (OPPs)

The concentrations of OPPs in samples of fill and soil are presented in Table 15. A total of 82 samples were submitted for OCP analysis including QC samples.

Fill Material

OPPs were not detected at concentrations greater than the laboratory reporting limit in the samples submitted for analysis and as such were less than the SAC.

Natural Soil

No samples of natural soil were submitted for OPP analysis.

12.3.6 Polychlorinated Biphenyls (PCBs)

The concentrations of PCBs in samples of fill and soil are presented in Table 16.

A total of 84 samples were submitted for PCB analysis including QC samples.

Fill Material

PCBs were not detected at concentrations greater than the laboratory reporting limit of 0.1 mg kg⁻¹ in the samples submitted for analysis and as such were less than SAC.

Natural Soil

No samples of natural soil were submitted for PCB analysis.

CES Document Reference: CES130608-BP-AR Page 82 of 100

12.3.7 Phenols

The concentrations of phenols in samples of fill and soil are presented in Table 17. A total of 35 samples were submitted for phenol analysis including QC samples.

Fill Material

Phenols were not detected at concentrations greater than the laboratory reporting limit of 5 mg kg⁻¹ in the samples submitted for analysis and as such were less than SAC.

Natural Soil

3 samples of natural soil were submitted for phenol analysis. Phenols were not detected at concentrations greater than the laboratory reporting limit of 5 mg kg⁻¹ in the sample submitted for analysis and as such were less than SAC.

12.3.8 Nutrients and Salinity

The concentrations of nutrients and salinity in samples of fill and soil are presented in Table 18. A total of 58 samples were submitted for analysis for nutrients and salinity including QC samples.

Concentrations of the nutrients tested were as follows:

- Ammonia concentrations ranged from below the laboratory detection limit in sample 090508-208-KW at 0.1-0.2mBGL in ABH206, in sample 130508-304-KW at 0.1-0.2mBGL in ABH272, in sample 300408-106-KW at 0.1-0.3 mBGL in BBH430, in sample 010508-122-KW at 0.1-0.4 mBGL in BBH458 to 19 mg/kg⁻¹ in sample 070508-93-KW collected from a depth of 0-0.15 in ABH233;
- Total Nitrogen concentrations in those samples tested ranged from 140 mg/kg⁻¹ in sample 060508-16-KW (Split Field Duplicate of 060508-14-KW) collected from a depth of 0.5-0.8 mBGL in ABH229 to 17 000 mg/kg⁻¹ in sample 120508-261-KW collected from a depth of 0-0.2mBGL in ABH296;
- Nitrite concentrations were less than the detection limit of the analytical method used in thirty five of the samples but where detected ranged from 0.1 mg/kg⁻¹ in samples 280408-01-KW collected from 0.2-0.4 mBGL in BBH401 and 290408-74-KW collected from 0.1-0.2 mBGL in BBH437 to 1.8 mg/kg⁻¹ in sample 070508-93-KW collected at 0-0.15mBGL from ABH233;
- Nitrate concentrations were less than the detection limit of the analytical method used in eighteen of the samples but where detected ranged from 0.6 mg/kg⁻¹ in sample 060508-14-KW collected from 0.5-0.8 mBGL in ABH229 and 020508-187-KW collected from 0.15-0.35

CES Document Reference: CES130608-BP-AR Page 83 of 100

mBGL in BMW401 to 6.2 mg/kg⁻¹ in sample 150508-384-KW collected at 0-0.15 mBGL in ABH284;

- Total Phosphorous concentrations ranged from 19 mg/kg⁻¹ in sample 060508-15-KW collected from 0.5-0.8 mBGL in ABH229 to 2800 mg/kg⁻¹ in sample 290408-46-KW collected from 0.1-0.2 mBGL in BBH406;
- pH concentrations ranged from 4.8 in sample 120508-261-KW collected from a depth of 0-0.2 mBGL in ABH296 to 9.1 in sample 290408-48-KW collected from 0.0-0.2 mBGL in BBH405;
- Electrical conductivity ranged from 51 us/cm in sample 300408-102-KW (Field Blind Replicate Sample of 300408-101-KW) collected from 0.1-0.4 mBGL in BBH442 and 010508-136-KW collected from 0.1-0.4 m BGL in BBH445 to 3100 us/cm in sample 300408-99-KW collected at 0.4-0.5 mBGL in BBH448;
- Salinity concentrations ranged from 3.2 mg/kg⁻¹ in sample 300408-99-KW collected from 0.4-0.5 mBGL in BBH448 to 370 mg/kg⁻¹ in sample 070508-76-KW collected at 0-0.1mBGL in ABH222;
- Resistivity ranged from 17 ohm m in sample 070508-76-KW collected at 0-0.1mBGL in ABH222 to 2000 ohm m in sample 300408-99-KW collected from 0.4-0.5 mBGL in BBH448;
- Chloride concentrations were less than the detection limit of the analytical method used in 21 of the samples but where detected ranged from 100 mg/kg⁻¹ in samples 060508-16-KW (Split Field Duplicate of 060508-14-KW) collected from 0.5-0.8mBGL in ABH229 to 820 mg/kg⁻¹ in sample 070508-76-KW collected at 0-0.1mBGL in ABH222; and
- Sulphate concentrations were less than the detection limit of the analytical method used in seventeen of the samples but where detected ranged from 29 mg/kg⁻¹ in samples 080508-158-KW collected from 0.1-0.25mBGL in ABH221 to 6700 mg/kg⁻¹ in sample 300408-99-KW collected at 0.4-0.5 mBGL in BBH448.

12.3.9 Volatile Organic Compounds (VOCs)

The concentrations of VOCs in samples of fill and soil are presented in Table 19.

A total of 68 samples were submitted for VOC analysis including QC samples.

Although concentrations were detected in ABH2105 (150508-333-KW, 1.4-1.5mBGL) and ABH2107 (150508-341-KW, 1.0-1.1mBGL), all VOC concentrations were below the SAC.

CES Document Reference: CES130608-BP-AR

Page 84 of 100

Fill Material

VOCs were not detected at concentrations greater than the laboratory reporting limit in any of the samples submitted for analysis, with the exception of the two samples mentioned in the above paragraphs.

Natural Soil

VOCs were not detected at concentrations greater than the laboratory reporting limit in any of the samples submitted for analysis.

12.3.10 Phenoxyacetic Acid Herbicides (PAAH)

The concentrations of PAAHs in samples of fill are presented in Table 20.

36 samples of fill material were submitted for PAAH analysis. PAAH were not detected at concentrations greater than the laboratory reporting limit in any of the samples submitted for analysis.

12.3.11 Asbestos

Fifty-four fill samples were submitted for screening of potential asbestos fibres (Table 21).

Asbestos fibres were not observed in any of the fill samples submitted, with the exception of two samples, 010508-A1-KW at depth 0.0-0.1 mBGL in BBH451 and 020508-A2-KW at depth 0.6-0.7 mBGL in BMW401 in which Chrysotile asbestos were detected in fibre cement sheet.

Four samples of materials located on the surface of un-grassed areas suspected of containing asbestos (fibrous cement sheet fragments) were submitted for determination of asbestos. Three samples (130508-A1-KW, 120508-A2-KW and 120508-A3-KW) contained chrysotile asbestos fibres, while 120508-A1-KW contained chrysotile asbestos, amosite asbestos and crocidolite asbestos.

12.3.12 Acid Sulfate Soils (SPOCAS)

Samples of natural soil were collected for Acid Sulfate Soil (ASS) determinations (Table 22). All of the samples collected were subjected to field screening for ASS and based on the results of the screening seventeen samples were submitted for SPOCAS testing. All samples submitted for SPOCAS testing indicated that Acid Sulfate Soils were present in all locations sampled as follows:

- ABH203 at 1.9-2.0mBGL, sulfur trail 0.31%, acid trail 130 mol H⁺/tonne;
- ABH210 at 2.6-2.8mBGL, sulfur trail 0.045%, acid trail 5 mol H⁺/tonne;
- ABH228 at 1.9-2.2mBGL, sulfur trail 0.44%, acid trail 165 mol H⁺/tonne;
- ABH255 at 1.6-1.7mBGL, sulfur trail 0.51%, acid trail 213 mol H⁺/tonne;
- ABH273 at 2.5-2.7mBGL, sulfur trail 1%, acid trail 505 mol H⁺/tonne;
- ABH274 at 2.5-2.7mBGL, sulfur trail 0.78%, acid trail 338 mol H⁺/tonne;

CES Document Reference: CES130608-BP-AR

Page 85 of 100

- ABH276 at 2.6-2.8mBGL, sulfur trail 1.1%, acid trail 418 mol H⁺/tonne;
- ABH278 at 2.6-2.8mBGL, sulfur trail 0.65%, acid trail 240 mol H⁺/tonne;
- ABH286 at 2.0-2.2mBGL, sulfur trail 0.69%, acid trail 463 mol H⁺/tonne;
- BBH403 at 2.0-2.2mBGL, sulfur trail 0.71%, acid trail 333 mol H⁺/tonne;
- BBH406 at 1.8-1.9 mBGL, sulfur trail 0.21%, acid trail 108 mol H⁺/tonne;
- BBH411 at 2.2-2.3 mBGL, sulfur trail 0.11%;
- BBH412 at 2.2-2.4 mBGL, sulfur trail 0.74%, acid trail 338 mol H⁺/tonne
- BBH427 at 2.6-2.8 mBGL, sulfur trail 3.7%, acid trail 1010 mol H⁺/tonne;
- BBH440 at 2.3-2.4 mBGL, sulfur trail 0.0.49%, acid trail 253 mol H⁺/tonne;
- BBH453 at 2.5-2.6 mBGL, sulfur trail 0.0.52%, acid trail 195 mol H⁺/tonne; and
- BBH458 at 3.8-4.0 mBGL, sulfur trail 2.4 %, acid trail 1185 mol H⁺/tonne.

12.3.13 Hotspots

A hotspot is defined in as a sample containing 2.5 times or greater than the concentration adopted as an assessment criterion. Hotspots are assumed to require remediation or some form of management to ensure protection of human health and the environment and should not be included in data used to calculate 95 % Upper Confidence Limit (UCL). Soil contamination hotspots are displayed in Figure 3.

A benzene hotspot was present within fill in the following samples:

- 150508-333-KW, benzene, 8.9 mg/kg⁻¹ at a depth of 1.4-1.5mBGL in ABH2105;
- 150508-341-KW, benzene, 51 mg/kg⁻¹ at a depth of 1.0-1.1mBGL in ABH2107;
- 150508-342-KW, benzene, 96 mg/kg⁻¹ at a depth of 1.5-1.6mBGL in ABH2107; and
- 150508-345-KW, benzene, 28 mg/kg⁻¹ at a depth of 1.1-1.2.mBGL in ABH2108.

A toluene hotspot was present within the fill in the following samples:

- 150508-341-KW, toluene, 390 mg/kg-1 at a depth of 1.0-1.1mBGL in ABH2107; and
- 150508-342-KW, toluene, 470 mg/kg-1 at a depth of 1.5-1.6mBGL in ABH2107.

A xylene hotspot was present within the fill in the following sample:

■ 150508-341-KW, xylenes, 630 mg/kg⁻¹ at a depth of 1.0-1.1mBGL in ABH2107.

Lead hotspots were present within fill in the following samples:

- 300408-107-KW, lead 2100 mg kg⁻¹ at a depth of 2.4-2.6m in BBH430; and
- 010508-159-KW, lead 4400 mg kg⁻¹ at a depth of 2.4-2.5m in BBH433.

Copper hot spots were present within the fill material in the following samples:

■ 120508-219-KW, copper 7500 mg/kg at a depth of 0.5-0.7 in AMW207.

CES Document Reference: CES130608-BP-AR Page 86 of 100

Zinc hotspots were present within fill in the following samples:

- 010508-159-KW, Zn 7800 mg kg-1 at a depth of 2.4-2.5m in BBH433; and
- 00408-107-KW, Zn 1100 mg kg-1 at a depth of 2.4-2.6 m in BBH430.

Benzo(a)pyrene TEQ hotspot were present within the fill in the following sample:

- 300408-92-KW, 29.47 mg/kg-1 at a depth of 0.2-0.3 mBGL in BBH453.
- 280408-06-KW, 11.87 mg/kg at a depth of 0.5-0.6 mBGL in BBH402

12.3.14 95 % Upper Confidence Limit (UCL) Calculations

The 95 % UCL calculation is undertaken to determine the upper-bound estimate of the arithmetic average contaminant concentration of a sample population. NSW EPA (1995) states that 'a site or a sampling area cannot be considered uncontaminated or successfully remediated if the 95 % UCL of the arithmetic average concentration exceeds the acceptable limit'. In this instance, the acceptable limit is the SAC.

It is noted that the Contaminated Sites Sampling Design Guidelines (NSW EPA, 1995) have been superseded by the new Contaminated Land Guidelines Sampling Design Part 1 – Application (NSW EPA 2022) and Contaminated Land Guidelines Sampling Design Part 2 – Interpretation (NSW EPA 2022). NSW EPA (2022) states that "For the purpose of this document and depending on the context, 'contaminated' can have slightly different meanings. If a site or a sampling area is evaluated as 'contaminated', it means that the site or the sampling area as a whole has not met the acceptance criteria (see definition of acceptance criteria). 'Contaminated' can also be used to describe a localised area or soil that has contaminant concentrations exceeding an acceptable limit (see definition of acceptable limit). Note: depending on what the acceptance criteria are, an entire site could be considered 'uncontaminated' even though a certain percentage of the site is expected to be 'contaminated'. The acceptable limit is still the SAC.

All methods of estimating UCLs assume that the data are drawn from a single, but unknown, sample distribution. UCLs are invalid where the data consists of samples from multiple underlying populations. For this reason UCLs have been calculated for two sample populations – fill material and natural soil. Prior to calculating UCLs it is necessary to evaluate the adequacy of available data and to determine whether samples are drawn from a single underlying population. As a "rule of thumb", the EPA NSW (1995) sampling design guidelines propose that the above conditions are satisfied when the coefficient of variation (CV = SD/mean) is less than 1.2.

The new guidelines (NSW EPA 2022) have endorsed a software package produced by the USEPA (Pro UCL Version 5.1) and it was used to calculate the 95% UCL. The software evaluates distribution characteristics and selects the most statistically appropriate method of calculating the UCL.

CES Document Reference: CES130608-BP-AR Page 87 of 100

Where an analyte is reported as less than laboratory reporting limit, the laboratory reporting limit has been adopted for the purposes of the statistical analysis.

Upper Confidence Limits (UCL) were calculated for soil analytes exceeding the assessment criteria, with the exception of hotspots. This included Benzo(a)pyrene, Benzo(a)pyrene TEQ, Lead, Copper, Nickel and Zinc concentrations in the fill material. The results of the 95% UCL calculations are provided in Appendix 6.

It is noted that all distributions did not follow a discernible distribution at 5% significance level. In the case of BaP and BaP TEQ, ProUCL recommended the use of the 95% Chebychev (Mean, Sd) UCL calculation. In the case of Lead and Zinc, ProUCL recommended the use of the KM H-UCL calculation. In the case of Copper and Nickel, ProUCL recommended the use of the 95% KM (Chebyshev) UCL calculation.

Given the suggested UCL calculations by ProUCL, the UCLs were as follows:

- The 95% UCL calculation for BaP in the fill material of 0.36 mg/kg was less than the most conservative ecological-based assessment criterion of 0.7 mg/kg;
- The 95% UCL calculation for BaP TEQ in the fill material of 1.1 mg/kg was less than the most conservative heath-based assessment criterion of 3 mg/kg;
- The 95% UCL calculation for lead in the fill material of 93.01 mg/kg was less than the most conservative heath-based assessment criterion of 600 mg/kg.
- The 95% UCL calculation for Copper in the fill material of 33.73 mg/kg was less than the adopted EILs (Urban Residential/public open space:103 mg/kg and Commercial Industrial 148 mg/kg);
- The 95% UCL calculation for Nickel in the fill material of 8.36 mg/kg was less than the most conservative ecological-bases assessment criterion of 35 mg/kg.
- The 95% UCL calculation for Zinc in the fill material of 77.44 mg/kg was less than the most conservative ecological-bases assessment criterion of 275 mg/kg.

Given the UCL calculation being less than the most conservative health-based criterion for BaP TEQ and Lead and less than the most conservative ecological-based criterion for BaP, Nickel, Copper and Zin,c it can be assumed that, with the exception of the hotspots identified in section 12.3.13, the fill materials will be suitable for the proposed land-uses.

12.4 GROUNDWATER

Groundwater results are summarised in Tables 23 to 31, groundwater field data sheets are provided in Appendix 4 and laboratory certificates of analysis provided in Appendix 3. A groundwater contour map and SAC exceedances are displayed in Figure 4.

CES Document Reference: CES130608-BP-AR Page 88 of 100

12.4.1 Field Parameters

A summary table showing the results of the field parameters and observations is provided in Table 23.

Groundwater level monitoring of all sixteen wells was undertaken during sampling on 29 and 30 May 2008. A third round of groundwater sampling was undertaken on 17 February 2017 of wells that were able to be located and developed. Eight of the sixteen previously sampled wells were sampled. Groundwater levels across the site during the February 2017 monitoring event ranged from 0.41mBGL in AMW205 to 4.14 mBGL in BMW401.

Groundwater present in the wells was characterised by:

- pH ranged from 4.78 in AAMW203 (February 2017) to 7.12 in AMW203 (May 2008);
- EC ranged from 804 μS cm⁻¹ in BMW401 (February 2017) to 25 134 μS cm⁻¹ in AMW203 (February 2017);
- DO ranged from 0.01 mg L⁻¹ in BMW403 (June 2008) to 2.13 mg L⁻¹ in AMW207 (May 2008);
- Redox ranged from -313.9 mV in BMW404 (February 2017) to 220.1 mV in AMW205 (February 2017); and
- Temperature range of 17.6 °C in AMW205 (May 2008) to 25.5 °C in ABH2100 (February 2017).

The low DO and negative redox indicate that anoxic conditions were present in groundwater.

12.4.2 Analytical Data

12.4.2.1 *Major Ions*

A summary table showing the results of the major ion analysis is provided in Table 23.

With the exception of the sample collected from AMW206 the groundwater samples show a domination of sodium and chloride ions, which is to be expected given the proximity of the area to the marine (saline) environment of Cooks River. The major ion concentrations within AMW206 are potentially influenced by the concrete enclosed high pressure gas pipeline travelling to the east of the well, as sulphate, calcium and bicarbonate alkalinity concentrations were the highest recorded concentrations of any well.

Cations

Calcium concentrations ranged from 76 mg L⁻¹ in groundwater sampled from AMW201 to 680 mg L⁻¹ in groundwater sampled from BH304.

CES Document Reference: CES130608-BP-AR Page 89 of 100

Magnesium concentrations ranged from 3 mg L⁻¹ in groundwater sampled from BMW403 to 670 mg L⁻¹ in groundwater sampled from AMW203.

Sodium concentrations ranged from 36 mg L⁻¹ in groundwater sampled from BMW401 to 7300 mg L⁻¹ in groundwater sampled from AMW203.

Potassium concentrations ranged from 8.8 mg L⁻¹ in groundwater sampled from ABH2105 to 240 mg L⁻¹ in groundwater sampled from AMW203.

The results of major cations from the February 2017 sampling event showed the results were generally the same as the previous 2008 sampling event, with the exception of a localised slight increase in cation concentrations in monitoring well AMW203.

Anions

All alkalinity was present as bicarbonate alkalinity with a range from 110 mg L⁻¹ in groundwater sampled from AMW202 to 810 mg L⁻¹ in groundwater sampled from AMW206. Chloride concentrations ranged from 27 mg L⁻¹ in groundwater sampled from BMW401 to 10000 mg L⁻¹ in groundwater sampled from AMW203, while sulphate concentrations ranged from 3 mg L⁻¹ in groundwater sampled from BMW401 to 2400 mg L⁻¹ in groundwater sampled from AMW206.

Total Dissolved Solids (TDS)

TDS ranged from 660 mg L⁻¹ in the sample collected from BMW401 to 16 000 mg L⁻¹ in the sample collected from AMW207.

12.4.2.2 Dissolved Metals and Metalloids

A summary table showing the results of the metals and metalloids analysis is provided in Table 24.

Elevated metal and metalloid concentrations were detected in eleven of the thirty samples submitted for analysis. These exceedances were:

- Copper concentrations exceeded the assessment criteria of 1.3 μg L⁻¹ in samples collected from AMW203 (3.9 μg L⁻¹), AMW205 (2.1 μg L⁻¹), BBH304 (2.1 μg L⁻¹), BMW401 (1.8 μg L⁻¹ and 3 μg L⁻¹), and BMW404 (6.6 μg L⁻¹ and 2 μg L⁻¹);
- Lead concentrations exceeded the assessment criteria of 4.4 μg L⁻¹ in samples collected from ABH2100 (7 μg L⁻¹);
- Nickel concentrations exceeded the assessment criterion of 7 μg L⁻¹ in samples collected from AMW207 (64 μg L⁻¹), AMW206 (11 μg L⁻¹), ABH202 (83 μg L⁻¹), and ABH2100 (17 μg L⁻¹); and
- Zinc concentrations exceeded the assessment criteria of 8 μg L⁻¹ in the sample collected from AMW207 (82 μg L⁻¹).

CES Document Reference: CES130608-BP-AR Page 90 of 100

Analytes for all other samples were detected at less than either the laboratory reporting limit or their respective assessment criteria. The results of dissolved metals from the February 2017 sampling event showed the concentrations were similar those of the previous 2008 sampling event.

12.4.2.3 **TPH and BTEX**

A summary table showing the results of the TPH and BTEX analysis is provided in Table 25.

TPH concentrations were detected at concentrations greater than the laboratory reporting limit in the groundwater samples submitted for analysis from ABH2105 and ABH202.

BTEX compounds were detected at concentrations greater than the laboratory reporting limit in the groundwater samples submitted for analysis from ABH2105, ABH202, and BMW404. All samples were below the SAC.

The results of TRH and BTEX concentrations from the February 2017 sampling event showed the results were similar to those of the previous 2008 sampling event, with the exception of a localised decrease in BTEX and TRH C6-C9 concentrations in monitoring well ABH2105.

12.4.2.4 Polycyclic Aromatic Hydrocarbons (PAHs)

A summary table showing the results of the PAH analysis is provided in Table 26.

PAH concentrations were not detected at concentrations greater than the laboratory reporting limit in the groundwater samples submitted for analysis. The results of PAH concentrations from the February 2017 sampling event showed the results similar to those of the previous 2008 sampling event.

12.4.2.5 *Nutrients*

A summary table showing the results of the nutrient analysis is provided in Table 27.

Ammonia concentrations exceeded the assessment criterion of 0.9 mg L⁻¹ in all groundwater samples collected, with the exception of samples collected from ABH202, ABH2100 and BMW401. Concentration ranged from 0.92 mg L⁻¹ (BMW401) to 7.2 mg L⁻¹ (AMW204).

Total phosphorus concentrations detected ranged from below laboratory detection limits in AMW202 to 2.7 mg L⁻¹ in groundwater sampled from AMW201.

The results nutrients from the February 2017 sampling event showed the similar results to the previous 2008 sampling event.

CES Document Reference: CES130608-BP-AR Page 91 of 100

12.4.2.6 Volatile Organic Compounds (VOCs)

A summary table showing the results of the VOC analysis is provided in Table 28.

With the exception of the BTEX analytes mentioned above, VOC concentrations were not detected at concentrations greater than the laboratory reporting limit in the groundwater samples submitted for analysis, with the exception of Isopropylbenzene, collected from ABH2105. The results from the February 2017 sampling event showed the similar results to the previous 2008 sampling event.

12.4.2.7 Organochlorine Pesticides (OCPs)

A summary table showing the results of the OCP analysis is provided in Table 29.

OCP concentrations were not detected at concentrations greater than the laboratory reporting limit in the groundwater samples submitted for analysis. The results from the February 2017 sampling event showed the similar results to the previous 2008 sampling event.

12.4.2.8 Organophosphate Pesticides (OPPs)

A summary table showing the results of the OPP analysis is provided in Table 30.

OPP concentrations were not detected at concentrations greater than the laboratory reporting limit in the groundwater samples submitted for analysis. The results from the February 2017 sampling event showed the similar results to the previous 2008 sampling event.

12.4.2.9 Polychlorinated Biphenyls (PCBs)

A summary table showing the results of the PCB analysis is provided in Table 31.

PCB concentrations were not detected at concentrations greater than the laboratory reporting limit in the groundwater samples submitted for analysis. The results from the February 2017 sampling event showed the similar results to the previous 2008 sampling event.

12.4.3 Sub-Surface Gas Monitoring

Sub-surface gas monitoring was undertaken on 10 June 2008 by trained CES personnel. Results are provided in Table 32.

Methane concentrations were less than 0.3% in all of the landfill gas wells, both before and after purging. Concentrations of carbon dioxide were elevated in ALG204 (10.2%) compared to the other

CES Document Reference: CES130608-BP-AR Page 92 of 100

wells. The lowest oxygen levels were observed in ALG204 (4.0%), with reduced oxygen levels being present in ALG205. No gas formation pressure was observed in any of the wells.

12.5 VOLATILE ORGANIC COMPOUNDS

A sample of the gas evolving from BLG402 was collected into a TedlarTM bag for analysis of VOCs. With the exception of toluene, concentrations of VOCs were less that the detection limit of the analytical method used. Toluene was present in the sample at a concentration of 120 parts per billion by volume.

13 DISCUSSION AND SITE CHARACTERISATION

On the basis of the results of sampling and analysis of soil and groundwater across the site, the findings of the investigation are presented below.

13.1 SOIL

With the exception of copper, nickel, zinc, lead, Benzo(a)pyrene, Benzo(a)pyrene TEQ and BTEX the SAC for soil were not exceeded in samples of natural soil and fill analysed. The elevated concentrations of copper, nickel, zinc and lead at sampling location AMW207 were potentially associated with isolated metal shaving uncovered within the fill material at a depth of 0.5-0.7 mBGL.

Two lead concentrations in the fill material exceeded the adopted heath-based SAC and these lie within proposed Block 3C – Logistics hub. These samples (located in BBH430 and BBH433 bores) were collected from fill material a depth of between 2.4 and 2.6 mBGL. Considering these are located at a depth of between 2.4 metres and 2.6 metres and will be capped during construction of proposed buildings (i.e. Block 3C), it is not considered likely to cause a risk to human health of the future receptors, and as such does not require remediation. However, a management strategy for lead contaminated soils will be included in the Remediation Action Plan (RAP).

Eight copper concentrations in the fill material exceeded the adopted ecological-based SAC and varied in depth ranging between 0.2 m BGL and 2.6 m BGL. As the copper concentrations did not exceed adopted health-based SAC, and the 95% UCL calculation for copper in the fill material of 33.73 mg/kg was less than the adopted EILs, it is not considered likely to cause a risk to human health of the future receptors and remediation is not considered necessary.

Four nickel concentrations in the fill material exceeded the adopted ecological-based SAC and varied in depth ranging between 0.5 m BGL and 2.6 m BGL. As the nickel concentrations did not exceed adopted health-based SAC, and the 95% UCL calculation for nickel in the fill material of 8.36 mg/kg was less than the adopted EILs, it is not considered likely to cause a risk to human health of the future receptors and remediation is not considered necessary.

CES Document Reference: CES130608-BP-AR

Page 93 of 100

Three zinc concentrations in the fill exceeded the adopted ecological-based SAC. These exceedances lie within proposed Block 3C – Logistics hub and were at a depth below the top 2 metres of soil. As the zinc concentrations did not exceed adopted health-based SAC and were identified below this depth remediation is not considered necessary.

The health-based SAC for Benzene and Xylenes was exceeded in four and three fill samples respectively. In addition, three and four exceedances of adopted ecological-based SAC for Toluene and Xylenes, respectively, were reported. The BTEX high concentrations were located around USTs and lie within proposed Fig Tree Grove pavilion.

As a result of the elevated concentrations of BTEX, remediation and/or management measures are required to ensure protection of the environment and human health. The removal of the bowsers, USTs, associated pipework and impacted soil will be required under a Remediation Action Plan (RAP) as part of the redevelopment of the site. BTEX concentrations were not detected shallower then 1.0mBGL and the contamination is likely to extend underneath the maintenance shed. Given the depth and limited extent of the contamination surrounding the USTs and presence of a sealed concrete and bitumen surface covering the area, the impacted material including soil vapours are considered to present a low risk to current users of the site. Due to the impending development, no immediate management of the site over and above current maintenance are recommended.

Two Benzo(a)pyrene TEQ exceeded the adopted health-based SAC and lie within the proposed Flora Street intersection upgrade and extension in the east side of the site. These samples (located in BBH453 and BBH402) were collected from fill material a depth of between 0.2-0.3 mBGL in BBH453 and 0.5-0.6 mBGL in BBH402. As a result of the elevated concentrations of Benzo(a)pyrene TEQ, remediation and/or management measures are required to ensure protection of the environment and human health. The removal of the impacted soil will be required under a Remediation Action Plan (RAP) as part of the redevelopment of the site. Benzo(a)pyrene TEQ concentrations were not detected at depths greater than 0.3 mBGL in BBH453 and 0.6 mBGL in BBH402 and consequently the contamination is unlikely to extend to greater depths.

Site observations indicated that the vegetation on the site was in generally good condition and that there were no areas of dead or stressed vegetation noted that may have been associated with soil contamination.

Potential Acid Sulfate Soils (PASS) are expected to be present in natural material below the water table. However, providing these materials are not disturbed they will not pose a risk to the local environment. It is expected that the planned development of the site may result in disturbance of the PASS. If disturbance of ASS is planned, a management plan will be required.

Asbestos fibres were not found in near-surface fill during drilling works, however fragments of fibrous cement sheeting were found in surface fill in a limited number of locations across the site

CES Document Reference: CES130608-BP-AR

Page 94 of 100

within fill on unsealed surface areas. Remediation or management of the ACM fragments is required to ensure protection of human health. Given the lack of asbestos fibres in soil samples and the presence of only cement bonded fragments in limited areas of the site and the low impact traffic on the paths where cement sheet fragments may be present the presence of the fragments is considered to represent a low risk to the users of the site and no immediate remediation of the site is recommended. As a precaution, until the remediation of the fragments is addressed as part of the redevelopment of the site, management of the areas should be considered when asbestos fragments are found during ongoing use of the site by noting the location and either isolating area from traffic and/or covering it with a layer of clean fill. To ensure clean-up of the fragments is ultimately achieved a written record of the location of impacts should be maintained and provided to the remediation contractor or developer's contractor prior to development commencing.

13.2 GROUNDWATER

Sixteen groundwater wells were installed along the boundary of the site and within the site to assess whether contamination resulting from the presence of landfills to the south was migrating onto the site, with one well being placed in the centre. Four groundwater wells were installed surrounding USTs located in KGC Club House car park. Of the suite of substances analysed in the groundwater samples, copper, lead, nickel, zinc and ammonia were detected at concentrations that exceeded the SAC established for groundwater, while TPH C₆-C₁₄ and ethylbenzene concentrations above the laboratory detection limit were detected around the USTs adjacent to the maintenance shed.

With respect to the concentrations of TPH and BTEX exceeding the laboratory reporting limit, as the concentrations of these substances was only detected within ABH202 and ABH2105, the potential for migration of contaminants appears to be limited. Given the limited extent of the contamination, off-site migration is not considered an issue and with the impending development, no immediate management of the area over and above current maintenance are recommended.

With respect to metal concentrations, given the nature of the fill materials identified, and that the concentrations identified are unlikely to occur naturally in the soil types in the area, it is considered likely that metals contamination in groundwater were possibly sourced from dredged sediments and pore water placed on the site during the realignment of Cooks River.

With respect to the low concentrations of ammonia detected in groundwater, it is considered likely that the potential source of ammonia is naturally occurring organic content in the dredged material placed on the site during the realignment of Cooks River and minor impact of fertilizers used during maintenance of the golf course.

Given the fact that the Cooks River is free flowing, is not a stagnant water body and that it is highly degraded due to industrial pollution and stormwater run-off, it is therefore not a sensitive receptor. Consequently, CES consider the elevated metal concentrations and ammonia to have low potential to

CES Document Reference: CES130608-BP-AR Page 95 of 100

adversely impact the receiving waters. CES consider the potential risk to human health and the environment to not be significant or warrant active remediation.

Results from the February 2017 sampling event showed no significant change when compared to the results of the 2008 sampling event. It is CES' opinion that the groundwater chemistry at the site has not significantly changed since the 2008 sampling event.

13.3 LANDFILL GAS

Concentrations of methane, carbon dioxide and oxygen in the gas extracted from six subsurface gas monitoring wells installed along the southern perimeter of the site were not indicative of the presence of landfill gas, as such, there was no evidence that the former landfills offsite to the south are impacting on soil gas in the site.

The ground gas risk assessment, as outlined in NSW EPA (2012), was undertaken. The preliminary screening process did identify the potential source of landfill gas from the adjacent site to the south however, there was insufficient evidence to suggest risk to receptors and potential pathways of gas migration. Further assessment was not deemed in consideration of the above findings.

It is noted that the NSW EPA (2012) guidelines have been superseded by NSW EPA (2020) *Contaminated Land Guidelines: Assessment and management of hazardous ground gases.* The risk assessment framework in the recent guidelines also recommends carrying out a preliminary screening based on the CSM and therefore the results of the risk assessment are still valid.

The elevated carbon dioxide concentrations with ALG204 can be attributed the natural degradation of organic matter.

There is no obvious source to associate with the detection of toluene in ALG402. However, this location is off site and it is not deemed necessary investigate further.

CES Document Reference: CES130608-BP-AR Page 96 of 100

14 CONCLUSIONS AND RECOMMENDATIONS

14.1 CONCLUSIONS

The Cooks Cove Development Zone site consists of a filled area occupied by the Kogarah Golf Course.

CES understands that the Cooks Cove Master Plan will include a net development zone of approximately 15ha with up to 343,250m² Gross Floor Area (GFA) comprising

- o 290,000m² of multi-level logistics and warehousing;
- o 20,000m² for hotel and visitor accommodation uses;
- o 22,350m² for commercial office uses;
- o 10.900m² of retail uses.

With remaining areas of the site retained for public recreation and road related infrastructure.

With the exception of BTEX impact in fill material surrounding bowsers and USTs located within the Kogarah Golf Club House car park and benzo(a)pyrene, copper and lead identified hotspots, the soil across the site does not contain contamination such that extensive remediation would be necessary to make the site suitable for the proposed mixed land use. However, it will be necessary prior to redevelopment of the site to remediate the impacted areas by decommissioning and removing the USTs and associated infrastructure; removing/managing benzo(a)pyrene, copper, and lead impacted soils and to ensure that fragments of Asbestos Containing Materials present in mainly surface fill in limited areas across the site are managed and disposed safely and in accordance with regulations.

CES consider the elevated metal concentrations and ammonia in groundwater to have low potential to adversely impact the receiving waters. The groundwater condition is also found to not have significantly changed between the 2008 and 2017 sampling events. No remediation or active management is considered necessary with respect to groundwater impacted with metals and ammonia. Management activities should be reviewed at the time of redevelopment.

14.2 RECOMMENDATIONS

It is recommended that a Remediation Action Plan (RAP) be prepared to address hydrocarbon-impacted areas associated with refuelling infrastructure in the Kogarah Golf Club House car park, the areas of the benzo(a)pyrene, copper and lead hotspots, and the presence of fragments of asbestos cement sheeting on the site.

CES Document Reference: CES130608-BP-AR Page 97 of 100

15 LIMITATIONS OF THIS REPORT

This report has been prepared for use by the client who commissioned the works in accordance with the project brief and based on information provided by the client. The advice contained in this report relates only to the current project and all results, conclusions and recommendations should be reviewed by a competent person with experience in environmental investigations before being used for any other purpose. Consulting Earth Scientists (CES) accepts no liability for use of interpretation by any person or body other than the client. This report must not be reproduced except in full and must not be amended in any way without prior approval by the client and CES.

The extent of sampling points and analysis of soil, groundwater and subsurface gas has been a grid pattern with the exception of in the vicinity of the USTs. This approach has been adopted in order to maximise the probability of identifying contaminants, however the approach may not identify contamination that occurs in isolated pockets between sampling points.

Furthermore, soil, rock and aquifer conditions are variable, resulting in the heterogeneous distribution of contaminants across the site. Contaminant concentrations have been identified at discrete locations, however conditions between sample locations have been inferred based on estimated geological and hydrogeological conditions, the nature and extent of identified contamination. Boundaries between zones of variable contamination are generally unclear and have been interpreted based on available data and professional judgement. The accuracy with which subsurface conditions have been characterised depends on the frequency of sampling, field and laboratory methods, the uniformity of the substrate and is therefore limited by the scope of works undertaken.

This report is based on statistical sampling constructs and does not provide a complete assessment of the environmental status of the site and is limited to the scope defined therein. Should information become available regarding conditions at the site including previously unknown sources of contamination, CES reserves the right to review the report in the context of the additional information.

CES Document Reference: CES130608-BP-AR

Page 98 of 100

16 REFERENCES

Ahern C R, Stone, Y and Blunden B (1998). Acid Sulphate Soils Assessment Guidelines, Acid Sulphate Soil Management Advisory Committee, Wollongbar, NSW

Australian and New Zealand Environment and Conservation Council: 2000: *Guidelines for Fresh and Marine Water Quality, National Water Quality Management Strategy*. October 2000.

New South Wales Environment Protection Authority, NSW EPA, , 2016: Waste Classification Guidelines: Part 1 Classifying Waste, Second Edition.

Department of Environment and Conservation, 2007: Contaminated Sites: Guidelines for the Assessment and Management of Groundwater Contamination.

Department of Environment and Conservation, 2006: Contaminated Sites: Guidelines for the NSW Site Auditor Scheme, 2nd Edition.

Environment Protection Authority NSW (1997): Guidelines for Consultants Reporting on Contaminated Sites. EPA 97/104, Environment Protection Authority of New South Wales, Chatswood, 22 pp. 2011. Note that this guidelines have been updated by NSW EPA (2020), Contaminated Land Guidelines: Consultants Reporting on Contaminated Land.

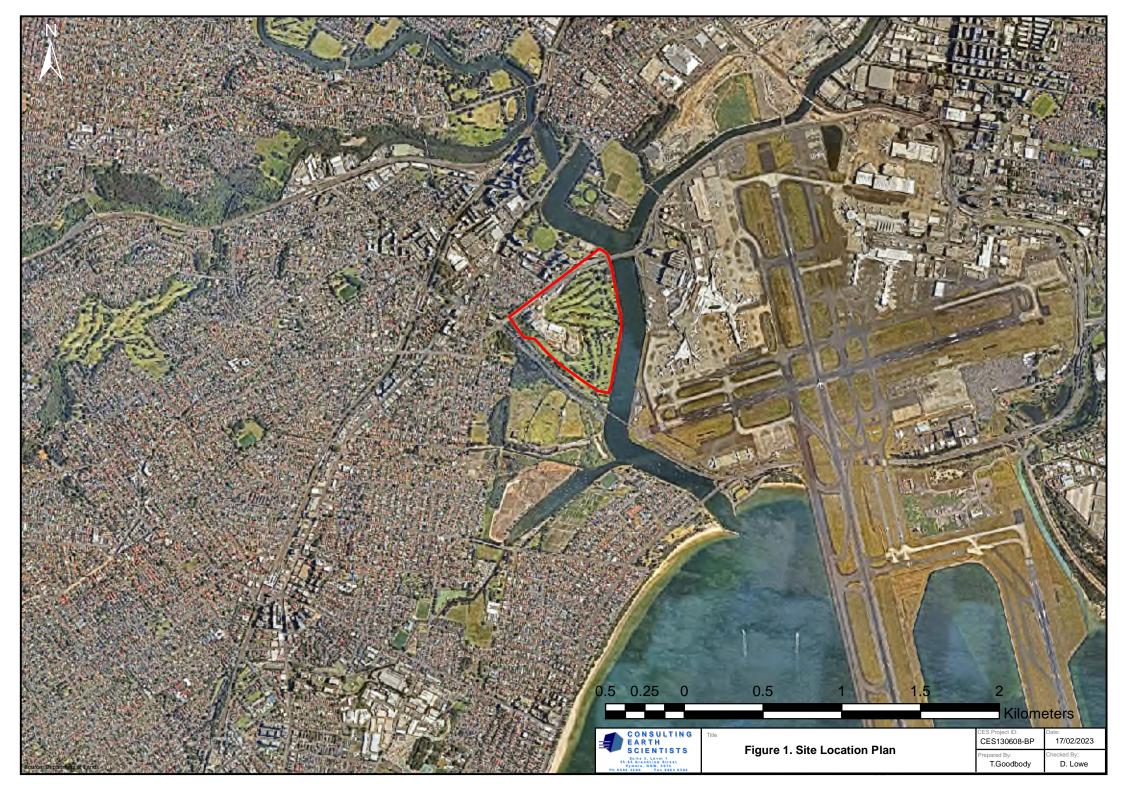
Environment Protection Authority NSW, 1995: *Contaminated Sites: Sampling Design Guidelines*, EPA 95/59, September 1995, 35 pp. Note that this sampling guidelines have been updated by NSW EPA (August 2022) *Contaminated Land Guidelines: Sampling design part 1 – application & Sampling design part 2 – interpretation.*

Environment Protection Authority, 1999: *Guidelines on Significant Risk of Harm from Contaminated Land and the Duty to Report*. EPA 99/8, Environment Protection Authority of New South Wales, Chatswood, 26 pp.

Environment Protection Authority, 2012: Guidelines for the Assessment and Management of Sites Impacted by Hazardous Ground. EPA 2012/0932, Environment Protection Authority of New South Wales, Chatswood, 22 pp. Note that this guidelines have been updated by NSW EPA (2020) Contaminated Land Guidelines: Assessment and management of hazardous ground gases.

National Environment Protection Council, 2013: *Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater.* National Environment Protection Measure.

CES Document Reference: CES130608-BP-AR Page 99 of 100


National Environment Protection Council, 2013: *Schedule B(2) Guideline on Site Characterisation*. National Environment Protection Measure.

Olszowy, H, Torr, P, Imray, P, Smith, P, Hegarty, J & Hastie, G (1995). Trace element concentrations in soils from rural and urban areas of Australia, Contaminated Sites monograph, no. 4, South Australian Health Commission, Adelaide, Australia.

CES Document Reference: CES130608-BP-AR Page 100 of 100

Figures

Tables

Table 1: Summary of Borehole Information				
Borehole ID	Sampling Rationale	Date Drilled	Depth m	Well Screen Interval m
ABH201	Site Coverage	05 May 2008	2.8	N/A
ABH202	Targetted, adjacent to USTs	09 May 2008	4	1.0-4.0
ABH203	Site Coverage	07 May 2008	2.8	N/A
ABH204	Site Coverage	07 May 2008	2.8	N/A
ABH205	Site Coverage	06 May 2008	2	N/A
ABH206	Site Coverage	09 May 2008	2.8	N/A
ABH207	Site Coverage	09 May 2008	0.4	N/A
ABH208	Site Coverage	07 May 2008	2.8	N/A
ABH209	Site Coverage	07 May 2008	2.8	N/A
ABH210	Site Coverage	06 May 2008	2.8	N/A
ABH2100	Targetted, adjacent to old UST	21 May 2008	6.5	1.8-6.5
ABH2101	Targetted, adjacent to old UST	09 May 2008	1.7	N/A
ABH2102	Targetted, downgradient of old UST and under former maintenance shed	09 May 2008	2	N/A
ABH2103	Targetted, adjacent to USTs	09 May 2008	2.8	N/A
ABH2104	Targetted, adjacent to USTs	09 May 2008	4	N/A
ABH2105	Targetted, adjacent to bowsers	15 May 2008	4	1.0-4.0
ABH2106	Targetted, adjacent to underground waste oil tank	09 May 2008	2.8	N/A
ABH2107	Targetted, adjacent to bowsers and fuel lines	15 May 2008	1.6	N/A
ABH2108	Targetted, adjacent to USTs and fuel lines	15 May 2008	4.5	N/A
ABH2109	Targetted to assist in delineating hydrocarbon impact	15 May 2008	3	N/A
ABH211	Site Coverage	12 May 2008	2.8	N/A
ABH2110	Targetted, adjacent to old UST	21 May 2008	2	0.5-2.0
ABH212	Site Coverage	08 May 2008	2.8	N/A
ABH213	Site Coverage	12 May 2008	2.8	N/A
ABH214	Site Coverage	07 May 2008	2.8	N/A
ABH215	Site Coverage	06 May 2008	2.8	N/A
ABH216	Site Coverage	06 May 2008	2.8	N/A
ABH217	Site Coverage	06 May 2008	2.3	N/A
ABH218	Site Coverage	06 May 2008	0.5	N/A
ABH219	Site Coverage	06 May 2008	1	N/A
ABH220	Site Coverage	06 May 2008	0.6	N/A
ABH221	Site Coverage	08 May 2008	2.8	N/A
ABH222	Site Coverage	08 May 2008	2.8	N/A
ABH223	Site Coverage	08 May 2008	4.1	N/A
ABH224	Site Coverage	06 May 2008	2.8	N/A
ABH225	Site Coverage	06 May 2008	2.8	N/A
ABH226 ABH227	Site Coverage	06 May 2008	2.8	N/A N/A
	Site Coverage	06 May 2008	2.8	
ABH228 ABH229	Site Coverage	06 May 2008	2.8	N/A N/A
	Site Coverage	06 May 2008 08 May 2008		
ABH230 ABH231	Site Coverage	· · · · · ·	2.8	N/A N/A
ABH231 ABH232	Site Coverage Site Coverage	08 May 2008	2.8	N/A
ABH232 ABH233		06 May 2008 07 May 2008	2.8	N/A N/A
ABH234	Site Coverage Site Coverage	07 May 2008 07 May 2008	2.8	N/A
ABH235	Site Coverage Site Coverage	07 May 2008 07 May 2008	2.8	N/A N/A
ABH235 ABH236	Site Coverage Site Coverage	08 May 2008	2.8	N/A
ABH237	Site Coverage Site Coverage	06 May 2008	2.8	N/A N/A
ABH238	Site Coverage Site Coverage	06 May 2008	2.8	N/A
ABH239	Site Coverage Site Coverage	08 May 2008	2.8	N/A
ABH240	Site Coverage Site Coverage	08 May 2008	2.8	N/A
ABH241	Site Coverage	08 May 2008	2.8	N/A
ABH242	Site Coverage Site Coverage	08 May 2008	2.8	N/A
ABH243	Site Coverage	08 May 2008	2.8	N/A
ABH244	Site Coverage Site Coverage	08 May 2008	2.8	N/A
ABH245	Site Coverage	07 May 2008	2.8	N/A
ABH246	Site Coverage Site Coverage	07 May 2008	2.8	N/A
ABH247	Site Coverage Site Coverage	07 May 2008	2.8	N/A
ABH248	Site Coverage Site Coverage	08 May 2008	2.8	N/A
ABH249	Site Coverage Site Coverage	08 May 2008	2.8	N/A
111111111		08 May 2008	2.8	N/A
ABH250				1 1/ 4 1
ABH250 ABH251	Site Coverage Site Coverage	•		N/A
ABH250 ABH251 ABH252	Site Coverage Site Coverage Site Coverage	08 May 2008 08 May 2008	2.8	N/A N/A

	Table 1(continued): Summary	of Borehole Information		
Borehole ID	Sampling Rationale	Date Drilled	Depth m	Well Screen Interval m
ABH254	Site Coverage	08 May 2008	2.8	N/A
ABH255	Site Coverage	08 May 2008	2.8	N/A
ABH256	Site Coverage	12 May 2008	2.8	N/A
ABH257	Site Coverage	12 May 2008	2.8	N/A
ABH258	Site Coverage	12 May 2008	2.8	N/A
ABH259	Site Coverage	12 May 2008	2.8	N/A
ABH260	Site Coverage	12 May 2008	2.8	N/A
ABH261	Site Coverage	12 May 2008	2.8	N/A
ABH262	Site Coverage	12 May 2008	2.8	N/A
ABH263	Site Coverage	12 May 2008	2.8	N/A
ABH264	Site Coverage	12 May 2008	2.8	N/A
ABH265	Site Coverage Site Coverage	12 May 2008	2.8	N/A
ABH266	Site Coverage Site Coverage	12 May 2008	2.8	N/A N/A
ABH267	-		2.8	N/A N/A
ABH268	Site Coverage	12 May 2008	2.8	N/A N/A
+	Site Coverage	12 May 2008		
ABH269	Site Coverage	13 May 2008	2.8	N/A
ABH270	Site Coverage	13 May 2008	2.8	N/A
ABH271	Site Coverage	13 May 2008	2.8	N/A
ABH272	Site Coverage	13 May 2008	2.8	N/A
ABH273	Site Coverage	13 May 2008	2.8	N/A
ABH274	Site Coverage	13 May 2008	2.8	N/A
ABH275	Site Coverage	13 May 2008	2.8	N/A
ABH276	Site Coverage	13 May 2008	2.8	N/A
ABH277	Site Coverage	13 May 2008	2.8	N/A
ABH278	Site Coverage	13 May 2008	2.8	N/A
ABH279	Site Coverage	13 May 2008	2.8	N/A
ABH280	Site Coverage	13 May 2008	2.8	N/A
ABH281	Site Coverage	13 May 2008	2.8	N/A
ABH282	Site Coverage	13 May 2008	2.8	N/A
ABH283	Site Coverage	15 May 2008	2.8	N/A
ABH284	Site Coverage	15 May 2008	2.8	N/A
ABH285	Site Coverage	15 May 2008	2.8	N/A
ABH286	Site Coverage	15 May 2008	2.8	N/A
ABH287	Site Coverage	15 May 2008	2.8	N/A
ABH288	Site Coverage	15 May 2008	2.8	N/A
ABH289	Site Coverage	15 May 2008	2.8	N/A
ABH290	Site Coverage	15 May 2008	2.8	N/A
ABH291	Site Coverage	15 May 2008	4.2	N/A
ABH292	Site Coverage	13 May 2008	4.2	N/A
ABH293	Site Coverage	13 May 2008	4.2	N/A
ABH294	Site Coverage	15 May 2008	4.2	N/A
ABH295	Site Coverage	13 May 2008	4.2	N/A
ABH296	Site Coverage	12 May 2008	2.8	N/A
ABH297	Targetted, adjacent to old UST	09 May 2008	1.3	N/A
ABH297 ABH298	Targetted, adjacent to old UST	09 May 2008 09 May 2008	1.5	N/A N/A
ABH299	Targetted, adjacent to old UST	09 May 2008	1.5	N/A N/A
	E , j	•		
ALG201	Site Coverage	12 May 2008	2.8	0.2-1.7
ALG202	Site Coverage	12 May 2008	2.8	0.2-1.7
ALG203	Site Coverage	12 May 2008	1.7	0.2-1.7
ALG204	Site Coverage	15 May 2008	2.8	0.2-1.7
ALG205	Site Coverage	15 May 2008	4.2	0.2-1.7
ALG206	Site Coverage	15 May 2008	2.8	0.2-1.6
AMW201	Site Coverage	12 May 2008	2.4	0.9-2.4
AMW202	Site Coverage	07 May 2008	2.8	1.0-2.5
AMW203	Site Coverage	09 May 2008	2.8	1.0-2.5
AMW204	Site Coverage	09 May 2008	2.8	0.9-2.4
AMW205	Site Coverage	08 May 2008	2.2	0.5-2.0
AMW206	Site Coverage	15 May 2008	2.8	0.9-2.4
AMW207	Site Coverage	12 May 2008	2.8	1.0-2.5
BBH401	Site Coverage	28 Apr 2008	2.8	N/A
BBH402	Site Coverage	28 Apr 2008	2.6	N/A

ı	Table 1 (continued): Summary of	Borehole Information		
Borehole ID	Sampling Rationale	Date Drilled	Depth m	Well Screen Interval m
BBH403	Site Coverage	28 Apr 2008	2.8	N/A
BBH404	Site Coverage	28 Apr 2008	2.8	N/A
BBH405	Site Coverage	28 Apr 2008	0.5	N/A
BBH406	Site Coverage	29 Apr 2008	2.8	N/A
BBH407	Site Coverage	29 Apr 2008	2.8	N/A
BBH408	Site Coverage	29 Apr 2008	2.8	N/A
BBH409	Site Coverage	29 Apr 2008	2.8	N/A
BBH410	Site Coverage	29 Apr 2008	2.8	N/A
BBH411	Site Coverage	29 Apr 2008	2.8	N/A
BBH412	Site Coverage	29 Apr 2008	2.8	N/A
BBH413	Site Coverage	29 Apr 2008	2.8	N/A
BBH414	Site Coverage	02 May 2008	2.8	N/A
BBH415	Site Coverage	30 Apr 2008	2.8	N/A
BBH417	Site Coverage	29 Apr 2008	2.8	N/A
BBH418	Site Coverage	29 Apr 2008	2.8	N/A
BBH419	Site Coverage	29 Apr 2008	2.8	N/A
BBH420	Site Coverage	30 Apr 2008	2.8	N/A
BBH421	Site Coverage	30 Apr 2008	2.8	N/A
BBH422	Site Coverage	30 Apr 2008	2.8	N/A
BBH423	Site Coverage	30 Apr 2008	2.8	N/A
BBH425	Site Coverage	29 Apr 2008	2.8	N/A
BBH426	Site Coverage	29 Apr 2008	2.8	N/A
BBH427	Site Coverage	29 Apr 2008	2.8	N/A
BBH428	Site Coverage	01 May 2008	2.8	N/A
BBH429	Site Coverage	01 May 2008	2.8	N/A
BBH430	Site Coverage	30 Apr 2008	2.8	N/A
BBH431	Site Coverage	30 Apr 2008	2.8	N/A
BBH432	Site Coverage	01 May 2008	2.8	N/A
BBH433	Site Coverage	01 May 2008	2.8	N/A
BBH434	Site Coverage	01 May 2008	2.8	N/A
BBH435	Site Coverage	01 May 2008	2.8	N/A
BBH436	Site Coverage	30 Apr 2008	2.8	N/A
BBH438	Site Coverage	30 Apr 2008	2.8	N/A
BBH439	Site Coverage	30 Apr 2008	2.8	N/A
BBH440	Site Coverage	30 Apr 2008	2.8	N/A
BBH441	Site Coverage	30 Apr 2008	2.8	N/A
BBH442	Site Coverage	30 Apr 2008	2.8	N/A
BBH443	Site Coverage	30 Apr 2008	2.8	N/A
BBH445	Site Coverage	01 May 2008	2.8	N/A
BBH446	Site Coverage	01 May 2008	2.8	N/A
BBH447	Site Coverage	01 May 2008	2.8	N/A
BBH448	Site Coverage	01 May 2008	2.8	N/A
BBH450 BBH451	Site Coverage	01 May 2008	2.8	N/A N/A
BBH452	Site Coverage Site Coverage	01 May 2008 01 May 2008	2.8	N/A N/A
+	2			
BBH453 BBH455	Site Coverage Site Coverage	01 May 2008 01 May 2008	2.8	N/A N/A
BBH456	Site Coverage Site Coverage	01 May 2008 01 May 2008	2.8	N/A
BBH457	Site Coverage Site Coverage	30 Apr 2008	2.8	N/A
BBH458	Site Coverage Site Coverage	01 May 2008	4.2	N/A
BBH460	Site Coverage Site Coverage	01 May 2008	2.8	N/A
BLG404	Site Coverage Site Coverage	02 May 2008	2.8	0.3-1.8
BMW401	Site Coverage Site Coverage	02 May 2008	4.5	3.0-4.5
BMW402	Site Coverage Site Coverage	02 May 2008	2.8	1.1-2.6
BMW404	Site Coverage	02 May 2008	3.5	2.0-3.5
DD11264		Installed by Golders		00.55
BBH304	Located towards eastern boundary of site	(2001)	5.2	0.8-5.2

cation	Sample Depth	Sample Id	Date Samuled	Table 2 Material Type	2: Summary of Sample Information Material Description	PID
			Date Sample		SOIL SAMPLES	
3H201 3H201	0-0.2	050508-01-KW	05 May 2008	FILL	Grass over silty sand topsoil, fine grained, dark brown, dry, loose with rootlets.	
H201	2.6-2.8	050508-02-KW 050508-03-KW	05 May 2008 05 May 2008	SAND	Sand, fine grained, yellow, dry to moist, Ioose. Sand, fine grained, pale grey, moist, dense.	_
H202	0.1-0.2	090508-191-KW	09 May 2008	FILL	Sand, fine grained, brown, dry, loose, grayels and pootlets, odourless, Moist at 0.4 m.	
H202 H202	0.45-0.55	090508-192-KW 090508-193-KW	09 May 2008 09 May 2008	FILL	Sand, fine grained, brown, dry, loose, gravels and rootlets, odourless. Moist at 0.4 m. Silty sand, fine grained, brown/grey, moist, soft, wase clay, sandstone, gravels, roots.	
H202	1.3-1.4	090508-200-KW	09 May 2008	SAND	Sand, fine to medium grained, grey/brown, wet at 1.3 m. Hydrocarbon odour at 1.3 m. Strong hydrocarbon odour at 2.0 m.	
H202 H202	1.9-2.2 2.7-2.8	090508-202-KW 090508-203-KW	09 May 2008 09 May 2008	SAND SAND	Sand, fine to medium grained, grey/brown, wet at 1.3 m. Hydrocarbon odour at 1.3 m. Strong hydrocarbon odour at 2.0 m. Sand, fine grained, grey, wet, dense, silty.	
H202	3.8-4	150508-601-KW	15 May 2008	SAND	Sand, medium grained, brow, wet, loose.	
H203 H203	0.0.1	070508-59-KW 070508-60-KW	07 May 2008 07 May 2008	FILL SAND	Grass over silty sand topsoil, fine grained, dark brown, moist, dense, roodets.	4
H203	2.6-2.8	070508-61-KW	07 May 2008	SAND	Sand, fine to medium grained, pale grey, moist, dense. Sand, fine to medium grained, pale grey, wet, dense, slight H2S odour.	+
H204	0.1-0.4 0.1-0.4	070508-55-KW	07 May 2008 07 May 2008	FILL	Silty sand, fine grained, dark brown/grey, moist, dense, ironstone gravel at 0.2 m, rootlets throughout.	_
H204 H204	0.1-0.4	070508-56-KW Field Blind Replicate Sample of 070508-55-KW 070508-57-KW Split Field Duplicate of 070508-55-KW	07 May 2008	FILL	Silty sand, Fine grained, dark brownigrey, moist, dense, ironstone gravel at 0.2 m, rootlets throughout. Silty sand, Fine grained, dark brownigrey, moist, dense, ironstone gravel at 0.2 m, rootlets throughout.	+
H204	1.3-1.5	070508-58-KW	07 May 2008	SILTY SAND	Silty sand, fine to medium grained, dark grey, moist to wet, dense.	
H205	0.1-0.2	060508-49-KW 060508-50-KW	06 May 2008 06 May 2008	SAND SILTY SAND	Sand, fine grained, dark brown/grey, moist, firm, silty. Silty sand, fine to medium grained, dark brown/black, moist, dense.	
H205	1.8-2	060508-51-KW	06 May 2008	SAND	Sand, fine to meidum grained, pale grey, wet, dense, silty lenses, H2S odour.	
H206 H206	0.1-0.2 1-1.2	090508-208-KW 090508-209-KW	09 May 2008 09 May 2008	SILTY SAND SILTY SAND	Silty sand, fine grained, dark grey/brown, dry, loose to mod dense. Silty sand, fine grained, dark grey, dry, loose, odourless.	
H206	2.6-2.8	090508-210-KW	09 May 2008	SAND	Sand, fine to medium grained, wet from 1.4 m, loose, trace silty, H2S odour.	\neg
H207 H208	0.2-0.4	090508-207-KW 070508-67-KW	09 May 2008 07 May 2008	FILL	Road base graveds with crushed sandatone, day and odomites. 0.2 m cone loss. Grass over willy sand toposel, they grained, dark brown, most to day, roots. Sand, fine grained, dark brown, couled sandatone (orange), with charcouf fragments.	
1208	1.2-1.4	070508-68-KW	07 May 2008	FILL	O.2 in core axis. Oracs over sany sand oppoin, time grained, caris frown, motor to dry, roots. Sand, fine grained, dark brown, crushed sandstone (orange), with charcoal fragments.	-
H208 H209	2.3-2.4	070508-69-KW 070508-67-KW	07 May 2008 07 May 2008	SAND FILL	Sand, fine to medium grained, pulse grey, saturated from 2.4-2.7m, moderately dense, trace silty, H2S odour.	
H209 H209	0.15-0.25	070508-62-KW 070508-63-KW	07 May 2008 07 May 2008	FILL SILTY SAND	Sand, fine to medium grained, yellow, dry to moist, loose, bark and gravel. Silty sand, fine to medium grained, dark brown, moist, moderately dense, trace clay, increasing clay with depth.	-
H209	1.3-1.4	070508-64-KW	07 May 2008	SILTY SAND	Sand, fine grained, pale grey/brown, saturated from 1.5-2.2 m, soft, silt lenses, H2S odour.	
H210	0.1-0.2	060508-46-KW 060508-47-KW	06 May 2008 06 May 2008	FILL SILTY SAND		
H210 H210	0.3-0.5 1.1-1.2	060508-47-KW 060508-48-KW	06 May 2008 06 May 2008	SILTY SAND SAND	Silty sand, medium to coarse grained, pale brown, moist, dense, trace clay, slight VOC and H2S odour. Sand, medium grained, pale grey, moist and wer at 1.2 m, dense, silt lenses, H2S odour.	
£2100	0.1-0.2 0.4-0.5	090508-171-KW 090508-172-KW	09 May 2008 09 May 2008	FILL	Sand, brown, fine grained, loose, dry, gravesl, brick, blue metal, sheells and odourless Sand, grey, fine grained, dry and odourless	-
2100	1-1.1	090508-173-KW	09 May 2008	FILL	Sand, vellow/srev, fine grained, dry, loose and odourless	
£2100	1.3-1.4	090508-180-KW	09 May 2008	FILL	Silty sand, dark grey, fine grained, loose and dry	
12100 12101	0.1-0.2	090508-179-KW 090508-174-KW	09 May 2008 09 May 2008	SANDSTONE FILL	Orangelyellow sandstone, fine grained and dry Sand, brown, fine grained, loose, dry with gravels and blue metals	
£2101	0.4-0.5	090508-175-KW	09 May 2008	FILL	Sand, srev. fine srained, loose dry and odourless	
£2101 £2101	0.9-1 1.4-1.5	090508-176-KW 090508-177-KW	09 May 2008 09 May 2008	FILL FILL	Sand, yellowbrown, fine grained, loose, dry and odourless Silt sand, dark brown, fine grained, dry, loose and odourless	+
H2101	1.6-1.7	090508-178-KW	09 May 2008	SANDSTONE	Weathered sandstone, white/orange, moist and odourless Crushed sandstone fill, pale brown/orange, course grained, sandstone gravels, loose and dry	
£2102 £2102	0.2-0.3 0.7-0.8	090508-185-KW 090508-186-KW	09 May 2008 09 May 2008	FILL	Crushed sandstone fill, pale brown/orange, course grained, sandstone gravels, loose and dry	_
12102	1.8-2	090508-187-KW	09 May 2008	FILL	Sand, grey/brown, loose and dry with black gravels Sand, pale grey with silt lenses and wet. Refusal on sandstone at 2.0mBGL.	-
H2103 H2103	0.1-0.2	090508-194-KW 090508-195-KW Field Blind Replicate Sample of 090508-194-KW	09 May 2008 09 May 2008	FILL	Sand, brown, fine grained, loose, dry to moist with gravels and shells. Terracota at 0.3m. Moist with orange mottles at 0.9m and gravels	
H2103	0.35.0.4	090508-196-KW	09 May 2008	FILL	Sand, brown, fine grained, loose, dry to moist with gravels and shells. Terracota at 0.3m. Moist with orange mottles at 0.9m and gravels Sand, brown, fine grained, loose, dry to moist with gravels and shells. Terracota at 0.3m. Moist with orange mottles at 0.9m and gravels	
£2103 £2103	0.9-1 1.3-1.4	090508-197-KW 090508-199-KW	09 May 2008 09 May 2008	FILL FILL	Sand brown fine emined loose dry to make with provels and shells. Terravata at 0.3m. Make with armore mattles at 0.9m and gravels.	
£2103 £2103	2.6-2.8	090508-199-KW 090508-201-KW	09 May 2008 09 May 2008	FILL FILL	Sand, grey with six lenses, fine to medium grained, wer from 1-lm. Sanurated from 1.4-28m Situ charge and brown out and contrasted with several shells	_
12104	0.3-0.5	090508-198-KW	09 May 2008	FILL	Silty clayey sand, brown, soft and sanurated with several shells Sand, brown, fine to medium grained, loose and moist with gravels	
H2104	0.5-0.6 1.1-1.2	090508-334-KW 090508-335-KW	09 May 2008 09 May 2008	FILL	Sand, yellow, fine grained and odourless. Grading to greylyellow, fine to medium grained and wet Sand, yellow, fine grained and odourless. Grading to greylyellow, fine to medium grained and wet	
12104	2.8-3	090508-349-KW	09 May 2008	FILL	Sailty clays came and observed to gray process, two recommendations are well sailty clayers and so gray process, two or recommendations are well sailty clayers and so gray process, denied and well with shells. Sandy clay, crange and odourhous	
H2104	4.2-4.5	090508-350-KW	09 May 2008	SANDY CLAY	Sandy clay, orange and odourless Clayey sand, orange/grey, course grained, odourless and moist, large boulder rocks, sandstone and concrete. Very strong, hydrocarbon odour from Im	
H2105 H2105	0.4-0.5 1.4-1.5 2.8-3	150508-323-KW 150508-333-KW	15 May 2008 15 May 2008 15 May 2008	FILL	Clavey sand, orange/grey, course grained, odourless and moist, large boulder rocks, sandstone and concrete. Very strong, hydrocarbon odour from Im	
H2105 H2105 H2105	2.8-3 3.8-4	150508-346-KW 150508-600-KW	15 May 2008 15 May 2008	FILL SAND SAND	Sand grey, fine to medium grained, saturated, hydrocarbon odour and loose	
H2105 H2106	3.8-4 0.1-0.2	150508-600-KW 090508-204-KW	15 May 2008 09 May 2008	SAND FILL	Brown sand, fine to medium grained with no odour Silty brown topsoil, fine grained and moist	
H2106	1.1-1.2	090508-205-KW	09 May 2008	FILL	Sand, yellow, medium grained, moderately dense with shells and moist. Saturated at 2.0m Sitty clay, grey, soft and wet with H2S odour	
H2106 H2107	2.6-2.8 0.15-0.2	090508-206-KW 150508-339-KW	09 May 2008 15 May 2008	FILL	Silty clay, grey, soft and wet with H2S odour Silty sand topsoil, fine to medium grained, moist and odourless with gravels	
H2107	0.5-0.6	150508-340-KW	15 May 2008	FILL	Sand, brown/grey, fine to medium grained, gravels and odourless	
£2107 £2107	1-1.1	150508-341-KW 150508-342-KW	15 May 2008 15 May 2008	FILL	Rocks, sand, grey becoming brown, moist to wet with strong hydrocarbon odour and surface sheen. EOH at 1.6mBGL due to access restrictions Rocks, sand, grey becoming brown, moist to wet with strong hydrocarbon odour and surface sheen. EOH at 1.6mBGL due to access restrictions	
H2108	0.1-0.2	150508-343-KW	15 May 2008	FILL	Sand, yellow, fine grained, most to dry. Rocks at 0.3m	
H2108	0.5-0.6	150508-344-KW 150508-345-KW	15 May 2008	FILL	Silty sand, dark brown, fine grained with trace clay, moist with slight HC odour	
£2108 £2108	1.1-1.2 3-3.1	150508-345-KW 150508-347-KW	15 May 2008 15 May 2008	FILL FILL	Very strong Hydrocarbon odour Sity sand, dark grey, fine to medium grained, wet with shells and hydrocarbon odour	
12108	4.2-4.5	150508-348-KW	15 May 2008	SAND	Silty sand, dark grey, fine to medium grained, wet with shells and hydrocarbon odour Sand, pale grey, silty lenses, odourless and moist	
£2109 £2109	0.0.05	150508-336-KW 150508-337-KW	15 May 2008 15 May 2008	FILL	Gravels and roadbase Silty sand, dark brown, fine to medium grained, moist and odourless	
12109	1.1-1.2	150508-338-KW	15 May 2008	FILL	Sand, grey, fine to medium grained, moist and odourless	
£2109 H211	2.8-3 0-0.1	150508-351-KW 120508-214-KW	15 May 2008 12 May 2008	SILTY SAND FILL	Silty sand, grey, fine to medium grained, moist and dense Grass over silty sand, trace clay, dark brown, fine grained, moist, dense with rootless	- F
H211	1-1.2	120508.215.KW	12 May 2008	FILL	Sand, pale grey, medium grained, moist to wet, H2S odour, dense, silt lenses throughout, saturated at 1.4m to 2.0m	= $+$
H211	1-1.2	120508-216-KW Split Field Duplicate Sample of 120508-215-KW 120508-217-KW	12 May 2008 12 May 2008	FILL SAND	Sand, pale grey, medium grained, moist to wet, H2S odour, dense, silt lenses throughout, saturated at 1.4m to 2.0m Sand, pale grey, course grained, dense and wet	4
H211	2.5-2.6 0.35-0.45	120508-217-KW 080508-161-KW	12 May 2008 08 May 2008	SAND FILL	Sand, pale grey, course grained, dense and wes Silty sand, fine to medium grained, brown, firm, charcoal fragments and shells at 0.4m. Trace clay and moist	+
1212	0.6-0.7	080508-162-KW	08 May 2008	FILL	Sand, yellow, fine grained, dense and dry to moist	#
H212	2.6-2.8 0-0.2	080508-163-KW 120508-211-KW	08 May 2008 12 May 2008	SAND FILL	Sand, white, fine grained, very dense, hard and dry (near rig refusal) Grass over sity sand topsoil, dark brown, loose, dry to moist with rootlets	-
1213	0.5-0.6	120508-212-KW	12 May 2008	FILL	Sand, yellow, medium grained, dry, black charcoal at 0.5m	1
4213 4214	1.2-1.3 0-0.1	120508-213-KW 070508-70-KW	12 May 2008 07 May 2008	SANDSTONE FILL	Sandstone, orange course grained and dry. Refusal at 1.3m BGL on sandstone bedrock Grass over silv sand topsoil dusk brown moist with resultes.	#
1214	0.4-0.5	070508-71-KW	07 May 2008	FILL	Griss over sity sand topsof, dark brown, moist with rootless Sand, yellowipale grey, fine to medium grained, dense, moist and H2S odour. Sit lenses from 0.8m. Wet from 0.6m. Saturated from 1.5-2.0m	士
1215 1215	0-0.2 0.7-0.9	060508-36-KW 060508-37-KW	06 May 2008 06 May 2008	FILL	Grass over silty clay topsoil, dark brown, firm to soft, moist with rootless Sand, yellowipale grey, fine to medium grained, dense, moist with rootless. Silt lenses and H2S odour throughout	工
1215	0.7-0.9	060508-38-KW Field Blind Replicate Sample of 060508-37-KW	06 May 2008	FILL	Same, yenowipuse grey, time to meaning gramen, ucrose, most with rootless. Saft tenses and H2S odour throughout Sand, yellowipule grey, fine to medium grained, dense, moist with rootless. Saft lenses and H2S odour throughout	=+
1215 1216	2-2.2	060508-39-KW	06 May 2008	SAND FILL	Sand, yellowipale grey, fine to medium grained, dense, moist with rootlets. Silt lenses and HZS odour throughout Sand, pale grey, fine to medium grained, moderately dense, moist to wet with HZS odour	4
1216 1216	0.0.2	060508-40-KW 060508-41-KW	06 May 2008 06 May 2008	FILL FILL	Grass over silty clay topsoil, brown/orange, moist, dense with rootlets Silty clayey sand, dark brown, fine to medium grained, dense, moist and odourless	+
1216	2.6-2.8	060508-42-KW	06 May 2008	SAND	Sand, role srev, wet, fine to medium grained, dense with H2S odour	
1217 1217	0-0.2 0.2-0.5	060508-43-KW 060508-44-KW	06 May 2008 06 May 2008	FILL FILL	Grass covering silt sand, top soil. Fine to medium grained, dark brown, moist and loose. Silty sand, fine to medium grained, moist, pale brown igrey, dense with H2S odour. Grading to sand with trace silts with depth	
1217	1.3-1.4	050608-45-KW	06 May 2008	FILL	Increase in clay content, becoming wet at 1.3m	ᆂ
£218 £218	0-0.1	060508-06-KW 060508-07-KW	06 May 2008 06 May 2008	FILL SAND	Grass over silty sand topsoil, dark brown, moist with rootlets	4
1218 1219	0.4-0.5	060508-07-KW 060508-08-KW	06 May 2008 06 May 2008	SAND FILL	Sand, Right brown, fine grained, moist and dense. Refusal at 0.5mBGI, on Sandstone Grass over silty sand topsoil, dark brown, loose, moist with roots	+
1219	0.8-1	060508-09-KW	06 May 2008	SAND	Sand, dark grey, fine to medium grained and moist. Refusal on sandstone at 1.0mBGL.	
H220 H220	0.2-0.3	060508-04-KW 060508-05-KW	06 May 2008 06 May 2008	FILL	Ash fill, black/grey, crisp and dry to moist Sand, trace clay, light brown, dense and moist. Refusal on sandstone bedrock at 0.6mBGL	
1221	0.1-0.25	080508-158-KW	08 May 2008	FILL	Grass over silty sand topsoil, dark brown, fine to medium grained, roots and moist	+
H221	0.75-0.85	080508-159-KW	08 May 2008	FILL	Sand, fine grained, brown, loose and dry.	
4221 4222	1.5-1.6 0-0.1	080508-160-KW 070508-76-KW	08 May 2008 07 May 2008	FILL	Silty clay sand, brown, soft, wet to saturated at 1.5-1.8m Silty topsoil, brown, moist with roots	-
H222	0.3-0.4	070508-77-KW	07 May 2008	FILL	Sity sand, dark new man to come such and so the Stand, pule grey, fate to medium grained, moist to wet, soft and loose with H2S odour. Sith leases from 2.0. Saturated from 1.7-2.5m.	
H222 H223	1.6-1.8 0-0.2	070508-78-KW 070508-72-KW	07 May 2008 08 May 2008	SAND FILL	Sand, pale grey, fine to medium grained, moist to wer, soft and loose with H2S odour. Silt lenses from 2.0. Saturated from 1.7-2.5m. Grass over sandy topsoil, brown, dry with gravels and rootlets	=
	0.506	070508-72-KW	07 May 2008	FILL	Sand, fine grained, brown, dry and loose with gravels and ash at 0.5-0.6m. Shells and sandstone gravels, dense and moist at depth	
£223 £223	1.3-1.4	070508-74-KW	07 May 2008	FILL	Silty sand, brown/grey, fine grained, dense, moist, with gravels and possible ash	

Table					Table 2 (co	ntinued): Summary of Sample Information	
1.50	Location	Sample Depth	Sample Id	Date Sampled		Material Description	PID (ppm
1982 1.5							
1000 1015 1000							1.2
1985 1985							6.9
1985 1985							2.1
ABC							1.9
1985 1.0				06 May 2008			-
March Marc				06 May 2008		Sand, yellow, fine to medium grained, moderately dense, moist, shells, charcoal gravels and tree roots	2
ACCOUNTY				06 May 2008			1.2
ACCORDING 1.0							-
March Marc					FILL		1.4
Months 1,500							1.6
ACCOUNTY						Clayey silt, brown/grey, soft, moist with minor gravels	1.4
March Marc						Grass over silty clay topsoil, dark brown, moist with rootlets. Ash at 0.1m and tree roots at 0.3m	1.1
March Marc				06 May 2008		Sand, pale grey, fine grained, dense, moist with H2S odour. Silt clay contant from 1.2m. Wet from 1.5m. Refusal on sandstone at 1.6mBGL	1.1
						Sand, pale grey, fine grained, dense, moist with H2S odour. Silt clay contant from 1.2m. Wet from 1.5m. Refusal on sandstone at 1.6mBGL	1.1
ABCONS 1.55							2.1
2007						Shale rocks, crushed brick, brown clay, stiff, dry and sandstone rubble	2.7
ACCC							
ACCC							3
ADDITION Company Com							3
ABCEC 0.054 0.058-0.5 NP 0.052-0.5 NP 1.052-0.5 NP 1.	ABH231	0.9-1	080508-154-KW	08 May 2008	FILL	Silty sand, grey, fine grained, dense and moist with concrete gravels	2.1
MINISTED 1921							0.8
ADDITION CONTROL NOT							0.6 0.5
ABCD 0.544 0.000 0.00	ABH233	0-0.15	070508-93-KW	07 May 2008	FILL	Grass over silty sand topsoil, moist, dense with roots	1.4
ABEC				07 May 2008		Sandstone rubble, white/orange, hard. Clay with sand, brown, fine grained and moist	2.6
AUTIST 1.00			070508-95-KW Field Blind Replicate Sample of 070508-94-KW 070508-96-KW	07 May 2008		Sandstone rubble, white/orange, hard. Clay with sand, brown, fine grained and moist Silty clay sand, grow west with 1425 colour.	2.6
ADDITION COURSE ON Principles Service (Conference on Conference on C	ABH234	0.3-0.5	070508-81-KW	07 May 2008	FILL	Silty sand, dark brown, fine grained, very dense and moist	0.7
ACT			070508-82-KW Field Blind Replicate Sample of 070508-81-KW	07 May 2008		Silty sand, dark brown, fine grained, very dense and moist	0.7
ARTIS 0.455 0.0006 0.							0.3
ABTES				07 May 2008 07 May 2008			-
ABITES 1.4.15						Grass over silty sand topsoil, dark brown, fine grained, loose, moist with roots	15.3
MIDS 1.00 1.00000-2.P.W 0.0000-2.P.W 0.00						Sand, pale grey with orange mottles, fine to medium grained, trace silt lenses, shells and moist	7
AMICH 1.1.12							21.8
AMIDIS 0.16.5 0.0000 1.24 N 0.0000 1			060508-28-KW			Sand, yellow, fine to medium gained, silty clay lenses at 1.0-1.2m, moderated, moist and shells	2
AUTUS 1.0.5 00000-5.4 NP Feed Blind Replace Supple of 00000-5.2 NP May 200 FEL State, plane, for so medium granted, force, most with shells of 17 to 1							2.2
AUTUS 1.1.2 0.0000.5.5.EW 0.00.000. FEL 0.0000.000.000 0.0000.000 0.0000.0000 0.0000.0000 0.0000.0000 0.0000.0000 0.0000.0000 0.0000.0000 0.0000.0000 0.0000.00000 0.0000.0000 0.0000.0000 0.0000.0000 0.0000.0000 0.0000.0000 0.0000.0000 0.0000.0000 0.0000.0000 0.0000.00000 0.0000.0000 0.0000.0000 0.0000.0000 0.0000.0000 0.0000.0000 0.0000.0000 0.0000.0000 0.0000.0000 0.0000.0000 0.0000.0000 0.0000.0000 0.0000.0000 0.0000.0000 0.0000.0000 0.0000.0000 0.0000.0000 0.0000.0000.0000 0.0000.0000.0000 0.0000.0000.0000 0.0000.0000.0000 0.0000.0000.0000 0.0000.0000.0000 0.0000.0000.0000.0000 0.0000.0000.0000.0000.0000 0.0000.0000.0000.0000 0.0000.0000.0000.0000.0000.0000.0000.0000							2.3 2.3
ABITUS 0.51 0.00000-12-NV 0.00000-12-N							2.3
MIDS 0.46.5 0.0000132-NY 0.000012-NY 0.0000200 FILL South, brown, five grained, brown and most with white shelfs 2.2	ABH238		060508-26-KW	06 May 2008	SILTY SAND	Silty sand with trace clays, brown/grey, moist, dense, organic odour and shells. Saturated from 1.5m	1.2
ABIDES 0.1-6.4						Grass over silty sand topsoil, dark brown, fine grained, loose, moist with roots	3.1
ABIDED 0.16.4						Sand, pale, orrown, time grained, soose and mosts with write sneits Sand, vellow, fine to medium grained, loose, moist with shells	2.9
ABIDES 0.51 0.00505-17-KW 0.0050-17-KW 0.00505-17-KW 0.00505-17-K	ABH240	0.1-0.4	080508-124-KW Field Blind Replicate Sample of 080508-123-KW	08 May 2008	FILL	Sand, yellow, fine to medium grained, loose, moist with shells	2.9
ABIDES 0.5 0.00505-17-NW 0.00505-17-N							2.9
ABIEST 0.5-06 06096-125-RW 06-Mg-2006 FFL Sand, yellow, fine to medium graded, loos, great with shells and congregated 3.						Sand, pale grey, tine to medium grained, dense, most with slight organic odour	1.3
ABIDED 0.5 0.0000 1.2 0.00						Sand, yellow, fine to medium grained, loose, moist hells and orange mottles	3.7
ABIDLE2 0.5.67 0.00505.16.5.KW 0.00505.15.KW 0.00505						Silty clayey sand, dark brown, soft and moist. Saturated from 1.4-1.9m. Clay contant and stiffness increased with depth	3.9
ABIDES 0.5.67 0.00000-0.000000						Grass over silty sand topsoil, dark brown, dense with roots	1.3
ABIFICIAL 2.6-2.8 0.05008-147-KVV 0.05 May 2006 SAND Sand, pale grey, fine to medium grained, draws and work 1.7							2.4
ABILES 0.0.1 08/09/2008 FIL. Grass over ally used topsed, dark brown, fine grained, bose, make with roses 1. ABILES 0.0.3 08/09/2018 EVA 08/09/2008 FIL. Silty and, dark brown, fine grained, done and one with black action and 0.2 1. ABILES 0.50.4 0.0000	ABH242	2.6-2.8	080508-147-KW	08 May 2008	SAND	Sand, pale grey, fine to medium grained, dense and wet	2.3
ABIFERIT 1.5.1.6 0.00506.143.NW 0.00509.005 SILTY SAND Silty (sig and, dark gey, oil and were 0.0						Grass over silty sand topsoil, dark brown, fine grained, loose, moist with roots	1.5
ABIELSE 0.54.05 070008-96-NW 07 May 2008 FILL AbiEll, white greets, some sand, most to wer 0.0 ABIELSE 1.3.1.4 070508-92-NW 07 May 2008 SAND Sand, pale grey, fine to medium grained with silt leaves, moderately dense, most to wet with HZS odoor. Saturated from 1.5.27m 0.0 ABIELSE 0.5.1.6 070508-92-NW 07 May 2008 FILL Sand, dark brown, fine grained, done with abit 0.0 ABIELSE 0.5.1.6 070508-93-NW 07 May 2008 FILL Sand, dark brown, fine grained, and was not all concernments of the part of the par							1.4
ABIFELY 0.5.06 070508-91-KW 07 May 2008 FIL Abiffil, white gracks mater and most to wer with IES door. Suntained In 5.27m 0.0 ABIFELY 0.0 AB	ABH244	0.25-0.35	070508-90-KW	07 May 2008	FILL	Ash fill, white gravels, some sand, moist to wet	0.3
ABILES 0.3.04 0.70508.87 XV 0.70508.8				07 May 2008			0.3
ABILEST 0.5							0.2
ABILEST 0.0.1							1.2
ABILES 1-1-16	ABH245	0.9-1		07 May 2008	SAND	Sand, pale grey, fine to medium grained, loose to moderately dense and moist. Saturated from 1.5-2.8m with H2S odour	0.4
ABBLED 14.16 078588 & KP Wind Blank Replicae Sample of 070508 & SAND Sand, pale grey, fine to medium grained, from, noist, with six floress and IES ofour Stuarous at J 4.2 San 1.2 San							0.2
ABBLET 0.1.04 070508-9-KW field Blank Replicas Sumple of 070508-9-KW 07 May 2008 FIL. Silty sand, dark brown, fine to medium grained, dones, black charcol and graveh 1.							0.1
ABILEZ 0.1-0.4 0.78586-9/A.W Field Blind Replicae Sample of 0.70506-9/A.W 0.7 May 2005 FILL Salty sand, dark brown, fine to medium grained, dones, back charcool and gravels 1. ABILEZ 1.1-12 0.78508-10/A.W 0.7 May 2005 FILL Sand, pale grey, fine to medium grained, dones, the miss with FIS colour 1.0 ABILEZ 0.1-12 0.1000-10/A.W 0.7 May 2005 SAND Sand, pale grey, fine to medium grained, dones, most with HIS colour 1.0 ABILEZ 0.1-12 0.1000-10/A.W 0.0 May 2005 FILL Sand, squb, fine to medium grained, done, day to miss with sile lesses and shells 0.2 May 2005 1.1-12 0.0000-10/A.W 0.0 May 2005 FILL Sand, squb, fine to medium grained, loose, day to miss with sile lesses and shells 0.2 May 2005 0.0 May 2005 1.1-12 0.0000-10/A.W 0.0 May 2005 FILL Sand, squb, fine to medium grained, loose, day to miss with sile lesses and shells 0.2 May 2005 0.0 May 2005 1.1-12 0.0000-10/A.W 0.0 May 2005 FILL Sand, squb, fine to medium grained, loose, day to miss with sile lesses and shells 0.2 May 2005 1.1-12 0.0000-10/A.W 0.0 May 2005 FILL Sand, squb, fine to medium grained, loose, day to miss with sile lesses and shells 0.2 May 2005 1.1-12 0.0000-10/A.W 0.0 May 2005 FILL Sand, squb, fire to medium grained, loose, day to miss with sile lesses and shells 0.2 May 2005 1.1-12 0.0000-10/A.W 0.0 May 2005 FILL Sand, squb, fire, fine grained, loose, day to miss with sile lesses and shells 0.2 May 2005 1.1-12 0.0000-11/A.W 0.0 May 2005 FILL Sand, squb, grey, fine to medium grained, loose, which with sile lesses and shells 0.7 May 2005 1.1-12 0.0000-11/A.W 0.00	ABH247	0.1-0.4	070508-98-KW	07 May 2008	FILL	Silty sand, dark brown, fine to medium grained, dense, black charcoal and gravels	1.9
ABILES 2-6.28 078008-101-KW 07 May 2008 SAND Sand, pale grey, fine to medium grained, dense, most with EIS colour 10 ABILES 0-10 0800508-105-KW 06 May 2008 FILL Grass over 10 year and inground and most with 10 Sand, yellow, fine to medium grained, foose, day to moist with sile lesses and shells 20 ABILES 1-11 0800508-105-KW 08 May 2008 FILL Sand, yellow, fine to medium grained, foose, day to moist with sile lesses and shells 20 ABILES 1-11 0800508-105-KW 08 May 2008 FILL Sand, yellow, fine to medium grained, foose, day to moist with sile lesses and shells 20 ABILES 0.143 0800508-105-KW 08 May 2008 FILL Sand, yellow, fine to medium grained, foose, day to moist with sile lesses and shells 20 ABILES 0.143 0800508-105-KW 08 May 2008 FILL Sand, yellow, fine to medium grained, foose, day to moist with sile lesses and shells 20 ABILES 0.143 0800508-105-KW 08 May 2008 FILL Sand, yellow, fine to medium grained, foose, day to moist with sile lesses and shells 0.144 0.000508-11-KW 0.00		0.17 0.17				Silty sand, dark brown, fine to medium grained, dense, black charcoal and gravels	1.9
ABH258 0-0.1 0.08598.165.KW 0.08 My 2008 FIL. Cares over ally said typen, Lack hown, tace dy and exist 2.2						Sand, pale grey, fine to medium grained, dense, moist with silt lenses and shells	2.9
ABILES 1-1.1 000509-107-AV Pield Billad Piglicus Sample of 080508-106-AV 0 68 May 2008 FILL Sand, yellow, fine to medium grained, loose, day to moist with sile lense and double 20 ABILES 1-1 000509-107-AV Pield Billad Piglicus Sample of 080508-106-AV 0 68 May 2008 FILL Sand, yellow, fine to medium grained, loose, day to moist with sile lense and double 20 ABILES 2-6.2-8 000508-106-AV 0 68 May 2008 FILL Sand, yellow, fine to medium, moderatoly, most to we with ILS colour 4 ABILES 2-6.2-8 000508-106-AV 0 68 May 2008 FILL Sand, yellow, fine to medium, moderatoly, most to we with ILS colour 4 ABILES 2-6.2-8 000508-11-AV 0 68 May 2008 FILL Sand, and, ger, fine grained, done, great with an waste (black and white) 7. ABILES 2-6.2-1 0 000508-11-AV 0 68 May 2008 FILL Sand, and, ger, fine grained, done, great with an waste (black and white) 9. ABILES 2-6.2-1 0 000508-11-AV 0 68 May 2008 FILL Sand, and, ger, fine grained, done, great with an waste (black and white) 9. ABILES 2-6.2-1 0 000508-11-AV 0 68 May 2008 FILL Sand, and, ger, fine grained, done, great with an waste (black and white) 9. ABILES 2-6.2-1 0 000508-11-AV 0 68 May 2008 FILL Sand, ger, fine grained, done, great with an waste (black and white) 9. ABILES 2-6.2-1 0 000508-11-AV 0 68 May 2008 FILL Sand, ger, fine grained, done, great with an waste (black and white) 9. ABILES 2-6.2-1 0 000508-11-AV 0 68 May 2008 FILL Sand, ger, fine grained, done, great with an waste (black and white) 9. ABILES 2-6.2-1 0 000508-11-AV 0 68 May 2008 FILL Sand, ger, fine grained, with a method with trea silvy day lenses 1-6.2-2 0 000508-11-AV 0 68 May 2008 FILL Sand, ger, fine grained, with a method with trea silvy day lenses 1-6.2-2 0 000508-11-AV 0 68 May 2008 FILL Sand, ger, fine to medium grained, done and minest with roots 1-1. ABILES 2-6.6-8 0 000508-11-AV 0 68 May 2008 FILL Sand, yellow, fine to medium grained, done men grained, done and minest with roots 1-1. ABILES 2-6.6-8 0 000508-11-AV 0 68 May 2008 FILL Sand, yellow, fine to medium grained, done men grained, done men gr						Grass over silty sand topsoil, dark brown, trace clay and moist	21.6
ABILES 2.6.2.8 080508-108-XV 08-May 2008 SAND Sand, pie grey, fine to medium, moderately, most to set with ILS obser 4.8 ABILES 0.1.0.3 080508-108-XV 08-May 2008 FILL Sand, pie grey, fine to medium, moderately, most to set with ILS obser 4.8 ABILES 0.1.1.1 080508-110-XV 08-May 2008 FILL Sand, per, fine grinned, done, grow with an water black and white 0.7 ABILES 0.1.2.1.4 080508-111-XV 08-May 2008 FILL Sand, per, fine grinned, done, more with an water black and white 0.9 ABILES 0.1.0.1 080508-111-XV 08-May 2008 FILL Sand, per, fine grinned, done, drow with an water black and white 0.9 ABILES 0.1.0.3 080508-113-XV 08-May 2008 SELTY SAND SELTY						Sand, yellow, fine to medium grained, loose, dry to moist with silt lenses and shells	20.9
ABILESP 0.1-0.3 000508-196-XW 05 May 2008 FILL Sand, pale brown, fine to medium grained, lose, day to mixt ABILESP 1.1-1 000508-116-XW 05 May 2008 FILL Sand, park brown, fine to medium grained, lose, day to mixt ABILESP 1.1-1 000508-111-XW 05 May 2008 FILL Sand, park, silv qaly tense, fine to medium grained, and mixt 0.7-2 ABILESP 1.1-1 000508-111-XW 05 May 2008 FILL Sand, park, silv qaly tense, fine to medium grained, and mixt 0.7-2 ABILESP 1.1-1 000508-111-XW 05 May 2008 FILL Sand, park, silv qaly tense, fine to medium grained, some date green, the grained, does, and cake green, the grained, does, and cake green, the grained, some date green, that shows the green date. The grained from a fact green, the grained, some date green, that shows the form 0.9-1 and 1.1-1							20.9
ABB252 1-1.1							4.3 8.6
ABILES 0.4.0 698598-113-KW 68 May 2008 SULTY SAND SULTY	ABH249	1-1.1	080508-110-KW	08 May 2008	FILL	Silty sand, grey, fine grained, dense, moist with ash waste (black and white)	7.4
ABIESD 0.1-0.3 08508-11-KW 08 May 2008 FILL Sand, yellow, fine to medium grained, losse, day to moist, shells, black greeds with traces tilly clay lenses 4. ABIESD 0.7-0.9 08508-11-KW 08 May 2008 FILL Ab waste layer, black whose, we from 09-1-1-1 m 2. 2. ABIESD 1.5-1.6 08508-11-KW 0.5 May 2008 SILTY SAND Silty clayey sand, fine grained, soft and wet. Sutured from 1.4-2.0m 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.				08 May 2008			9.5
ABH250 0.749 089598.114.KW 08 May 2008 FILL Ash wate layer, back-white, wer from 0.9-1.1m 2. ABH251 15.16 089508.115.W 08 May 2008 FILL Grass over silty and typsid, dark brown, fine grained, then used to startest dem 1.4.2 fm 0.0 ABH251 0.01 089508.116.KW 08 May 2008 FILL Grass over silty and typsid, dark brown, fine grained, those and moist with rose 3. ABH252 0.01 089508.116.W 08 May 2008 FILL Grass over silty and typsid, dark brown, fine a merist with rose 3. ABH252 0.01 089508.136.KW 08 May 2008 FILL Grass over silty and typsid, dark brown, fine to medium grained, moist with rostles 1. ABH252 0.01 089508.136.KW 08 May 2008 FILL Stad, yellow, fine to medium grained, done and moist with stells 1. ABH252 0.01 089508.135.KW 08 May 2008 FILL Grass over silty and typsid, dark brown, fine to medium grained, done and moist with adults 1. ABH252 0.01 089508.135.KW 08 May 2008 FILL Grass over silty and typoid, dark brown, fone medium grained, done and moist with nots 1. ABH253 0.04 089508.134.KW 08 May 2008 FILL Grass over silty and typoid, dark brown, fone, moist with nots 1. ABH253 0.04 089508.134.KW 08 May 2008 FILL Grass over silty and typoid, dark brown, fone, moist with nots 1.				08 May 2008 08 May 2008			2.3 4.1
ABILES 0.5 0.5 0.0508.115.KW 0.05 May 2005 SELTY SAND Silty clayey sand, fine grinds, oft and wet. Surrord from 1.4-2.0m 0.0				08 May 2008			2.8
ABHUS 0-1 080508-117-XW 08 May 2008 FIL Silv and with race clay, bevon, firm and mist with roos 3. ABHUS 0-1 080508-135-XW 08 May 2008 FIL Green even shape and continue principle of the continue prin	ABH250	1.5-1.6	080508-115-KW	08 May 2008	SILTY SAND	Silty clayey sand, fine grained, soft and wet. Saturated from 1.4-2.0m	0.2
ABH252 0.0.1 089598-130-KW 08-My-2008 FILL Grass over silty and topool, dark brown, fine to medium grained, most with nodes 1. ABH252 0.6.08 089508-131-KW 08-My-2008 FILL Sand, yellow, fine to medium grained, dense and most with shells 1. ABH252 12-13 080598-132-KW 08-My-2008 FILL Silty and, dark gry, fine to medium grained, dense and most 2. 2. ABH253 0-0.1 080598-133-KW 08-My-2008 FILL Grass over silty and topool, dark brown, loose, most with nost 2. 2. ABH253 0-0.4 080598-134-KW 08-My-2008 FILL Sand, yellow, fine to medium grained, dense and most 2. 2. ABH253 0-0.4 080598-134-KW 08-My-2008 FILL Grass over silty and topool, dark brown, loose, most with nost 3. 2. ABH253 0-0.4 70 080598-134-KW 08-My-2008 FILL Sand, yellow, fine to medium grained, dense and most with shells 1. 1.							3.2
ABH252 0.6.08 000506.131.8VV 07 May 2008 FIL Sand, yellow, fine to medium grained, done and moist with shells 1. ABH252 1.2.13 000506.131.8VV 07 May 2008 FIL Sand, yellow, fine to medium grained, done and moist with shells 1. ABH253 0.01 000506.131.8VV 07 May 2008 FIL Sand, yellow, fine to medium grained, done and moist with cost 2. 2. ABH253 0.01 000506.133.8VV 07 May 2008 FIL Grass over allay sand topool, dash known, loose, moist with roots 2. 2. ABH253 0.01 000506.133.8VV 07 May 2008 FIL Sand, yellow, fine to medium grained, done and moist with shells 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.							3.1
ABH252 2-1.3 089508-132-KW 08 May 2008 PLL Silvy sand, dark groy, fine to medium grained, done and moist 2 ABH253 0-0.1 080508-133-KW 08 May 2008 PLL Gray over silvy and people, dark brown, nonesi with roots 2 ABH253 0-5.47 080508-134-KW 08 May 2008 PLL Sand, yelone, fine to medium grained, close and moist with shells 1.	ABH252				FILL		1.3
ABH2S3 0.5-0.7 080508-134-KW 08 May 2008 FILL Sand, yellow, fine to medium grained, loose and moist with shells 1.				08 May 2008		Silty sand, dark grey, fine to medium grained, dense and moist	2.5
							1.4
	ABH253 ABH253						2.9

Location	Sample Depth	Sample Id	Date Samula	Table 2 (c Material Type	continued): Summary of Sample Information Material Description	PID (ppm)
					SOIL SAMPLES	
ABH254 ABH254	0.0.1	080508-136-KW 080508-137-KW	08 May 2008 08 May 2008	FILL	Grass over silty clay topsoil, trace sand, dark brown, firm, moist with roots and shells Silty sand, dark grey, soft and wet to 0.6m	3.2 1.8
ABH254 ABH255	2.6-2.8 0-0.2	080508-138-KW 080508-139-KW	08 May 2008 08 May 2008	SILTY SAND FILL	Ilty sand with trace clay, grey, notelets, dense and moist Grass over silty sand topsoil, dark brown, dense, moist with roots	2.1 1.9
ABH255	0.9-1	080508-140-KW	08 May 2008	FILL	Silty sand, silty clay lenses throughout, dark grey, dense and moist to wet	1.8
ABH256 ABH256	0-0.1 1.2-1.3	120508-264-KW 120508-265-KW	12 May 2008 12 May 2008	FILL SAND	Grass over silry sand, brown, moist with roots Sand, pale grey, fine to medium grained, moderately dane, silt lenses, Wet from 1.5-2.6m with slight H2S odour at 2.0m	6.3 5.7
ABH256 ABH257	2.4-2.6 0-0.2	120508-266-KW 170508-254-KW	12 May 2008 12 May 2008	SAND	Sand, rule stev. fine to medium grained, moderately dane, silt lenses. Wet from 1.5-2.6m with slight H2S odour at 2.0m	11.2 7.1
ABH257	0.4-0.5	120508-255-KW	12 May 2008	FILL	Grass over silty sand topsoil, dark brown, fine grained, loose, moist with roots Silty sand with trace clay, dark brown, medium grained, dense, moist with roots and gravels at 0.4-0.5m	7.1
ABH257 ABH258	2.2-2.3	120508-256-KW 120508-251-KW	12 May 2008 12 May 2008	SAND	Sand, pale grey, medium grained, dense, moist to wer with silt lenses. Saturated from 1.4-2.2m Grass over silty sand topsoil, dark brown, fine grained, dense, moist with roots	14.1
ABH258	0.9-1.1	120508-252-KW	12 May 2008	FILL	Silty sand, dark brown, fine grained, very dense, and moist	8.8
ABH258 ABH259	1.4-1.5 0-0.1	120508-253-KW 120508-248-KW	12 May 2008 12 May 2008	SAND FILL	Sand, pale grey, fine to medium grained, silt lenses, moist, trace clay from 1.5m. Saturated from 1.5-2.1m with H2S odour Grass on silty sand topsoil, dark brown, loose and moist with roots	7.9 10.6
ABH259 ABH259	0.6-0.7 1.8-1.9	120508-249-KW 120508-250-KW	12 May 2008 12 May 2008	FILL SAND	Sand, pale gray, fine grained, loose, moist with silt lenses Sand, pale grey, fine to medium grained, moist and loose	13.1
ABH260	0-0.2	120508-243-KW	12 May 2008	FILL	Grass over silty sand topsoil, dark brown, dry, loose, roots with gravels	-
ABH260 ABH260	0.6-0.8	120508-245-KW 120508-246-KW Field Blind Replicate Sample of 120508-245-KW	12 May 2008 12 May 2008	FILL	Sand, pale grey, fine grained, dry, loose, shells and moist from 1.0m Sand, pale grey, fine grained, dry, loose, shells and moist from 1.0m	12.8 12.8
ABH260	1.5-1.7 0-0.2	120508-247-KW	12 May 2008	FILL FILL	Sitty sand, layered orange/brown/grey with trace sand, moist, shells and wet from 1.5-1.8m	5.3
ABH261 ABH261	1.3-1.4	120508-244-KW 120508-241-KW	12 May 2008 12 May 2008	FILL	Grass on silry sand topsoil, brown, loose and dry Sand, yellow, fine to medium grained, dry to moist, loose with sporadic shells	3.5
ABH261 ABH262	2.7-2.8 0.3-0.5	120508-242-KW 120508-238-KW	12 May 2008 12 May 2008	SAND FILL	Sand, grey, fine to medium grained, firm, moist with silt lenses Sand, yellow, fien to medium grained, loose dry with shells	8.1 6.4
ABH262	1.7-1.9	120508-239-KW	12 May 2008	FILL	Sand, grey, silt lenses, shells and wet	-
ABH262 ABH263	1.7-1.9 0-0.1	120508-240-KW Field Blind Replicate Sample of 120508-239-KW 120508-235-KW	12 May 2008 12 May 2008	FILL FILL	Sand, grey, sik lenses, shells and wet Grass on sand topsoil, fine grained, dry, roots and loose	6.9
ABH263	1-1.2	120508-236-KW	12 May 2008	FILL	SAnd, yellow, fine grained, loose and dry. Medium grained with shells at 1.2m	10.9
ABH263 ABH264	2-2.1 0-0.1	120508-237-KW 120508-232-KW	12 May 2008 12 May 2008	FILL FILL	Calyeye sandy silt, black, firm and moist Grass over silty sand topsoil, fine grained, roots, dry and loose	7.7 6.3
ABH264 ABH264	0.2-0.4	120508-233-KW 120508-234-KW	12 May 2008 12 May 2008	FILL SILTY SAND	Sand, yellow, finr to medium grained, loose, dry with shells Silty clayay sand, brownigrey, soft and wer with shells at 2.7m	4.8
ABH265	0-0.1	120508-228-KW	12 May 2008	FILL	Grass over silty sand, dark brown, dense, moist, fine grained with roots and shells	12.8
ABH265 ABH265	0.9-1.1 0.9-1.1	120508-229-KW 120508-230-KW Split Field Duplicate Sample of 120508-229-KW	12 May 2008 12 May 2008	FILL FILL	Sand, pale grey, medium grained, dense, moist with shells and wet at 1.0m Sand, pale grey, medium grained, dense, moist with shells and wet at 1.0m	7.7
ABH265 ABH266	1.6-1.7 0.1-0.2	120508-231-KW	12 May 2008 12 May 2008	SILTY SAND FILL	Silty clayey sand, dark grey, soft wet with shells at 2.5m Grass over sand silt, brown, fine grained, moist, loose with rootlets	2.9
ABH266	1.2-1.3	120508-227-KW	12 May 2008	SILTY SAND	Silty sand, grey, moist to wet, finr to medium grained with shells	3.4
ABH267 ABH267	0.0.2	120508-223-KW 120508-224-KW	12 May 2008 12 May 2008	FILL FILL	Grass over silty sandtopsoil, brown, fine to medium grained dry, rootlets and shells Sand, pale grey/yellow, mediun grained, moist and loose with shells and roots	4.5
ABH267 ABH268	1.1-1.2	120508-225-KW 120508-275-KW	12 May 2008	FILL FILL	Sand, pale grey/yellow, mediun grained, moist and loose with shells and roots	4.2
ABH268	0-0.2 0.5-0.6	120508-275-KW 120508-273-KW	12 May 2008 12 May 2008	FILL FILL	Grass over sity sand topsoil, dark brown, firm and moist with roots Sity sand with trace clay, brown/grey, fine grained, moist, gravels and shells	2.8
ABH268 ABH269	1.5-1.6 0-0.1	120508-274-KW 130508-314-KW	12 May 2008 13 May 2008	SILTY SAND FILL	Silty clayey sand, dark grey, fine grained, firm, moist to wet Grass over silty sand topsoil, dark brown, fine grained, dry and loose	5.2 6.9
ABH269	0.5-0.6	130508-315-KW	13 May 2008	FILL	Silty sand, dark brown, moist, roots with organic odour	7.2
ABH269 ABH270	1.2-1.4 0.1-0.2	130508-316-KW 130508-311-KW	13 May 2008 13 May 2008	FILL FILL	Crushed sandstone, yellow/orange, moist and hard Sand, yellow, fine to medium grained, loose, moist with numerous shells. Wet at 1.5m	7.2 5.3
ABH270 ABH270	1.5-1.6 2.7-2.8	130508-312-KW 130508-313-KW	13 May 2008 13 May 2008	FILL SILTY SAND	Sand, yellow, fine to medium grained, loose, moist with numerous shells. Wet at 1.5m	6 98
ABH271	0-0.2	130508-308-KW	13 May 2008	FILL	Silvy sand, dark grey, fine grained, denne, moist with rootles Simdy spool, between, fine grained, dry, knone with roots Sand, pule grey, fine to medium grained, dry grading to moist with depth, shells and loose	5.8
ABH271 ABH271	0.4-0.5 1.8-1.9	130508-309-KW 130508-310-KW	13 May 2008 13 May 2008	FILL FILL	Sand, pale grey, fine to medium grained, dry grading to moist with depth, shells and loose Silty sand with trace clay, dark grey, fine to medium grained, numerous shells. Silty clay lenses	6.3 8.1
ABH272 ABH272	0.1-0.5	130508-304-KW 130508-305-KW Field Blind Realizate Samule of 130508-304-KW	13 May 2008 13 May 2008	FILL FILL	Grass over sand, pale brown, fine to medium grained, dry, loose with roots. Charcoal fragments andmetal pieces	3.9
ABH272	2.1-2.2	130508-307-KW	13 May 2008	FILL	Grass over sand, pale brown, fine to medium grained, dry, loose with roots. Charcoal fragments andmetal pieces Sandy silt, dark grey, soft and wet	5.8
ABH273 ABH273	0.05-0.15 0.7-0.8	130508-292-KW 130508-293-KW	13 May 2008 13 May 2008	FILL	Grass over silty sand topsoil, brown, fine grained, dry and loose with roots Sand, yellow/pale grey with orange mottles and trace silts and several shells. Fine grained and moist	3.9 2.4
ABH273	0.7-0.8	130508-294-KW Field Blind Replicate Sample of 130508-293-KW	13 May 2008	FILL	Sand, yellow/pale grey with orange mottles and trace silts and several shells. Fine grained and moist	2.4
ABH274 ABH274	0.1-0.3 0.5-0.6	130508-289-KW 130508-290-KW	13 May 2008 13 May 2008	FILL FILL	Crushed sandstone, orange/brown, course grained with clay and moist Sand, dark brown, fine to medium grained, loose and moist	4.2 2.9
ABH274 ABH275	2-2.1 0-0.2	130508-291-KW 130508-285-KW	13 May 2008 13 May 2008	SAND FILL	Sand, pale grey, fine to medium grained, loose, moist with shells. Saturated from 1.4-2.5m Grass over silty sand, brown, fine grained, loose, moist with roots	2.7 2.8
ABH275	0.8-1.2	130508-286-KW	13 May 2008	FILL	Sand, yellow, fine to medium grained, moderately turbid, dense, large shells and moist	8.5
ABH275 ABH275	0.8-1.2 0.8-1.2	130508-287-KW Field Blind Replicate Sample of 130508-286-KW 130508-288-KW Split Field Duplicate of 130508-286-KW	13 May 2008 13 May 2008	FILL FILL	Sand, yellow, fine to medium grained, moderately turbid, dense, large shells and moist Sand, yellow, fine to medium grained, moderately turbid, dense, large shells and moist	8.5 8.5
ABH276	0.05-0.25	130508-282-KW	13 May 2008	FILL	Sand, brown, fine to medium grained, gravels and ash (black/grey/white), dry to moist and foose	4.2
ABH276 ABH276	0.8-1 1.2-1.4	130508-283-KW 130508-284-KW	13 May 2008 13 May 2008	FILL FILL	Sand, brown, fine to medium grained, gravels and ash (black/grey/white), dry to moist and loose Sand, yellow, medium grained, moderately detoe, moist and shells	2.9 5.6
ABH277 ABH277	0.2-0.4 0.2-0.4	130508-278-KW 130508-279-KW Field Blind Replicate Sample of 130508-278-KW	13 May 2008 13 May 2008	FILL	Sand, yellow, fine to medium grained, loose and moist with shells and rootlets Sand, yellow, fine to medium grained, loose and moist with shells and rootlets	-
ABH277	1.1-1.2	130508-280-KW	13 May 2008	FILL	Sandy clayey silt, dark brown/black, strong H2S odour	6.2
ABH277 ABH278	2.1-2.2 0-0.2	130508-281-KW 120508-276-KW	13 May 2008 13 May 2008	FILL FILL	Silty clayey sand, fine grained, dark brown, soft and saturated with H2S odour Grass over silty sand topsoil, dark brown, soft, fine grained and moist	4.5 12.4
ABH278 ABH279	0.8-1	120508-277-KW 130508-319-KW	13 May 2008 13 May 2008	FILL FILL	Silty sand, grey, fine to medium grained, moderately dense and moist with shells Grass over sandy topsoil, dark brown, loose, dry with nots	17
ABH279 ABH279	0.8-0.9	130508-320-KW	13 May 2008	FILL	Sand and silt layers, brown, grey with shells	0.5
ABH279 ABH280	1.4-1.6 0-0.2	130508-321-KW 130508-299-KW	13 May 2008 13 May 2008	SAND FILL	Sand, pale grey, medium grained, wet, dense with trace silt and shells Grass over sandy topsoil, brown, fine to medium grained, dry and loose	12 3.3
ABH280	0.5-0.6	130508-300-KW	13 May 2008	FILL	Clay, brown/grey/orange mottles, gravels and very stiff	6.5
ABH280 ABH281	2.5-2.6 0-0.2	130508-301-KW 130508-302-KW	13 May 2008 13 May 2008	SAND FILL	Sand, pale grey, fine to medium grained, loose, moist with shells Grass over unknown due to core loss	10.2 3.8
ABH281 ABH282	1.4-1.5 0-0.2	130508-303-KW 130508-296-KW	13 May 2008 13 May 2008	FILL FILL	Silty sand, fine to medium grained, loos and moist to wet. Grading through brown/grey/yellow and grey. Wet from 1.4m Grass over silty sand topsoil, dark brown, moist with routlets	3.4 3.4
ABH282 ABH282	1.3-1.4	130508-297-KW	13 May 2008	FILL SILTY SAND	Sand, pale grey, with dark brown, fine to course grained, moderately been and moist with silt lenses, orange mottles and shells Silty clayey sand, grey, moist and soft	6
ABH282 ABH283	2.6-2.8 0-0.2	130508-298-KW 150508-381-KW	13 May 2008 15 May 2008	SILTY SAND FILL	Silty clayey sand, grey, moist and soft Grass over silty clayey sand topsoil, dark brown, firm, dry to moist with roots and charcoal	1.5 10.3
ABH283 ABH283	0.5-0.6 1.8-2	150508-382-KW 150508-383-KW	15 May 2008 15 May 2008	FILL SAND	Sand, pale yellow, grading to grey, fine to medium grained, loose and moist. Wet at 1.5m	4.9 6.8
ABH284	0-0.15	150508-384-KW	15 May 2008	FILL	Sand, pale grey, medium grained, moderately dense and wet with shells Grass over silty top soil, dark brown, firm, dry with roots	5.3
ABH284 ABH284	1.3-1.6	150508-385-KW 150508-386-KW Field Blind Replicate Sample of 150508-385-KW	15 May 2008 15 May 2008	FILL FILL	Sand, yellow, fine to medium grained, orange mottles, shells and wet from 1.4m Sand, yellow, fine to medium grained, orange mottles, shells and wet from 1.4m	3.4
ABH284 ABH284	1.3-1.6	150508-387-KW Split Field Duplicate of 150508-385-KW 150508-388-KW	15 May 2008 15 May 2008	FILL SILTY SAND	Sand, yellow, fine to medium grained, orange mottles, shells and wet from 1.4m Silty clayey sand, dark brown, soft and wet with shells	3.4
ABH285	0-0.2	150508-389-KW	15 May 2008	FILL	Silty clayey sand, dark brown, soft and wer with shells Bark over silty sand topsoil, dark brown, dry, loose with roots	6
ABH285 ABH286	0.6-0.7 0.1-0.3	150508-390-KW 150508-391-KW	15 May 2008 15 May 2008	FILL FILL	Bark over silty sand topsoid, dark brown, dry, honce with roots Sand, pale grey with orange motiles and shells, fine to medium guined, honce to dense and moist. Wet at 1.4m Sand, yellow, first to medium grained, day, honce, shelfs and orange motiles. Ash at 0.7m	4.5 2.4
ABH286	0.9-1	150508-392-KW	15 May 2008	FILL	Sand, yellow, fine to medium grained, dry, loose, shells and orange mottles. Ash at 0.3m	7.1
ABH286 ABH286	23-25 23-25	150508-393-KW 150508-394-KW Field Blind Replicate Sample of 150508-393-KW	15 May 2008 15 May 2008	SILTY SAND SILTY SAND	Silty sand, grey, fine to medium grained, moderatley dense, wet with rootlets Silty sand, grey, fine to medium grained, moderatley dense, wet with rootlets	8.2 8.2
ABH287	0-0.4	150508-378-KW	15 May 2008	FILL	Grass over sitty topsoil, brown, fine grained, dry, loose with rootlets	6.9
ABH287 ABH287	0-0.4 1.6-1.7	150508-379-KW Field Blind Replicate Sample of 150508-378-KW 150508-380-KW	15 May 2008 15 May 2008	FILL FILL	Grass over silty topsoil, brown, fine grained, dry, loose with rootlets Sand, pale grey, silt lenses and orange mottles, shells, fine to medium grained, moist at depth and wet from 1.3m	6.9 5.3
ABH288 ABH288	0-0.2 0.7-0.8	150508-373-KW 150508-374-KW	15 May 2008 15 May 2008	FILL FILL	Grass over sitry sand topsoil, dark brown, fine grained, moist and rootlets Sand, pale grey, fine to medium grained, loose and moist with shells	6.6 3.4
ABH288	2.7-2.8	150508-375-KW	15 May 2008	SILTY CLAY	Silty clay, dark brown, soft and moist	4.2
ABH289 ABH289	0-0.3 0-0.3	150508-370-KW 150508-371-KW Field Blind Replicate Sample of 150508-370-KW	15 May 2008 15 May 2008	FILL FILL	Grass over silty clay topsoil, dark brown, moist with rootlets Grass over silty clay topsoil, dark brown, moist with rootlets	10.3 10.3
ABH289	2-2.2	150508-372-KW	15 May 2008	FILL	Sand, pale grey/orange mottles, fine to medioum grained, moderately dense, moist with shells. Wet at 1.4m	6

				Table 2 (c	continued): Summary of Sample Information	
Location	Sample Depth	Sample Id	Date Sampled	Material Type	Material Description	PID (ppm)
AD11200	0.02	150500 250 VW	15 M 2000	EH I	SOIL SAMPLES	15.0
ABH290 ABH290	0-0.2 1.3-1.4	150508-358-KW 150508-359-KW	15 May 2008 15 May 2008	FILL	Grass over silty sand topsoil, dark brown, firm, dry with trace clay Silty clay, dark brown, firm and dry	15.2 14.4
ABH291	0.1-0.5	150508-352-KW	15 May 2008	FILL	Sand, pale brown, fine to medium grained, loose to dense, try to moist with sandstone gravels	13.3
ABH291	0.1-0.5	150508-353-KW Field Blind Replicate Sample of 150508-352-KW	15 May 2008	FILL	Sand, pale brown, fine to medium grained, loose to dense, dry to moist with sandstone gravels	13.3
ABH291	0.1-0.5	150508-354-KW Split Field Duplicate of 150508-352-KW	15 May 2008	FILL	Sand, pale brown, fine to medium grained, loose to dense, dry to moist with sandstone gravels	13.3
ABH291	1.3-1.4	150508-355-KW	15 May 2008	FILL	Silty clay sand, brown, soft, moist with shells	14.2
ABH291	2.7-2.8	150508-356-KW	15 May 2008	FILL	Ash waste, black/white, loose and wet	14.6
ABH291	4-4.2	150508-357-KW	15 May 2008	SAND	Sand with trace clay, brown, fine grained and moist to wet	15.3
ABH292	0.8-0.9	130508-325-KW 130508-326-KW	13 May 2008	FILL	Sand, yellow, fine to medium grained, moist and loose with ash gravels at 0.8-0.9m	5.1
ABH292 ABH292	1.1-1.2	130508-326-KW 130508-327-KW	13 May 2008 13 May 2008	FILL	Silty sand, yellow, fine to medium grained, with shells and as gravels Clayey silt with trace sands, black, dense and moist with ash wast, glass and gravels. Refusal on sandstone fill at 1.9mBGL	7.4
ABH293	0.4-0.5	130508-321-KW 130508-328-KW	13 May 2008	FILL	Craspey sin with take sands, brack, ucine and more sin san wast, grass and gravers. Refusal on sandstone in at 1.7mbOL Crushed sandstone (white/brown), brown with silt (alex and ash at 0.40.5m	1.4
ABH293	1.3-1.4	130508-329-KW	13 May 2008	FILL	Silty sand, brwon/grey with charcoal	3.8
ABH293	2.1-2.2	130508-330-KW	13 May 2008	SILTY CLAY	Silty clay, dark grey, firm and moist with shells	6
ABH294	0-0.2	150508-367-KW	15 May 2008	FILL	Grass over silty clay sand, dark brown, moist with roots	14.9
ABH294	0.5-0.6	150508-368-KW	15 May 2008	FILL	Silty clay, brown/grey, firm and dry with rootlets	11.1
ABH294	2-2.2	150508-369-KW	15 May 2008	FILL	silty clay, dark grey, soft and wet	11.5
ABH295 ABH295	0-0.2 1.2-1.4	130508-322-KW 130508-323-KW	13 May 2008 13 May 2008	FILL	Grass over silty sand topsoil, fine grained, dry and loose with roots Sand, yellow, fine to medium grained, loose and dry with shells. Moist at 1.4m. Wet at 1.6m with silt lenses	6.9 4.2
ABH295 ABH295	1.2-1.4	130508-323-KW 130508-324-KW Field Blind Replicate Sample of 130508-323-KW	13 May 2008 13 May 2008	FILL	Sand, yellow, fine to medium grained, loose and dry with shells. Moist at 1.4m. Wet at 1.6m with silt lenses Sand, yellow, fine to medium grained, loose and dry with shells. Moist at 1.4m. Wet at 1.6m with silt lenses	4.2
ABH295 ABH296	0-0.2	130508-324-KW Field Blind Replicate Sample of 130508-323-KW 120508-261-KW	13 May 2008 12 May 2008	FILL	Sand, yellow, fine to medium grained, loose and dry with shells. Moist at 1.4m. Wet at 1.6m with silt lenses Grass over silty topsoil, dark brown, dense and moist with roots	7.2
ABH296	0.4-0.5	120508-261-KW	12 May 2008	FILL	Silty sand, dark brown, fine grained, dense and moist	3.3
ABH296	2.6-2.8	120508-263-KW	12 May 2008	SAND	Sand, pale grey, fine to medium grained, loose to moderately dense, moist with trace silt lenses and roots	11.4
ABH297	0.9-1.0	090508-166-KW	09 May 2008	FILL	Silty sand, dark grey, fine grained, loose, dry and odourless	-
ABH297	0.1-0.2	090508-164-KW	09 May 2008	FILL	Sand, dark brown, fine to medium grained, loose and dry with gravels and shell fragments	0
ABH297	0.5-0.55	090508-165-KW	09 May 2008	FILL	Sand, dark brown, fine to medium grained, loose and dry with gravels and shell fragments	1.1
ABH297	0.9-1	090805-166-KW	09 May 2008	FILL	Sand, yellow, fine grained, loose, dry and odourless	1.4
ABH297	1.2-1.3	090508-181-KW	09 May 2008	SANDSTONE	Sanstone, yellow/white/orange, course grained, moist and odourless. Refusal on sandstone bedrock at 1.3mBGL	1.6
ABH298	0.1-0.2	090508-167-KW	09 May 2008	FILL	Sand, brown, fine to medium grained, looseand dry with gravels, shells and trace clay	0.3
ABH298 ABH299	1.4-1.5 0.1-0.2	090508-184-KW 090508-168-KW	09 May 2008 09 May 2008	FILL	Sand, yellow, fine to medium grained, loose and dry. Refusal on sandstone at 1.5mBGL Sand, brown, fine to medium grained, loose, dry with gravels, shells and charcoal	0.8
ABH299	0.5-0.6	090508-169-KW	09 May 2008	FILL	Sand, grey/brown, fine grained, loose, dry to moist and odourless	1.6
ABH299	1-1.1	090508-170-KW	09 May 2008	FILL.	Sand, Pellow, fine grained, losses, uty to most an econiciss Sand, Pellow, fine grained, dense, dry and odourless	0.2
ABH299	1.2-1.3	090508-182-KW	09 May 2008	FILL	Sitty sand, dark grey, fine grained, dry, loose and odourless	1.2
ABH299	1.4-1.5	090508-183-KW	09 May 2008	FILL	Sandstone, yellow/orange, course grained and moist. Refusal on sandstone at 1.5mBGL	-
ALG201	0.4-0.5	120508-267-KW	12 May 2008	FILL	Sand, brown, fine to medium grained, moist, loose with roots and trace silt	5.5
ALG201	0.7-0.8	120508-268-KW	12 May 2008	FILL	Silty sand, brown, fine grained, dense and moist	11.2
ALG201	1.4-1.5	120508-269-KW	12 May 2008	SAND	Sand, pale grey, fine to medium grained, moderately dense with silt lenses. Saturated from 1.5-2.6m. H2S odour at 2.0m	6.5
ALG202	0.2-0.4	120508-270-KW	12 May 2008	FILL	Sand, pale brown, fine grained, dry and loose with sandstone fragments (white), minor coal fragments. Orange/red mottles	9.4
ALG202	1.1-1.3	120508-271-KW	12 May 2008	FILL	Sand, pale brown, fine grained, dry and loose with sandstone fragments (white), minor coal fragments. Orange/red mottles	4.8
ALG202 ALG203	1.1-1.3 0-0.2	120508-272-KW Field Blind Replicate Sample of 120508-271-KW 130508-317-KW	12 May 2008 12 May 2008	FILL	Sand, pale brown, fine grained, dry and loose with sandstone fragments (white), minor coal fragments. Orange/red mottles Grass over silty sand, topsoil, dark brown, fine grained, loose, dry to moist	4.8 8.3
ALG203	0.8-1	130508-317-KW 130508-318-KW	12 May 2008	FILL	Sand, yellow, medium grained, loose, moist with shells and silt lenses, orange mottles and wet at 1.5m	8.2
ALG203	0-0.2	150508-376-KW	15 May 2008	FILL	Saine, yeriow, including grained, roose, moust with saints as six tenses, saing; moutes and were at 1.5m	4
ALG204	1.6-1.7	150508-377-KW	15 May 2008	FILL	Sand, yellow, fine to medium grained, loose, dry, shells. Wet at 1.4m	3.6
ALG205	0-0.15	150508-363-KW	15 May 2008	FILL	Grass on silty sand, dark brown, firm, dry to moist	10.2
ALG205	1.1-1.2	150508-364-KW	15 May 2008	FILL	Sand, pale grey, fine to medium grained, moist, sandstone gravels with charcoal and ash	15.9
ALG205	2.6-2.8	150508-365-KW	15 May 2008	FILL	Crushed sandstone, grey and white	13.3
ALG205	3.5-3.6	150508-366-KW	15 May 2008	SILTY CLAY	Silty clay, shells, moist to wet with H2S odour	10.5
AMW201	0.1-0.2	120508-257-KW	12 May 2008	FILL	Sand, pale brown, fine grained, moderately dense, moist with gravels	7.3
AMW201 AMW201	0.9-1.2 0.9-1.2	120508-258-KW 120508-259-KW Field Blind Replicate Sample of 120508-258-KW	12 May 2008 12 May 2008	SAND SAND	Sand, pale grey, fine to medium grained, moist with silt lenses	2.1
AMW201	0.9-1.2	120508-259-KW Field Blind Replicate Sample of 120508-258-KW 120508-260-KW Split Field Duplicate of 120508-258-KW	12 May 2008 12 May 2008	SAND	Sand, pale grey, fine to medium grained, moist with silt lenses Sand, pale grey, fine to medium grained, moist with silt lenses	2.1
AMW201	0.9-1.2	070508-65-KW	07 May 2008	FILL	Sand, pare grey, time to mentum grained, moist with sint tenses Silty sand, pale brown, fine grained, dense, moist with sandstone gravels, tiles and no odour	0.2
AMW202	0.4-0.5	070508-66-KW	07 May 2008	FILL	Sirry same, pare torown, mile granted, uerner, monst with sandstone gravers, tres and no doord	0.2
AMW203	0.25-0.35	090508-188-KW	09 May 2008	FILL	Ash fill, black gravels with sand	1.1
AMW203	0.7-0.8	090508-189-KW	09 May 2008	FILL	Ash waste, black and dry	1.5
AMW203	1.9-2	090508-190-KW	09 May 2008	FILL	Sand, pale brown/yellow, fine to medium grained, moist to wet at 1.4m. Shells and H2S odour	2.8
AMW204	0-0.1	080508-118-KW	09 May 2008	FILL	Grass over silty sand top soil, dark brown, fine grained, loose, dry to moist with roots	3.1
AMW204	0.9-1	080508-119-KW	08 May 2008	FILL	Silty clay, brown, soft and moist	3.3
AMW204	2.6-2.8	080508-120-KW	08 May 2008	SAND	Sand, grey, fine to medium grained, dense and wet	0.4
AMW205 AMW205	0.1-0.2	080508-155-KW 080508-156-KW	08 May 2008 08 May 2008	FILL	Sand, yellow, fine to medium grained, loose to moderate density and moist	3.3
AMW205 AMW205	2-2.2	080508-156-KW 080508-157-KW	08 May 2008 08 May 2008	FILL SAND	Silty clay, brown, firm and moist Sand, pale grey, fine grained, dense and wet with shells. Refusal at 2.2mBGL on sandstone	2.5
AMW205 AMW206	0.2-0.4	080508-15 /-KW 150508-360-KW	15 May 2008	FILL	Sand, pale grey, fine grained, dense and wet with shells. Refusal at 2.2mBGL on sandstone Sand, yellow, fine grained, dense, moist, grading to pale grey with silt lenses	12.9
AMW206	0.2-0.4	150508-361-KW Field Blind Replicate Sample of 150508-360-KW	15 May 2008 15 May 2008	FILL	Sand, yellow, fine grained, dense, moist, grading to pale grey with silt lenses Sand, yellow, fine grained, dense, moist, grading to pale grey with silt lenses	12.9
AMW206	1.8-2	150508-362-KW	15 May 2008	FILL	Sandy Scrow, me grantee, cross, grouping to pair, gry with an interest Sandy sity clay, dark brown, soft and wet at 1.4m. Becoming grey at 1.9m	10.7
AMW207	0.2-0.4	120508-218-KW	12 May 2008	FILL	Silty sand topsoil, brown, dry, losse with rootlets	1.2
AMW207	0.5-0.7	120508-219-KW	12 May 2008	FILL	Sand fill, fine to medium grained, alternating sand layers. Dark brown/grey/pale brown/grey. Slightly moist with minor ash throughout fill. Metal shavings at 0.6m	1.9
AMW207	1.4-1.5	120508-220-KW	12 May 2008	FILL	Sandy clay to clayey sand, pale brown/orange to dark brown, moist and dense with ash gravels at 1.4-1.5m	4
AMW207	1.9-2	120508-221-KW	12 May 2008	FILL	Clayey sand, brown, wet, fine to medium grained, silt layers with H2S odour	3.7
AMW207	2.6-2.8	120508-222-KW	12 May 2008	FILL	Silty clay, dark grey, soft and wet with shells	13

			1		ntinued): Summary of Sample Information	lama /
Location	Sample Depth	Sample Id	Date Sampled	Material Type	Material Description SOIL SAMPLES	PID (ppm)
BBH401	0.2-0.4	280408-01-KW	28 Apr 2008	FILL	SOIL SAMPLES Sand, medium grained, white/brown, dry, odourless	1.9
BBH401	0.5-0.6	280408-02-KW	28 Apr 2008	FILL	Sand, white/pale brown, loose, possible thin peat with shells grading to dark brown/grey. Moist at 1.2m	10.3
BBH401	1.1-1.2	280408-03-KW	19 Jun 2008	FILL	Sand, white/pale brown, loose, possible thin peat with shells grading to dark brown/grey. Most at 1.2m	6.1
BBH401	1.8-2	280408-04-KW	19 Jun 2008	SANDY SILT	Sandy clay silt, dark grey, organics, some shells, dense and wet	10.5
BBH402	0.1-0.3	280408-05-KW	28 Apr 2008	FILL	Grass over sandy clay topsoil, brown, roots, dry and loose	15.1
BBH402	0.5-0.6	280408-06-KW	28 Apr 2008	FILL	Gravelly sand fill, brown, loose, dry to moist, ash (black) with sandstone fragments	10.6
BBH402	0.8-0.9	280408-07-KW	28 Apr 2008	FILL	Sand, light to dark brown, moderately dense, fine to medium grained, coal/ash (small air bubbles) at 0.8-0.9m. Dry to moist	7.5
BBH402	1.3-1.4	280408-08-KW	28 Apr 2008	FILL	Silty sand, trace clay, black/dark brown, shells with organic odour. Very dense, fine grained and moist	13.4
BBH402	2.6-2.8	280408-09-KW	28 Apr 2008	FILL	Sandy clay, black, shells, moist to wet. Dense and fine grained	1.6
BBH403	0-0.1	280408-10-KW	28 Apr 2008	FILL	Grass over silty sand topsoil, brown with rootlets	12.3
BBH403	0.5-0.7	280408-11-KW	28 Apr 2008	FILL	Becoming dark brown, shells at 0.7m	3.8
BBH403	1.1-1.4	280408-12-KW	28 Apr 2008	SAND	Becoming dark grey, silty clay lenses, organic odour	5.9
BBH403	1.1-1.4	280408-13-KW Field Blind Replicate Sample of 280408-12-KW	28 Apr 2008	SAND	Becoming dark grey, silty clay lenses, organic odour	5.9
BBH403	1.1-1.4	280408-14-KW Split Field Duplicate of 280408-12-KW	28 Apr 2008	SAND	Becoming dark grey, silty clay lenses, organic odour	5.9
BBH404	0-0.1	280408-15-KW	28 Apr 2008	FILL	Grass over sand, light grey, fine to medium grained, moist with shells, rootlets and gravels	16.6
BBH404	0.8-0.9	280408-16-KW	28 Apr 2008	FILL	Dark brown, silty sand, fine grained, gravels, organic odour, moist and dense	9.7
BBH404	1.8-1.9	280408-17-KW	28 Apr 2008	SAND	Becoming grey/orange fine to medium grained	1
BBH405	0-0.2	290408-48-KW	28 Apr 2008	FILL	Grass over clayey sand topsoil, orange/brown, medium to course grained, dry to moist, gravels and rrottets	1.9
BBH405 BBH406	0.4-0.5 0.1-0.2	290408-49-KW 290408-46-KW	28 Apr 2008 29 Apr 2008	FILL FILL	Crushed sandstone fill, white/brown/orange, course grained, moist to dry, minor black bitumen gravels. Refusal on fill.	6.6 1.8
BBH406	0.1-0.2	290408-46-KW 290408-47-KW	29 Apr 2008 29 Apr 2008	FILL	Grass over silty sand topsoil. Medium grained, light brown, moist, loose, some gravels Silty sand, darker brown, moist, dense medium grained	0
BBH406	0.6-0.8	290408-47-KW 290408-43-KW	29 Apr 2008 29 Apr 2008	FILL	Grass over silty sand, topsoil, fine grained, dark brown, moist with gravels	0.4
BBH407	0.4-0.5	290408-44-KW	29 Apr 2008 29 Apr 2008	FILL	Clayey sand, fine to medium grained, light brown/orange with crushed white sandstone and ironstone gravels, moist and dense	0.4
BBH407	1.5-1.6	290408-45-KW	29 Apr 2008	SILTY SAND	Silty sand, dark grey, fine grained, very dense, moist to wet. Wet at 1.6m.	1.2
BBH408	0-0.2	290408-50-KW	29 Apr 2008	FILL	Grass over silty sand top soil, grey/brown, roots, moist, medium grained and loose	4.9
BBH408	1.2-1.4	290408-51-KW	29 Apr 2008	SAND	Sand, grey, medium grained, moderately dense, moist, wet at 1.4m. Organic odour	9.9
BBH408	1.2-1.4	290408-52-KW Field Blind Replicate Sample of 290408-51-KW	29 Apr 2008	SAND	Sand, grey, medium grained, moderately dense, moist, wet at 1.4m. Organic odour	9.9
BBH409	0.2-0.5	290408-39-KW	29 Apr 2008	CLAYEY SAND	Dark brown, fine to medium grained, dense, moist	16.7
BBH409	0.2-0.5	290408-40-KW Field Blind Replicate Sample of 290408-39-KW	29 Apr 2008	CLAYEY SAND	Dark brown, fine to medium grained, dense, moist	16.7
BBH409	0.2-0.5	290408-41-KW Split Field Duplicate of 290408-39-KW	29 Apr 2008	CLAYEY SAND	Dark brown, fine to medium grained, dense, moist	16.7
BBH409	1.9-2	290408-42-KW	29 Apr 2008	SAND	Pale grey, medium grained, wet at 0.8m, moderately dense	3.7
BBH410	0.1-0.4	280408-25-KW	29 Apr 2008	FILL	Grass over sandy topsoil, brown/orange/yellow, fine grained with minor clay. Ash at 0.1m. Red ironstone gravels at 0.5m, black charcoal fragments throughout	11.9
BBH410	0.9-1	280408-26-KW	29 Apr 2008	FILL	Sand, dark brown, fine grained with glass, bone, moist and loose	12.6
BBH410	1.6-1.8	280408-27-KW	29 Apr 2008	CLAY	Clay, black, wet at 1.6m, plastic, organic odour, roots, shells with bacterial sheen	8.9
BBH410	2.6-2.8	280408-28-KW	28 Apr 2008	SAND	Sand, fine to medium grained, grey with shells throughout and wet	11.5
BBH411	0.2-0.4	290408-36-KW	29 Apr 2008	FILL	Clay, grey/red/orange, stiff and dry with trace sand, gravels, ironstone gravels, sandstone and shale fragments with ash at 0.8-0.9m	9.6
BBH411	0.8-0.9	290408-37-KW	29 Apr 2008	FILL	Clay, grey/red/orange, stiff and dry with trace sand, gravels, ironstone gravels, sandstone and shale fragments with ash at 0.8-0.9m	2.2
BBH411	2.5-2.6	290408-38-KW	29 Apr 2008	SILT FILL	Sand, medium grained, grey, moist and dense	0
BBH412 BBH412	0.5-0.6	280408-21-KW 280408-22-KW	29 Apr 2008	FILL	Grass overlying sandy clay topsoil, brown, rootlets, moist with charcoal pieces	12.1
BBH412	1-1.2	280408-22-KW 280408-23-KW	29 Apr 2008 29 Apr 2008	FILL.	Sand, dark brown/grey, fine grained, loose, trace clay moist silty sandy clay, black with glass and ash inclusions, ash odour	11.2 3.5
BBH412						
		200400 24 VW	20 Apr 2009			
	2.1-2.2	280408-24-KW 280408-18-KW	29 Apr 2008	SAND	Sand, grey, with trace silt and clay, moderately dense, moist and fine grained	11.2
BBH413	2.1-2.2 0-0.4	280408-18-KW	29 Apr 2008	FILL	Grass with sandy topsoil, brown, rootlets, dry with shells	12.4
BBH413 BBH413	2.1-2.2 0-0.4 1-1.3	280408-18-KW 280408-19-KW	29 Apr 2008 29 Apr 2008	FILL FILL	Grass with sandy topsoil, brown, rootlets, dry with shells Sand, grey with dark brown lenses, shells. Moist to wet	12.4 17.8
BBH413 BBH413 BBH413	2.1-2.2 0-0.4 1-1.3 1-1.3	280408-18-KW 280408-19-KW 280408-20-KW Field Blind Replicate Sample of 280408-19-KW	29 Apr 2008 29 Apr 2008 29 Apr 2008	FILL FILL FILL	Grass with sandy topsoil, brown, routlets, dry with shells Sand, grey with dark brown lenses, shells. Moist to wet Sand, sey with dark brown lenses, shells. Moist to wet	12.4 17.8 17.8
BBH413 BBH413 BBH413 BBH414	2.1-2.2 0-0.4 1-1.3 1-1.3 0.1-0.4	280408-18-KW 280408-19-KW 280408-20-KW Field Blind Replicate Sample of 280408-19-KW 020508-165-KW	29 Apr 2008 29 Apr 2008 29 Apr 2008 02 May 2008	FILL FILL FILL	Grass with sandy topsoil, brown, rootlets, dry with shells Sand, grey with dark brown lenses, shells. Moist to wet Sand, grey with dark brown lenses, shells. Moist to wet Sand, brown, trace clay, fine grained, moist with some gravels	12.4 17.8 17.8 20.1
BBH413 BBH413 BBH414 BBH414	2.1-2.2 0-0.4 1-1.3 1-1.3 0.1-0.4 0.1-0.4	280408-18-KW 280408-19-KW 280408-20-KW Field Blind Replicate Sample of 280408-19-KW 020508-168-KW 020508-168-KW Field Blind Replicate Sample of 020508-168-KW	29 Apr 2008 29 Apr 2008 29 Apr 2008 02 May 2008 02 May 2008	FILL FILL FILL FILL FILL	Grass with sandy topsoil, brown, rootlets, dry with shells Sand, grey with dark brown lenses, shells. Moist to wet Sand, grey with dark brown lenses, shells. Moist to wet Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels	12.4 17.8 17.8 20.1 20.1
BBH413 BBH413 BBH414	2.1-2.2 0-0.4 1-1.3 1-1.3 0.1-0.4	280408-18-KW 280408-19-KW 280408-19-KW 280408-20-KW Field Blind Replicate Sample of 280408-19-KW 020508-168-KW 020508-169-KW Field Blind Replicate Sample of 020508-168-KW 020508-170-KW Split Field Duplicate of 020508-168-KW	29 Apr 2008 29 Apr 2008 29 Apr 2008 02 May 2008	FILL FILL FILL	Grass with sandy topsoil, brown, rootlets, dry with shells Sand, grey with dark brown lenses, shells. Moist to wet Sand, grey with dark brown lenses, shells. Moist to wet Sand, brown, trace clay, fine grained, moist with some gravels	12.4 17.8 17.8 20.1
BBH413 BBH413 BBH414 BBH414 BBH414 BBH414	2.1-2.2 0-0.4 1-1.3 1-1.3 0.1-0.4 0.1-0.4 0.1-0.4 1.3-1.4	280408-18-KW 280408-19-KW 280408-20-KW Field Blind Replicate Sample of 280408-19-KW 020508-168-KW 020508-168-KW Field Blind Replicate Sample of 020508-168-KW	29 Apr 2008 29 Apr 2008 29 Apr 2008 02 May 2008 02 May 2008 02 May 2008 02 May 2008 02 May 2008	FILL FILL FILL FILL FILL FILL FILL FILL	Grass with sandy topsoil, brown, rootlets, dry with shells Sand, grey with dark brown lenses, shells. Moist to wet Sand, grey with dark brown lenses, shells. Moist to wet Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels	12.4 17.8 17.8 20.1 20.1 20.1 16.7
BBH413 BBH413 BBH414 BBH414 BBH414	2.1-2.2 0-0.4 1-1.3 1-1.3 0.1-0.4 0.1-0.4 0.1-0.4	280408-18-KW 280408-19-KW 280408-20-KW Field Blind Replicate Sample of 280408-19-KW 020508-169-KW Field Blind Replicate Sample of 020508-168-KW 020508-170-KW Field Blind Replicate Sample of 020508-168-KW 020508-171-KW Split Field Duplicate of 020508-168-KW 020508-171-KW	29 Apr 2008 29 Apr 2008 29 Apr 2008 02 May 2008 02 May 2008 02 May 2008 02 May 2008	FILL FILL FILL FILL FILL FILL	Grass with sandy topsoil, brown, routlets, dry with shells Sand, grey with dark brown lenses, shells. Moist to wet Sand, grey with dark brown lenses, shells. Moist to wet Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels	12.4 17.8 17.8 20.1 20.1 20.1
BBH413 BBH413 BBH414 BBH414 BBH414 BBH414 BBH414 BBH415	2.1-2.2 0-0.4 1-1.3 1-1.3 0.1-0.4 0.1-0.4 0.1-0.4 1.3-1.4 0.1-0.3	280408-18-KW 280408-19-KW 280408-20-KW Field Blind Replicate Sample of 280408-19-KW 020508-168-KW 020508-169-KW Field Blind Replicate Sample of 020508-168-KW 020508-170-KW Split Field Duplicate of 020508-168-KW 020508-171-KW 300408-78-KW	29 Apr 2008 29 Apr 2008 29 Apr 2008 02 May 2008 02 May 2008 02 May 2008 02 May 2008 02 May 2008 30 Apr 2008	FILL FILL FILL FILL FILL FILL FILL FILL	Grass with sandy topsoil, brown, routlets, dry with shells Sand, grey with dark brown lenses, shells. Moist to wet Sand, grey with dark brown lenses, shells. Moist to wet Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, wellow, fine to medium grained, loose, shells, moist, silt lenses, wet at 1.5m Clayey sand, orange/brown/grey, moist, medium grained, moderately densee with crushed sandstone	12.4 17.8 17.8 20.1 20.1 20.1 16.7 4.7
BBH413 BBH413 BBH414 BBH414 BBH414 BBH414 BBH415 BBH415	2.1-2.2 0-0.4 1-1.3 1-1.3 0.1-0.4 0.1-0.4 0.1-0.4 1.3-1.4 0.1-0.3 0.9-1	280408-18-KW 280408-19-KW 280408-19-KW 280408-20-KW Field Blind Replicate Sample of 280408-19-KW 020508-168-KW 020508-169-KW Field Blind Replicate Sample of 020508-168-KW 020508-170-KW Split Field Duplicate of 020508-168-KW 020508-171-KW 300408-78-KW 300408-79-KW	29 Apr 2008 29 Apr 2008 29 Apr 2008 02 May 2008 02 May 2008 02 May 2008 02 May 2008 02 May 2008 30 Apr 2008 30 Apr 2008	FILL FILL FILL FILL FILL FILL FILL FILL	Grass with sandy topsoil, brown, routlets, dry with shells Sand, grey with dark brown lenses, shells. Moist to wet Sand, sery with dark brown lenses, shells. Moist to wet Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, yellow, fine to medium grained, loose, shells, moist, silt lenses, wet at 1.5m Clayey sand, orange brown/grey, moist, medium grained, moderately dense with crushed sandstone Silty sand, dark grey, medium grained, moderately dense, moist woth organic odour	12.4 17.8 17.8 20.1 20.1 20.1 16.7 4.7
BBH413 BBH413 BBH414 BBH414 BBH414 BBH414 BBH414 BBH415 BBH415 BBH415	2.1-2.2 0-0.4 1-1.3 0.1-0.4 0.1-0.4 0.1-0.4 1.3-1.4 0.1-0.3 0.9-1 2-2.1	280408-18-KW 280408-20-KW Field Blind Replicate Sample of 280408-19-KW 020508-169-KW Field Blind Replicate Sample of 280408-19-KW 020508-169-KW Field Blind Replicate Sample of 020508-168-KW 020508-170-KW Split Field Duplicate of 020508-168-KW 020508-171-KW 300408-78-KW 300408-79-KW	29 Apr 2008 29 Apr 2008 29 Apr 2008 02 May 2008 02 May 2008 02 May 2008 02 May 2008 02 May 2008 30 Apr 2008 30 Apr 2008 30 Apr 2008	FILL FILL FILL FILL FILL FILL FILL SILTY SAND SILTY SAND	Grass with sandy topsoil, brown, rootlets, dry with shells Sand, grey with dark brown lenses, shells. Moist to wet Sand, grey with dark brown lenses, shells. Moist to wet Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, yellow, fine to medium grained, loose, shells, moist, silt lenses, wet at 1.5m Clayey sand, orange-brown/grey, moist, medium grained, moderately dense with crushed sandstone Silty sand, dark grey, medium grained, moderately dense, moist woth organic odour Silty sand, dark grey, medium grained, moderately dense, wet with 142S odour at 2.6m	12.4 17.8 17.8 20.1 20.1 20.1 16.7 4.7 4.7
BBH413 BBH413 BBH414 BBH414 BBH414 BBH414 BBH415 BBH415 BBH415 BBH415 BBH417	2.1-2.2 0-0.4 1-1.3 1-1.3 0.1-0.4 0.1-0.4 0.1-0.4 1.3-1.4 0.1-0.3 0.9-1 2-2.1 0.2-0.4	280408-18-KW 280408-19-KW 280408-20-KW Field Blind Replicate Sample of 280408-19-KW 020508-168-KW 020508-169-KW Field Blind Replicate Sample of 020508-168-KW 020508-170-KW Split Field Duplicate of 020508-168-KW 020508-171-KW 300408-78-KW 300408-78-KW 30408-80-KW 290408-29-KW	29 Apr 2008 29 Apr 2008 29 Apr 2008 02 May 2008 02 May 2008 02 May 2008 02 May 2008 30 Apr 2008 30 Apr 2008 30 Apr 2008 30 Apr 2008 29 Apr 2008	FILL FILL FILL FILL FILL FILL FILL FILL	Grass with sandy topooil, brown, routlets, dry with shells Sand, grey with dark brown lenses, shells. Moist to wet Sand, grey with dark brown lenses, shells. Moist to wet Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, plow, fine to medium grained, moist with some gravels Sand, yellow, fine to medium grained, loose, shells, moist, silt lenses, wet at 1.5m Clayey sand, orange/brown/grey, moist, medium grained, moderately dense with crushed sandstone Silty sand, dark grey, medium grained, moderately dense, we towth organic odour Silty sand, dark grey, medium grained, moderately dense, we tow the H2S odour at 2.6m Clayey silty sand, grey/brown with ash and glass fragments, moist and dense	12.4 17.8 17.8 20.1 20.1 20.1 16.7 4.7 4.7 4.3
BBH413 BBH413 BBH413 BBH414 BBH414 BBH414 BBH414 BBH415 BBH415 BBH415 BBH415 BBH417 BBH417 BBH417 BBH417	2.1-2.2 0-0.4 1-1.3 1-1.3 0.1-0.4 0.1-0.4 0.1-0.4 1.3-1.4 0.1-0.3 0.9-1 2-2.1 0.2-0.4 1.1-1.2 2-2.1 0.1-0.2	280408-18-KW 280408-19-KW 280408-20-KW Field Blind Replicate Sample of 280408-19-KW 020508-169-KW Field Blind Replicate Sample of 20508-168-KW 020508-169-KW Field Blind Replicate Sample of 020508-168-KW 020508-170-KW Split Field Duplicate of 020508-168-KW 020508-171-KW 300408-78-KW 300408-78-KW 300408-80-KW 290408-30-KW 290408-30-KW 290408-31-KW 290408-66KW	29 Apr 2008 29 Apr 2008 29 Apr 2008 02 May 2008 02 May 2008 02 May 2008 02 May 2008 30 Apr 2008 30 Apr 2008 30 Apr 2008 29 Apr 2008 29 Apr 2008 29 Apr 2008	FILL FILL FILL FILL FILL FILL FILL FILL	Grass with sandy topooil, brown, routlets, dry with shells Sand, grey with dark brown lenses, shells. Moist to wet Sand, grey with dark brown lenses, shells. Moist to wet Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Clayey sand, orange/brown/grey, moist, medium grained, moderately dense with vershed sandstone Silty sand, dark grey, medium grained, moderately dense, moist worth organic odour Silty sand, dark grey, medium grained, moderately dense, we with H25 dour at 2-6m Clayey silty sand, getybrown with sah and glass fragments, moist and dense Black silt, fibrous root mass, organic odour, gravels (possible ash), moist to wet Silty sand, dark grey, moist to wet, moderatelt dense, organic odour. Shells and rootlets from 2.3m Grass over silty sand topsoil, fine grained, moist, roots and loose	12.4 17.8 17.8 20.1 20.1 20.1 16.7 4.7 4.7 4.3 0 5 3
BBH413 BBH413 BBH414 BBH414 BBH414 BBH414 BBH415 BBH415 BBH415 BBH415 BBH417 BBH417 BBH417 BBH417 BBH417	2.1-2.2 0-0.4 1-1.3 1-1.3 0.1-0.4 0.1-0.4 1.3-1.4 0.1-0.3 0.9-1 2-2.1 0.2-0.4 1.1-1.2 2-2.1 0.1-0.2 0.8-0.9	280408-18-KW 280408-19-KW 280408-19-KW 020508-19-KW Field Blind Replicate Sample of 280408-19-KW 020508-169-KW Field Blind Replicate Sample of 020508-168-KW 020508-169-KW Field Blind Replicate Sample of 020508-168-KW 020508-170-KW Split Field Duplicate of 020508-168-KW 020508-171-KW 300408-78-KW 300408-78-KW 300408-80-KW 290408-30-KW 290408-31-KW 290408-31-KW 290408-36-KW	29 Apr 2008 29 Apr 2008 29 Apr 2008 02 May 2008 02 May 2008 02 May 2008 02 May 2008 30 Apr 2008 30 Apr 2008 30 Apr 2008 29 Apr 2008 29 Apr 2008 29 Apr 2008 29 Apr 2008 29 Apr 2008	FILL FILL FILL FILL FILL FILL FILL FILL	Grass with sandy topsoil, brown, routless, dry with shells Sand, grey with dark brown lenses, shells. Moist to wet Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, pellow, fine to medium grained, moles with some gravels Sand, yellow, fine to medium grained, moderately dense, with crushed sandstone Silty sand, dark grey, medium grained, moderately dense, with crushed sandstone Silty sand, dark grey, medium grained, moderately dense, with with organic odour Silty sand, dark grey, medium grained, moderately dense, with with Sodour at 2.6m Clayey silty sand, grey/brown with ash and glass fragments, moist and dense Black silt, fibrous root mass, organic odour, gravels (possible ash), moist to wet Silty sand, dark grey, moist to wet, moderately dense, organic odour. Shells and rootlets from 2.3m Grass over silty sand topsoil, fine grained, moist, roots and loose Clayey silt, dark brown, soft, dense. Layered grey/orange silt from 0.8 to 0.9m	12.4 17.8 17.8 20.1 20.1 20.1 16.7 4.7 4.7 4.3 0 5 3 -
BBH413 BBH413 BBH413 BBH414 BBH414 BBH414 BBH414 BBH415 BBH415 BBH415 BBH417 BBH417 BBH417 BBH417 BBH418 BBH418	2.1-2.2 0-0.4 1-1.3 1-1.3 0.1-0.4 0.1-0.4 0.1-0.4 1.3-1.4 0.1-0.3 0.9-1 2-2.1 0.2-0.4 1.1-1-2 2-2.1 0.1-0.2 0.8-0.9 1.5-1.6	280408-18-KW 280408-19-KW 280408-19-KW 280408-20-KW Field Blind Replicate Sample of 280408-19-KW 020508-168-KW 020508-169-KW Field Blind Replicate Sample of 020508-168-KW 020508-170-KW Split Field Duplicate of 020508-168-KW 020508-171-KW 300408-78-KW 300408-78-KW 300408-78-KW 290408-29-KW 290408-30-KW 290408-30-KW 290408-31-KW 290408-31-KW 290408-66-KW 290408-66-KW	29 Apr 2008 29 Apr 2008 29 Apr 2008 02 May 2008 02 May 2008 02 May 2008 02 May 2008 30 Apr 2008 30 Apr 2008 29 Apr 2008 29 Apr 2008 29 Apr 2008 29 Apr 2008 29 Apr 2008 29 Apr 2008	FILL FILL FILL FILL FILL FILL FILL FILL	Grass with sandy topsoil, brown, rootlets, dry with shells Sand, grey with dark brown lenses, shells. Moist to wet Sand, grey with dark brown lenses, shells. Moist to wet Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, pellow, fine to medium grained, loose, shells, moist, silt lenses, wet at 1.5m Clayey sand, orangebrown/grey, moist, medium grained, moderately dense with crushed sandstone Silty sand, dark grey, medium grained, moderately dense, moist woth organic odour Silty sand, dark grey, medium grained, moderately dense, which H2S odour at 2.6m Clayey silty sand, greybrown with sash and glass fragments, moist and dense Black silt, fibrous root mass, organic odour, gravels (possible ash), moist to wet Silty sand, dark grey, moist to wet, moderatelt dense, organic odour. Shells an orotest from 2.3m Grass over silty sand topsoil, fine grained, moist, roots and loose Clayey silt, dark brown, soft, dense. Layered grey/orange silt from 0.8 to 0.9m Sand, pale grey, wet medium grained and dense	12.4 17.8 17.8 20.1 20.1 20.1 20.1 16.7 4.7 4.7 4.3 0 5 3 - 6 9.3
BBH413 BBH413 BBH414 BBH414 BBH414 BBH414 BBH415 BBH415 BBH415 BBH415 BBH417 BBH417 BBH417 BBH417 BBH418 BBH418 BBH418 BBH418 BBH418 BBH418	2.1-2.2 0-0.4 1-1.3 1-1.3 0.1-0.4 0.1-0.4 0.1-0.4 1.3-1.4 0.1-0.3 0.9-1 2-2.1 0.2-0.4 1.1-1.2 2-2.1 0.1-0.2 0.8-0.9 1.5-1.6 0.2-0.3	280408-18-KW 280408-19-KW 280408-19-KW 020508-168-KW 020508-169-KW Field Blind Replicate Sample of 280408-19-KW 020508-169-KW Field Blind Replicate Sample of 020508-168-KW 020508-170-KW Split Field Duplicate of 020508-168-KW 020508-170-KW Split Field Duplicate of 020508-168-KW 020508-171-KW 300408-78-KW 300408-78-KW 300408-80-KW 290408-30-KW 290408-31-KW 290408-65-KW 290408-66-KW 290408-68-KW	29 Apr 2008 29 Apr 2008 29 Apr 2008 02 May 2008 02 May 2008 02 May 2008 02 May 2008 30 Apr 2008 30 Apr 2008 30 Apr 2008 29 Apr 2008	FILL FILL FILL FILL FILL FILL FILL FILL	Grass with sandy topooil, brown, routless, dry with shells Sand, grey with dark brown lenses, shells. Moist to wet Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, yellow, fine to medium grained, moles with some gravels Sand, yellow, fine to medium grained, moles, shells, moist, silt lenses, wet at 1.5m Clayey sand, orange/brown/grey, moist, medium grained, moderately dense with crushed sandstone Silty sand, dark grey, medium grained, moderately dense, moist woth organic odour Silty sand, dark grey, medium grained, moderately dense, wet with H2S dour at 2.6m Clayey silty sand, grey/brown with ash and glass fragments, moist and dense Black silt, fibrous root mass, organic odour, gravels (possible ash), moist to wet Silty sand, dark grey, moist to wet, moderately dense, organic odour. Shells and rootlets from 2.3m Grass over silty sand topsoil, fine grained, moist, roots and loose Clayey silt, dark brown, soft, dense. Layered grey/orange silt from 0.8 to 0.9m Sand, ple grey, wet medium grained, hoose, moist with gravels coal and sandstone	12.4 17.8 17.8 20.1 20.1 20.1 20.1 4.7 4.7 4.3 0 5 3
BBH413 BBH413 BBH414 BBH414 BBH414 BBH414 BBH415 BBH415 BBH415 BBH417 BBH417 BBH417 BBH417 BBH418 BBH418 BBH418 BBH418 BBH418	2.1.2.2 0.0.4 1.1.3 1.1.3 0.1.0.4 0.1.0.4 0.1.0.4 1.3.1.4 0.1.0.3 0.9-1 2.2.1 0.2.0.4 1.1.1.2 2.2.1 0.1.0.2 0.8.0.9 1.5.1.6 0.2.0.3 0.9.0.9	280408-18-KW 280408-19-KW 280408-19-KW 200408-19-KW 020508-169-KW Field Blind Replicate Sample of 280408-19-KW 020508-169-KW Field Blind Replicate Sample of 020508-168-KW 020508-170-KW Split Field Duplicate of 020508-168-KW 020508-171-KW 300408-78-KW 300408-78-KW 300408-80-KW 290408-80-KW 290408-31-KW 290408-31-KW 290408-31-KW 290408-68-KW 290408-68-KW 290408-68-KW	29 Apr 2008 29 Apr 2008 29 Apr 2008 02 May 2008 02 May 2008 02 May 2008 03 May 2008 03 May 2008 03 May 2008 30 Apr 2008 30 Apr 2008 29 Apr 2008	FILL FILL FILL FILL FILL FILL FILL FILL	Grass with sandy topsoil, brown, rootlets, dry with shells Sand, grey with dark brown lenses, shells. Moist to wet Sand, grey with dark brown lenses, shells. Moist to wet Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, prown, trace clay, fine grained, moist with some gravels Sand, prown, trace clay, fine grained, moist with some gravels Sand, prown, trace clay, fine grained, moist with some gravels Clayey sand, orange-brown/grey, moist, medium grained, moderately dense, with crushed sandstone Silty sand, dark grey, medium grained, moderately dense, who forganic odour Silty sand, dark grey, medium grained, moderately dense, we with H23 odour a 2 cm Clayey silty sand, grey-brown with ash and glass fragments, moist and dense Black slif, fibrous root mass, organic odour, gravels (possible ash), moist to wet Silty sand, dark grey, moist to wet, moderatel dense, organic odour. Shells and rootlets from 2.3m Grass over silty sand topsoil, fine grained, moist, roots and loose Clayey silt, dark brown, soft, dense. Layeved grey/orange silt from 0.8 to 0.9m Sand, pale grey, wet medium grained and dense Sand, brown/grey, fine to medium grained, loose, moist with gravels coal and sandstone Clay grey/orange, mosts, stiff with gravels	12.4 17.8 17.8 20.1 20.1 20.1 16.7 4.7 4.7 4.7 4.7 5 3
BBH413 BBH413 BBH414 BBH414 BBH414 BBH414 BBH415 BBH415 BBH415 BBH417 BBH417 BBH417 BBH417 BBH418 BBH418 BBH418 BBH418 BBH418 BBH419 BBH419	2.1-2.2 0-0.4 1-1.3 1-1.3 0.1-0.4 0.1-0.4 0.1-0.3 0.9-1 2-2.1 0.2-0.4 1.1-1.2 2-2.1 0.1-0.2 0.8-0.9 1.5-1.6 0.2-0.3 0.5-0.7 2-2.1	280408-18-KW 280408-19-KW 280408-19-KW 020508-168-KW 020508-168-KW 020508-168-KW 020508-169-KW Field Blind Replicate Sample of 280408-19-KW 020508-169-KW Field Blind Replicate Sample of 020508-168-KW 020508-170-KW Split Field Duplicate of 020508-168-KW 020508-171-KW 300408-78-KW 300408-78-KW 300408-78-KW 290408-30-KW 290408-30-KW 290408-31-KW 290408-31-KW 290408-66-KW 290408-68-KW 290408-68-KW 290408-63-KW 290408-63-KW	29 Apr 2008 29 Apr 2008 29 Apr 2008 02 May 2008 02 May 2008 02 May 2008 02 May 2008 30 Apr 2008 30 Apr 2008 30 Apr 2008 29 Apr 2008	FILL FILL FILL FILL FILL FILL FILL FILL	Grass with sandy topooil, brown, routless, dry with shells Sand, grey with dark brown lenses, shells. Moist to wet Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, prown, trace clay, fine grained, moist with some gravels Sand, plow, fine to medium grained, loose, shells, moist, silt lenses, wet at 1.5m Clayey sand, orange-brown/grey, moist, medium grained, moderately dense with crushed sandstone Silty sand, dark grey, medium grained, moderately dense, wet with H2S odour at 2.6m Clayey silty sand, grey, medium grained, moderately dense, wet with H2S odour at 2.6m Clayey silty sand, grey, predium grained, moderately dense, wet with H2S odour at 2.6m Clayey silty sand, grey, predium grained, moderately dense, with moist to wet Silty sand, dark grey, moist to wet, moderatel dense, organic odour. Shells and rootets from 2.3m Grass over silty sand topsoil, fine grained, moist, roots and loose Clayey silt, dark brown, soft, dense. Layered grey/orange silt from 0.8 to 0.9m Sand, plae grey, wet medium grained and dense Sand, brown/grey, fine to medium grained, loose, moist with gravels coal and sandstone Clay grey/orange, moist, stiff with gravels Fibrous black mass, silt, ash, rock, glass and wet	12.4 17.8 17.8 20.1 20.1 20.1 16.7 4.7 4.3 0 5 3
BBH413 BBH413 BBH414 BBH414 BBH414 BBH414 BBH415 BBH415 BBH415 BBH417 BBH417 BBH417 BBH417 BBH418 BBH418 BBH418 BBH418 BBH419 BBH419 BBH419	2.1.2.2 0.0.4 1-1.3 1-1.3 0.1.0.4 0.1-0.4 0.1-0.4 1.3-1.4 0.1-0.3 0.9-1 2-2.1 0.2-0.4 1.1-1.2 2-2.1 0.1-0.2 0.8-0.9 1.5-1.6 0.2-0.3 0.5-0.7 2-2.1 2-2.1 2-2.2	280408-18-KW 280408-19-KW 280408-19-KW 020508-169-KW Field Blind Replicate Sample of 280408-19-KW 020508-169-KW Field Blind Replicate Sample of 020508-168-KW 020508-170-KW Split Field Duplicate of 020508-168-KW 020508-170-KW Split Field Duplicate of 020508-168-KW 020508-171-KW 300408-78-KW 300408-79-KW 300408-79-KW 290408-30-KW 290408-31-KW 290408-31-KW 290408-65-KW 290408-65-KW 290408-65-KW 290408-65-KW	29 Apr 2008 29 Apr 2008 29 Apr 2008 29 Apr 2008 02 May 2008 02 May 2008 02 May 2008 03 May 2008 30 Apr 2008 30 Apr 2008 29 Apr 2008	FILL FILL FILL FILL FILL FILL FILL SILTY SAND SILTY SAND FILL FILL FILL FILL FILL FILL FILL FIL	Grass with sandy topooil, brown, routlets, dry with shells Sand, grey with dark brown lenses, shells. Moist to wet Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, prome, trace clay, fine grained, moterately dense with crushed sandstone Silva, sand, orange brown/grey, moist, medium grained, moderately dense with crushed sandstone Silty sand, dark grey, medium grained, moderately dense, moist woth organic odour Silty sand, dark grey, medium grained, moderately dense, with trushed sandstone Clayey silty sand, grey/brown with ash and glass fragments, moist and dense Black silt, fibrous root mass, organic odour, gravels (possible ash), moist to wet Silty sand, dark grey, moist to wet, moderately dense, own of the sand rootlets from 2.3m Grass over silty sand topsoil, fine grained, moist, roots and loose Clayey silt, dark brown, soft, dense. Layered grey/orange silt from 0.8 to 0.9m Sand, pale grey, wet medium grained and dense Sand, brown/grey, fine to medium grained, loose, moist with gravels coal and sandstone Clay, grey/orange, moist, stiff with gravels Fibrous black mass, silt, ash, rock, glass and wet Sand, grey with silt, shells, moist to wet and dense	12.4 17.8 17.8 20.1 20.1 20.1 16.7 4.7 4.7 4.3 0 5 3
BBH413 BBH413 BBH414 BBH414 BBH414 BBH414 BBH415 BBH415 BBH415 BBH415 BBH417 BBH417 BBH417 BBH418 BBH418 BBH418 BBH418 BBH418 BBH419 BBH419 BBH419 BBH419	2.1.2.2 0-0.4 1-1.3 1-1.3 0.1-0.4 0.1-0.4 0.1-0.3 0.9-1 2-2.1 0.2-0.4 1.1-1.2 2-2.1 0.1-0.2 0.8-0.9 1.5-1.6 0.2-0.3 0.5-0.7 2-2.1 2-2.2 0.6-0.7 2-2.1 0.6-0.8 0.6	280408-18-KW 280408-19-KW 280408-19-KW 280408-20-KW Field Blind Replicate Sample of 280408-19-KW 020508-169-KW Field Blind Replicate Sample of 020508-168-KW 020508-170-KW Split Field Duplicate of 020508-168-KW 020508-171-KW 300408-78-KW 300408-78-KW 300408-78-KW 300408-78-KW 290408-29-KW 290408-30-KW 290408-31-KW 290408-31-KW 290408-31-KW 290408-67-KW 290408-65-KW 290408-65-KW 290408-63-KW	29 Apr 2008 29 Apr 2008 29 Apr 2008 02 May 2008 02 May 2008 02 May 2008 02 May 2008 03 May 2008 30 Apr 2008 30 Apr 2008 29 Apr 2008	FILL FILL FILL FILL FILL FILL FILL FILL	Grass with sandy topsoil, brown, rootlets, dry with shells Sand, grey with dark brown lenses, shells. Moist to wet Sand, grey with dark brown lenses, shells. Moist to wet Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, plow, fine to medium grained, loose, shells, moist, silt lenses, wet at 1.5m Clayey sand, orangebrown/grey, moist, medium grained, moderately dense with crushed sandstone Silty sand, dark grey, medium grained, moderately dense, moist woth organic odour Silty sand, dark grey, medium grained, moderately dense, wet with H2S odour at 2.6m Clayey silty sand, grey, provident may a moderately dense, wetwith H2S odour at 2.6m Clayey silty sand, grey, provident of the shad glass fragments, moist and dense Black silt, fibrous root mass, organic odour, gravels (possible ash), moist to wet Silty sand, dark grey, moist to wet, moderatelt dense, organic odour. Shells and rootlets from 2.3m Grass over silty sand topsoil, fine grained, moist, roots and loose Clayey silt, dark brown, soft, dense. Layered greyforange silt from 0.8 to 0.9m Sand, palc grey, wet medium grained, and dense Sand, brown/grey, fine to medium grained, loose, moist with gravels coal and sandstone Clay greyforange, moist, stiff with gravels Fibrous black mass, silt, ash, rock, glass and wet Sand, grey with silt, shells, moist to wet and dense Grass over silty sand topsoil, fine to wet and dense Grass over silty sond topsoil, done, moist with roots	12.4 17.8 17.8 20.1 20.1 20.1 16.7 4.7 4.3 0 5 5 6 9.3 8.5 2.4 0 0 2.2 2.4
BBH413 BBH413 BBH414 BBH414 BBH414 BBH414 BBH415 BBH415 BBH415 BBH415 BBH417 BBH417 BBH417 BBH418 BBH418 BBH418 BBH419 BBH419 BBH419 BBH419 BBH419 BBH419 BBH419 BBH419 BBH419 BBH419 BBH419 BBH419 BBH419 BBH419 BBH419 BBH419	2.1-2.2 0-0.4 1-1.3 1-1.3 0.1-0.4 0.1-0.4 0.1-0.4 1.3-1.4 0.1-0.3 0.9-1 2-2.1 0.2-0.4 1.1-1.2 2-2.1 0.1-0.2 0.8-0.9 1.5-1.6 0.2-0.3 0.5-0.7 2-2.1 2-2.1 0.1-0.2 0.8-0.9 1.5-1.6 0.2-0.3 0.5-0.7 2-1.1 0.5-0.6	280408-18-KW 280408-19-KW 280408-19-KW 020508-168-KW 020508-168-KW 020508-168-KW 020508-169-KW Field Blind Replicate Sample of 280408-19-KW 020508-170-KW Split Field Duplicate of 020508-168-KW 020508-170-KW Split Field Duplicate of 020508-168-KW 020508-171-KW 300408-78-KW 300408-78-KW 300408-78-KW 290408-30-KW 290408-31-KW 290408-31-KW 290408-66-KW 290408-66-KW 290408-65-KW 290408-68-KW 290408-68-KW 290408-68-KW 290408-68-KW 290408-68-KW 290408-68-KW 020508-166-KW	29 Apr 2008 29 Apr 2008 29 Apr 2008 29 Apr 2008 02 May 2008 02 May 2008 02 May 2008 03 May 2008 30 Apr 2008 30 Apr 2008 30 Apr 2008 29 Apr 2008	FILL FILL FILL FILL FILL FILL FILL FILL	Grass with sandy topooil, brown, routless, dry with shells Sand, grey with dark brown lenses, shells. Moist to wet Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Clayey sand, orange-brown/grey, moist, medium grained, moderately dense with crushed sandstone Silty sand, dark grey, medium grained, moderately dense, moist worth organic odour Silty sand, dark grey, medium grained, moderately dense, wet with 1425 dour at 2-6m Clayey silty sand, grey, brown with sah and glass fragments, moist and dense Black silt, fibrous root mass, organic odour, gravels (possible ash), moist to wet Silty sand, dark grey, moist to wet, moderatelt dense, organic odour. Shells and rootlets from 2.3m Grass over silty sand topsoil, fine grained, moist, roots and loose Clayey silt, dark brown, soft, dense. Layered grey/orange silt from 0.8 to 0.9m Sand, pale grey, wet medium grained and dense Sand, brown/grey, fine to medium grained, loose, moist with gravels coal and sandstone Clay, grey/orange, moist, stiff with gravels Fibrous black mass, silt, sah, rock, glass and wet Sand, grey with silt, shells, moist to wet and dense Grass over silty sand top soil, dark brown, fine grained, loose, moist with shells	12.4 17.8 20.1 20.1 20.1 16.7 4.7 4.7 4.3 0 5 3 - 6 6 9.3 8.5 2.4 0 0 2.2 2.3
BBH413 BBH413 BBH414 BBH414 BBH414 BBH414 BBH414 BBH415 BBH415 BBH415 BBH417 BBH417 BBH417 BBH418 BBH418 BBH418 BBH418 BBH419 BBH419 BBH419 BBH419 BBH419 BBH419 BBH419 BBH419 BBH419 BBH419 BBH419 BBH419 BBH419 BBH419 BBH419	2.1.2.2 0.0.4 1.1.3 1.1.3 0.1.0.4 0.1.0.4 0.1.0.3 0.9.1 0.2.0.4 1.1.1.2 2.2.1 0.1.0.2 0.2.0.4 1.1.1.2 2.2.1 0.1.0.2 0.8.0.9 1.5.1.6 0.2.0.3 0.5.0.7 2.2.1 2.2.1 0.1.0.2 0.5.0.6 0.5.0.6 0.5.0.6 0.5.0.6 0.5.0.6	280408-18-KW 280408-19-KW 280408-19-KW 200408-19-KW 020508-168-KW 020508-169-KW Field Blind Replicate Sample of 280408-19-KW 020508-169-KW Field Blind Replicate Sample of 020508-168-KW 020508-170-KW Split Field Duplicate of 020508-168-KW 020508-171-KW 300408-78-KW 300408-78-KW 300408-80-KW 290408-80-KW 290408-31-KW 290408-31-KW 290408-31-KW 290408-6-KW 290408-6-KW 290408-6-KW 290408-6-KW 290408-6-KW 290408-6-KW 290408-6-KW 290408-6-KW 020508-165-KW	29 Apr 2008 29 Apr 2008 29 Apr 2008 02 May 2008 02 May 2008 02 May 2008 03 May 2008 03 May 2008 30 Apr 2008 30 Apr 2008 29 Apr 2008 20 May 2008 02 May 2008 02 May 2008	FILL FILL FILL FILL FILL FILL FILL FILL	Grass with sandy topsoil, brown, routless, dry with shells Sand, grey with dark brown lenses, shells. Moist to wet Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, pellow, fine to medium grained, moderately dense with crushed sandstone Silva sand, orange brown/grey, moist, medium grained, moderately dense with crushed sandstone Silva sand, dark grey, medium grained, moderately dense, moist woth organic odour Silva sand, dark grey, medium grained, moderately dense, with trushed sandstone Clayey silva, sand, grey/brown with ash and glass fragments, moist and dense Black silt, fibrous root mass, organic odour, gravels (possible ash), moist to wet Silva sand, dark grey, moist to wet, moderatel dense, organic odour. Shells and rootlets from 2.3m Grass over silva sand topsoil, fine grained, moist, roots and loose Clayey silt, dark brown, soft, dense. Layered grey/orange silt from 0.8 to 0.9m Sand, pale grey, wet medium grained and dense Sand, brown/grey, fine to medium grained, loose, moist with gravels cal and sandstone Clay, grey/orange, moist, silf with gravels Fibrous black mass, silt, ash, rock, glass and wet Sand, grey with silt, shells, moist to wet and dense Grass over silty sand top soil, dark brown, fine grained, oose, moist with roots Sand, pellow, fine grained to grained. Moderately dense, moist with roots Crushed sansdtone, orange/white, clay content, moist (wet at 2-4m) and odourless	12.4 17.8 17.8 20.1 20.1 20.1 16.7 4.7 4.3 0 5 5 6 9.3 8.5 2.4 0 0 2.2 2.4
BBH413 BBH413 BBH413 BBH414 BBH414 BBH414 BBH414 BBH415 BBH415 BBH415 BBH417 BBH417 BBH417 BBH418 BBH418 BBH418 BBH419 BBH419 BBH419 BBH419 BBH419 BBH419 BBH419 BBH419 BBH419 BBH419 BBH419 BBH420 BBH420 BBH420 BBH420	2.1.2.2 0.0.4 1.1.3 1.1.3 0.1-0.4 0.1-0.4 0.1-0.3 0.9-1 2.2.1 0.2-0.4 1.1-1.2 2.2.1 0.1-0.2 0.8-0.9 1.5-1.6 0.2-0.3 0.5-0.7 2-2.1 2-2.1 2-2.1 0.1-0.2 0.8-0.9 1.5-1.6 0.2-0.3 0.5-0.7 2-2.1 2-2.1 2-2.1 0.5-0.6 0.5-0.6 0.1 0.5-0.6 0.1 0.5-0.6 0.1 0.5-0.6 0.1	280408-18-KW 280408-19-KW 280408-20-KW Field Blind Replicate Sample of 280408-19-KW 020508-168-KW 020508-169-KW Field Blind Replicate Sample of 020508-168-KW 020508-170-KW Split Field Duplicate of 020508-168-KW 020508-171-KW 300408-78-KW 300408-78-KW 300408-78-KW 290408-79-KW 290408-30-KW 290408-30-KW 290408-31-KW 290408-31-KW 290408-65-KW 290408-65-KW 290408-65-KW 290408-65-KW 020508-165-KW 020508-165-KW	29 Apr 2008 29 Apr 2008 29 Apr 2008 29 Apr 2008 02 May 2008 02 May 2008 02 May 2008 03 May 2008 03 May 2008 30 Apr 2008 30 Apr 2008 29 Apr 2008 20 May 2008 02 May 2008 02 May 2008 02 May 2008 03 May 2008 04 May 2008 05 May 2008 06 May 2008 07 May 2008	FILL FILL FILL FILL FILL FILL FILL FILL	Grass with sandy topooil, brown, rootlets, dry with shells Sand, grey with dark brown lenses, shells. Moist to wet Sand, grey with dark brown lenses, shells. Moist to wet Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, perlow, fine to medium grained, loose, shells, moist, silt lenses, wet at 1.5m Clayey sand, orangebrown/grey, moist, medium grained, moderately dense with crushed sandstone Silty sand, dark grey, medium grained, moderately dense, moist woth organic odour Silty sand, dark grey, medium grained, moderately dense, wet with H2S odour at 2.6m Clayey silty sand, grey/brown with ash and glass fragments, moist and dense Black silt, fibrous root mass, organic odour, gravels (possible ash), moist to wet Silty sand, dark grey, most tow etc., moderately dense, organic odour. Shells and rootlets from 2.3m Grass over silty sand topsoil, fine grained, moist, roots and loose Clayey silt, ankr brown, soft, dense. Layered grey/orange silt from 0.8 to 0.9m Sand, plac grey, we the drium grained and dense Sand, brown/grey, fine to medium grained, loose, moist with gravels coal and sandstone Clay, grey/orange, moist, stiff with gravels Fibrous black mass, silt, ash, rock, glass and wet Sand, grey with silt, shells, moist to wet and dense Grass over silty sand top soil, dark brown, fine grained, loose, moist with notos Sand, yellow, fine grained to grained, Moderately dense, moist with shells Crushed sansdtone, corange which, edu content, nots (wet at 2.4m) and odourless Grass over silty sand topsoil, brown, fine grained, loose, moist with notoders	12.4 17.8 20.1 20.1 20.1 20.1 16.7 4.7 4.7 4.3 0 5 3 3
BBH413 BBH413 BBH413 BBH414 BBH414 BBH414 BBH415 BBH415 BBH415 BBH417 BBH417 BBH417 BBH418 BBH418 BBH418 BBH419 BBH420 BBH420 BBH420 BBH420 BBH420 BBH421 BBH421	2.1.2.2 0.0.4 1-1.3 1-1.3 0.1.0.4 0.1.0.4 0.1.0.4 0.1.0.3 0.9-1 2-2.1 0.2.0.4 1.1.1.2 2-2.1 0.1.0.2 0.8-0.9 1.5-1.6 0.2.0.3 0.5-0.7 2-2.1 0.2.0.4 1.0.0.2 0.8-0.9 1.5-1.6 0.2.0.3 0.5-0.7 2-2.1 0.5-0.6 0.0.1	280408-18-KW 280408-19-KW 280408-20-KW Field Blind Replicate Sample of 280408-19-KW 020508-168-KW 020508-169-KW Field Blind Replicate Sample of 020508-168-KW 020508-170-KW Split Field Duplicate of 020508-168-KW 020508-171-KW 300408-78-KW 300408-78-KW 300408-78-KW 290408-30-KW 290408-30-KW 290408-31-KW 290408-31-KW 290408-66-KW 290408-66-KW 290408-65-KW 020508-68-KW 020508-68-KW 020508-68-KW 020508-68-KW	29 Apr 2008 29 Apr 2008 29 Apr 2008 02 May 2008 02 May 2008 02 May 2008 03 May 2008 03 May 2008 30 Apr 2008 30 Apr 2008 30 Apr 2008 29 Apr 2008 30 Apr 2008 30 Apr 2008 30 Apr 2008 30 Apr 2008	FILL FILL FILL FILL FILL FILL FILL FILL	Grass with sandy topooil, brown, routless, dry with shells Sand, grey with dark brown lenses, shells. Moist to wet Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, yellow, fine to medium grained, loose, shells, moist, silt lenses, wet at 1.5m Clayey sand, orange-brown/grey, moist, medium grained, moderately dense with crushed sandstone Silty sand, dark grey, medium grained, moderately dense, moist woth organic odour Silty sand, dark grey, medium grained, moderately dense, wet with 1423 dour at 2.6m Clayey silty sand, grey/brown with ash and glass fragments, moist and dense Black silt, fibrous root mass, organic odour, gravels (possible ash), moist to wet Silty sand, dark grey, moist to wet, moderatelt dense, organic odour. Shells and rootlets from 2.3m Grass over silty sand topsoil, fine grained, moist, roots and loose Clayey silt, dark brown, soft, dense. Layered grey/orange silt from 0.8 to 0.9m Sand, brown/grey, fine to medium grained, loose, moist with gravels coal and sandstone Clay, grey/orange, moist, stiff with gravels Fibrous black mass, silt, sah, rock, glass and wet Sand, grey with silt, shells, moist to wet and dense Grass over silty sand top soil, dark brown, fine grained, loose, moist with shells Crushed sandstone, orange/white, clay content, moist (wet at 2.4m) and odourless Grass over sandy topsoil, trown, fine grained, loose, dry with rootlets Sand, pale grey, fine to medium grained to grained, loose, soil, when the orders.	12.4 17.8 20.1 20.1 20.1 16.7 4.7 4.7 4.3 0 5 3 - 6 6 9.3 8.5 2.4 0 0 2.2 2.2 2.3 2.9 2.0 1
BBH413 BBH413 BBH413 BBH414 BBH414 BBH414 BBH415 BBH415 BBH415 BBH417 BBH417 BBH417 BBH417 BBH418 BBH418 BBH418 BBH418 BBH419 BB	2.1.2.2 0.0.4 1.1.3 1.1.3 0.1.0.4 0.1.0.4 0.1.0.4 1.3.1.4 0.1.0.3 0.9-1 2.2.1 0.2.0.4 1.1.1.2 2.2.1 0.1.0.2 0.8.0.9 1.5.1.6 0.2.0.3 0.5.0.7 2.2.1 2.6.2.8 0.0.1 0.5.0.6 2.4.2.6 0.0.1 0.5.0.6 0.5.0.6 0.5.0.6 0.5.0.6 0.5.0.6 0.5.0.6 0.5.0.6 0.5.0.6 0.5.0.6 0.5.0.6 0.5.0.6 0.5.0.6 0.5.0.6 0.5.0.6 0.5.0.6	280408-18-KW 280408-19-KW 280408-19-KW 280408-20-KW Field Blind Replicate Sample of 280408-19-KW 020508-169-KW Field Blind Replicate Sample of 020508-168-KW 020508-170-KW Split Field Duplicate of 020508-168-KW 020508-171-KW 300408-78-KW 300408-78-KW 300408-78-KW 290408-29-KW 290408-30-KW 290408-31-KW 290408-31-KW 290408-65-KW 290408-62-KW 290408-63-KW 290408-63-KW 020508-165-KW 020508-165-KW 020508-165-KW 020508-165-KW 020508-165-KW 020508-165-KW 300408-105-KW 300408-105-KW	29 Apr 2008 29 Apr 2008 29 Apr 2008 02 May 2008 02 May 2008 02 May 2008 03 May 2008 04 May 2008 05 May 2008 06 May 2008 07 May 2008 08 May 2008 08 May 2008 09 Apr 2008 00 May 2008 00 May 2008 00 May 2008 01 Apr 2008 01 Apr 2008 01 Apr 2008 02 May 2008 01 Apr 2008 01 Apr 2008 02 May 2008 01 Apr 2008 01 Apr 2008	FILL FILL FILL FILL FILL FILL FILL FILL	Grass with sandy topsoil, brown, rootless, dry with shells Sand, grey with dark brown lenses, shells. Moist to wet Sand, grey with dark brown lenses, shells. Moist to wet Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, place, moist model, most with some gravels Sand, yellow, fine to medium grained, loose, shells, moist, sill lenses, wet at 1.5m Clayey sand, orangebrown/grey, moist, medium grained, moderately dense with russhed sandstone Silty sand, dark grey, medium grained, moderately dense, we wish H2S odour at 2.6m Clayey silty, sand, grey-prown with ash and glass fragments, moist and dense Black silt, fibrous root mass, organic odour, gravels (possible ash), moist to wet Silty sand, dark grey, moist to wet, moderatel dense, words and consecutive states, we will will be shown to show the state of the shown	12.4 17.8 20.1 20.1 20.1 20.1 16.7 4.7 4.3 0 5 3
BBH413 BBH413 BBH413 BBH414 BBH414 BBH414 BBH415 BBH415 BBH415 BBH417 BBH417 BBH417 BBH418 BBH418 BBH418 BBH419 BBH420 BBH420 BBH420 BBH420 BBH420 BBH421 BBH421	2.1.2.2 0.0.4 1-1.3 1-1.3 0.1.0.4 0.1.0.4 0.1.0.4 0.1.0.3 0.9-1 2-2.1 0.2.0.4 1.1.1.2 2-2.1 0.1.0.2 0.8-0.9 1.5-1.6 0.2.0.3 0.5-0.7 2-2.1 0.2.0.4 1.0.0.2 0.8-0.9 1.5-1.6 0.2.0.3 0.5-0.7 2-2.1 0.5-0.6 0.0.1	280408-18-KW 280408-19-KW 280408-20-KW Field Blind Replicate Sample of 280408-19-KW 020508-168-KW 020508-169-KW Field Blind Replicate Sample of 020508-168-KW 020508-170-KW Split Field Duplicate of 020508-168-KW 020508-171-KW 300408-78-KW 300408-78-KW 300408-78-KW 290408-30-KW 290408-30-KW 290408-31-KW 290408-31-KW 290408-66-KW 290408-66-KW 290408-65-KW 020508-68-KW 020508-68-KW 020508-68-KW 020508-68-KW	29 Apr 2008 29 Apr 2008 29 Apr 2008 02 May 2008 02 May 2008 02 May 2008 03 May 2008 03 May 2008 30 Apr 2008 30 Apr 2008 30 Apr 2008 29 Apr 2008 30 Apr 2008 30 Apr 2008 30 Apr 2008 30 Apr 2008	FILL FILL FILL FILL FILL FILL FILL FILL	Grass with sandy topooil, brown, routless, dry with shells Sand, grey with dark brown lenses, shells. Moist to wet Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, brown, trace clay, fine grained, moist with some gravels Sand, yellow, fine to medium grained, loose, shells, moist, silt lenses, wet at 1.5m Clayey sand, orange-brown/grey, moist, medium grained, moderately dense with crushed sandstone Silty sand, dark grey, medium grained, moderately dense, moist woth organic odour Silty sand, dark grey, medium grained, moderately dense, wet with 1423 dour at 2.6m Clayey silty sand, grey/brown with ash and glass fragments, moist and dense Black silt, fibrous root mass, organic odour, gravels (possible ash), moist to wet Silty sand, dark grey, moist to wet, moderatelt dense, organic odour. Shells and rootlets from 2.3m Grass over silty sand topsoil, fine grained, moist, roots and loose Clayey silt, dark brown, soft, dense. Layered grey/orange silt from 0.8 to 0.9m Sand, brown/grey, fine to medium grained, loose, moist with gravels coal and sandstone Clay, grey/orange, moist, stiff with gravels Fibrous black mass, silt, sah, rock, glass and wet Sand, grey with silt, shells, moist to wet and dense Grass over silty sand topsoil, dark brown, fine grained, loose, moist with hells Crushed sandsone, orange/white, clay content, moist (wet at 2.4m) and odourless Grass over sandy topsoil, dark brown, fine grained, loose, dry with rootlets Sand, pale grey, fine to medium grained to grained, loose, dry with rootlets Sand, pale grey, fine to medium grained, loose, dry with rootlets Sand, pale grey, fine to medium grained, loose, dry with rootlets Sand, pale grey, fine to medium grained, loose, dry with rootlets Sand, pale grey, fine to medium grained. loose, dry with rootlets Sand, pale grey, fin	12.4 17.8 20.1 20.1 20.1 16.7 4.7 4.7 4.3 0 5 3 - 6 6 9.3 8.5 2.4 0 0 2.2 2.2 2.3 2.9 2.0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

	Table 2 (continued): Summary of Sample Information					
Location	Sample Depth	Sample Id	Date Sampled	Material Type	Material Description	PID (ppm)
		•			SOIL SAMPLES	
BBH423	1.5-1.6	300408-83-KW	30 Apr 2008	FILL	Silty sand, dark grey, fine to medium grained, dense, wet with H2S odour. Shells at 2.2m	0.5
BBH425	0.2-0.4	290408-57-KW	29 Apr 2008	FILL	Sand, yellow, fine to medium grained, loose, dry to moist, moderately dense with shells at 0.8-1.1m	11.8
BBH425	1.3-1.4	290408-58-KW	29 Apr 2008	FILL	Clayey silt, black, moderately dense with organic odour	7.5
BBH426	0.1-0.2	290408-69-KW	29 Apr 2008	FILL	Grass over silty sand topsoil, brown, medium grained, loose, dry to moist	-
BBH426	0.5-0.6	290408-70-KW	29 Apr 2008	FILL	Sand, yellow grading to pale grey with depth, dense and dry to moist	7.7
BBH426	1.7-1.8	290408-71-KW	29 Apr 2008	FILL	Silt, dark brown, soft with glass, gravel and roots	1
BBH427	0.1-0.3	290408-59-KW	29 Apr 2008	FILL	Clayey sand, brown/orange with concrete rubble, gravels and shells. Some stiffer brown clay	4.2
BBH427	0.8-1	290408-60-KW	29 Apr 2008	FILL	Sand, yellow, medium grained,	8
BBH427	1.8-2	290408-61-KW	29 Apr 2008	FILL	Orange sand lenses	10.4
BBH428	0.1-0.2	010508-162-KW	01 May 2008	FILL	Silty sand, brown, fine grained moist with gravels and roots	16.2
BBH428	0.6-0.7	010508-163-KW	01 May 2008	FILL	Sand, yellow/pale grey with orange mottles, shells and peat sections throughout	5.8
BBH428	2.4-2.6	010508-164-KW	01 May 2008	FILL	Silty sand, moist white gravels, glass and organic odour	26.2
BBH429	0-0.1	010508-152-KW	01 May 2008	FILL	Grass over silty clay topsoil, dark brown, roots and gravels	2.3
BBH429	0.5-0.7	010508-153-KW	01 May 2008	FILL	Clay, dark greybrown mottles, moist, stift, roots and sand at 1.3m	4.2
BBH429	2.4-2.5	010508-155-KW	01 May 2008	FILL	Sandy sill, black, roots, glass, plastic, moist ow with gravels and H2S odour	15
BBH430	0.1-0.3	300408-106-KW	30 Apr 2008	FILL	Sandy Sin, brack, roots, grass, prastic, most to wer with gravers and rizs orion. Sand, pale grey, fine to medium grained, moderately dense, moist with shells throughout	2.4
BBH430	2.4-2.6	300408-106-KW 300408-107-KW	30 Apr 2008 30 Apr 2008	FILL	Sand, pate grey, tine to medium grained, moderately dense, moist with shells throughout Silt, black with gravels and organic odour	3.2
BBH431	0.1-0.2	300408-107-KW 300408-84-KW	30 Apr 2008	FILL	Sint, brack with gravers and organic odour Sand, medium grained, loose, dark grey grading to pale grey	1.6
BBH431	0.1-0.2	300408-84-KW 300408-85-KW	30 Apr 2008 30 Apr 2008	FILL	Sand, medium grained, 100se, dark grey grading to pale grey Sailty sand, dark grey, fine to medium grained, moist, loose with ash and gravels	4.5
BBH431	2-2.1	300408-85-KW 300408-86-KW	30 Apr 2008 30 Apr 2008	CLAYEY SAND	Sailty sand, dark grey, tine to medium grained, moist, loose with ash and gravets Clavey silty sand, grey, medium grained, dense, soft with organic odour. Shells at 2.1-2.2m. Grading to silty clay with trace sands at 2.5m	11.3
BBH432	0-0.1	010508-160-KW	01 May 2008	FILL	Clayey sinty sand, grey, medium gramed, dense, soft with organic doubt as 2.1-2.2.m. Grading to sinty clay with trace sands at 2.5m Grass over silty sand topsoil, most with roots	2.3
BBH432						
BBH432 BBH433	1.3-1.4 0.1-0.3	010508-161-KW 010508-156-KW	01 May 2008	FILL	Silty clay, dark grey, soft and moist	2.2
			01 May 2008	FILL	Sandy silt clay, brown with gravels, ceramic peices, charcoal, moist and dense	2.1
BBH433 BBH433	0.1-0.3	010508-157-KW Field Blind Replicate Sample of 010508-156-KW	01 May 2008	FILL	Sandy silt clay, brown with gravels, ceramic peices, charcoal, moist and dense	2.1
	2.4-2.5	010508-159-KW	01 May 2008	FILL	Silt, black, moist with glass, gravels and sand	8.1
BBH434	0-0.2	300408-108-KW	30 Apr 2008	FILL	Grass over sandy topsoil, dark brown, loose dry to moist, rootlets with trace clays	-
BBH434	0.5-0.6	300408-109-KW	30 Apr 2008	FILL	Sand, yellow, fine to medium grained, concrete rubble and gravels at 0.4 m. Ironstone gravels at 0.8 m	3.5
BBH435	0.1-0.3	300408-110-KW	30 Apr 2008	FILL	Clayey silt sand, grey/brown, fine grained, dense, dry to moist	5.2
BBH435	1-1.1	300408-111-KW	30 Apr 2008	FILL	Sand, yellow grading to grey at 1.0m, fine to medium grained, moderately dense, moist to wet at 1.4m	5.2
BBH436	0.1-0.3	300408-87-KW	30 Apr 2008	FILL	Sand, pale grey, fine to medium grained, loose, moist with black gravels	3.6
BBH436	0.5-0.6	300408-88-KW	30 Apr 2008	FILL	Sand with trace silt and clay at 1.1m, brown/grey/orange, medium grained, dense, moist	1.4
BBH438	0.2-0.3	290408-72-KW	30 Apr 2008	FILL	Silty sand with trace clay, brown, dry to moist, dense with rootlets	4.1
BBH438	1.9-2	290408-73-KW	30 Apr 2008	FILL	Clayey silt, dark brown, soft, dense and wet	3.3
BBH439	0.1-0.2	010508-133-KW	01 May 2008	FILL	Sandy clay, brown sand with orange clay, black gravels, glass, dry and osourless	6.3
BBH439	0.2-0.4	010508-134-KW	01 May 2008	FILL	Silty sand, dark brown/orange with black gravels	8.1
BBH439	2-2.1	010508-135-KW	30 Apr 2008	FILL	Silty clay sand, dark grey, dense and moist to wet	-
BBH440	0.2-0.4	010508-148-KW	01 May 2008	FILL	Sand, yellow/pale grey with orange mottles throughout, shells throughout, moist and moderately dense	-
BBH440	1-1.1	010508-149-KW	01 May 2008	FILL	Sand, yellow/pale grey with orange mottles throughout, shells throughout, moist and moderately dense	-
BBH441	0-0.2	010508-150-KW	01 May 2008	FILL	Grass over silty sand topsoil, fine grained, dark brown, loose, dry with roots	-
BBH441	1.5-1.6	010508-151-KW	30 Apr 2008	FILL	Sand, pale grey, finr to medium grained, slightly dense, moist to wet with shells throughout	-
BBH442	0.1-0.4	300408-101-KW	30 Apr 2008	FILL	Sand, brown/grey, fine to medium grained, loose, moist with shells	2
BBH442	0.1-0.4	300408-102-KW Field Blind Replicate Sample of 300408-101-KW	30 Apr 2008	FILL	Sand, brown/grey, fine to medium grained, loose, moist with shells	2
BBH442	1-1.1	300408-103-KW	30 Apr 2008	FILL	Sand, pale grey, medium grained, moist, broken shells. Rock/gravels at 1.3m	1
BBH443	0.4-0.5	300408-89-KW	30 Apr 2008	FILL	Crushed sandstone, orange/white, course grained, dense, moist to dry with rock/gravels	-
BBH443	0.4-0.5	300408-90-KW Field Blind Replicate Sample of 300408-89-KW	30 Apr 2008	FILL	Crushed sandstone, orange/white, course grained, dense, moist to dry with rock/gravels	-
BBH443	2.2-2.4	300408-91-KW	30 Apr 2008	SILTY CLAY	Silty clay, dark grey, fine grained, dense and moist	1.9
BBH445	0.1-0.4	010508-136-KW	01 May 2008	FILL	Sand, yellow, fine to medium grained, loose, dry. Brown silty lense at 1.2m	3.5
BBH445	0.1-0.4	010508-137-KW Field Blind Replicate Sample of 010508-136-KW	01 May 2008	FILL	Sand, yellow, fine to medium grained, loose, dry. Brown silty lense at 1.2m	3.5
BBH445	0.1-0.4	010508-138-KW	01 May 2008	FILL	Sand, yellow, fine to medium grained, loose, dry. Brown silty lense at 1.2m	3.5
BBH445	1.8-1.9	010508-139-KW	01 May 2008	FILL	Silty clay, dark brown, soft and wet	11.4
BBH446	0.1-0.2	010508-146-KW	01 May 2008	FILL	Grass overs silty clay topsoil, dark brown, moist with roots and gravels	8.4
BBH446	0.4-0.5	010508-147-KW	01 May 2008	FILL	Silty clay, dark grey/brown mottles, moist and rootlets	6.3
BBH447	0.1-0.2	010508-144-KW	01 May 2008	FILL	Sand, yellow, fine to medium grained, loose, dry, becoming moist at 0.5m	3
BBH447	0.7-0.8	010508-145-KW	01 May 2008	FILL	Silty sand, dark brown, fine grained, rootlets, moserately dense and moist	1.4
BBH448	0.1-0.2	300408-98-KW	30 Apr 2008	FILL	Sand, pale grey, fine to medium grained, loose to dense, moist. Shells at 0.3m	1.8
BBH448	0.4-0.5	300408-99-KW	30 Apr 2008	FILL	Silty clay, dark brown, shells, soft with organic odour	1.7
BBH448	1.2-1.3	300408-100-KW	01 May 2008	FILL	Sand, fine to medium grained, pale grey, and wet	3.6
BBH450	0.4-0.5	010508-140-KW	01 May 2008	FILL	Sand, yellow, fine to medium grained, loose, dry to moist (increasing with depth), minor charcoal/coal fragments, from 0.1-0.8m. Crushed white sandstone at 0.8m	3
			0131 2000	TOTAL X		1.9
BBH450	0.8-1	010508-141-KW	01 May 2008	FILL	Sand, yellow, fine to medium grained, loose, dry to moist (increasing with depth), minor charcoal/coal fragments, from 0.1-0.8m. Crushed white sandstone at 0.8m	1.9

				Table 2 (contin	nued): Summary of Sample Information	
Location	Sample Depth	Sample Id	Date Sampled	Material Type	Material Description	PID (ppm
					SOIL SAMPLES	
BBH451 BBH451	0-0.1 0.65-0.75	010508-A1-KW 010508-143-KW	01 May 2008 01 May 2008	FILL FILL	Sand, yellow, fine to medium grained, moist and loose Silty clay, brown, moist and soft with roots	3.2
BBH452	0.05-0.75	300408-96-KW	30 Apr 2008	FILL	Sandy clay, dark brown, fine grained, dense/stiff and moist	1.7
BBH452	0.5-0.7	300408-97-KW	01 May 2008	FILL	Sand, pale grey, fine to medium grained, loose and dense, moist with shells at 0.7-0.8m	2.1
BBH453	0.2-0.3	300408-92-KW	30 Apr 2008	FILL	Crushed sandstone, orange/white, course grained and dry	1.5
BBH453	0.55-0.65	300408-93-KW	30 Apr 2008	FILL	Sand, brown, fine to medium grained, loose and dry	2.1
BBH455 BBH455	0.1-0.2	010508-120-KW 010508-121-KW	01 May 2008	FILL FILL	Sand, light brown, fine to medium grained, loose, dry to moist	9
BBH456	0.5-0.6	010508-121-KW 010508-118-KW	01 May 2008 01 May 2008	FILL	Silty clay, dark brown and dry Sandy clay, brown with weathered/crushed sandstone (white/yellow)	1.9
BBH456	1-1.2	010508-119-KW	01 May 2008	FILL	Sand, yellow, fine to medium grained, slightly dense, moist with shells	9.1
BBH457	0.45-0.6	300408-94-KW	30 Apr 2008	FILL	Sand, dry to moist, black with ash(black and white), crunchy and sharp	2.2
BBH457	1.1-1.2	300408-95-KW	30 Apr 2008	SILTY CLAY	Silty clay, dark brown, fine grained, stiif, soft from 1.1m, shells at 1.3m and organic odour	0.9
BBH458	0.1-0.4	010508-122-KW	01 May 2008	FILL	Sand pale grey, fine to medium grained, loose and dry. Interspersed silt layeres. H2S odour at 2.6m. Moist to wet at 2.8m	7.4
BBH458 BBH458	0.1-0.4	010508-123-KW 010508-124-KW	01 May 2008 01 May 2008	FILL FILL	Sand pale grey, fine to medium grained, loose and dry. Interspersed silt layeres. H2S odour at 2.6m. Moist to wet at 2.8m Sand pale grey, fine to medium grained, loose and dry. Interspersed silt layeres. H2S odour at 2.6m. Moist to wet at 2.8m	7.4
BBH458	0.9-1.1	010508-125-KW	01 May 2008	FILL	Sand pale grey, fine to medium grained, loose and dry. Interspersed slit layeres. H2S odour at 2.6m. Moist to wet at 2.8m	6
BBH460	0-0.15	010508-114-KW	01 May 2008	FILL	Grass over silty sand topsoil, dark brown, fine grained, moist with rootlets	-
BBH460	0.7-0.8	010508-115-KW	01 May 2008	FILL	Sand, yellow, fine to medium grained, moderately dense, moist shells, silty clay, lenses at 0.8m	1.6
BLG404	0-0.2	020508-178-KW	02 May 2008	FILL	Silty sand top soil, brown, fine grained, dry and loose with gravels	-
BLG404 BLG404	1-1.2	020508-179-KW 020508-180-KW	02 May 2008	FILL SILTY CLAY	Sand, pale grey, fine grained, loose and dry Dark brown, wet with H-S odour	7.4
BLG404 BMW401	0.15-0.35	020508-180-KW 020508-187-KW	02 May 2008 02 May 2008	FILL	Crushed weathered sandstone and white	10.4
BMW401	0.6-0.7	020508-131-KW	02 May 2008	FILL	Clay, brown/orange, sand, dry with black gravels	
BMW401	1.3-1.4	020508-188-KW	02 May 2008	FILL	Clay, brown/orange, stiff, dry, gravels, crushed sandstone and ash at 1.3m	22.4
BMW401	1.3-1.4	020508-188-LJ	02 May 2008	FILL	Clay, brown/orange, stiff, dry, gravels, crushed sandstone and ash at 1.3m	22.4
BMW404 BMW404	0.1-0.2	020508-175-KW	02 May 2008	FILL FILL	Crushed sandstone, white, course grained, gravels and ceramic pieces	-
BMW404 BMW404	0.4-0.5 2.6-2.8	020508-176-KW 020508-177-KW	02 May 2008 02 May 2008	FILL SAND	Sand, black, dry with ash gravels	17.9
BMW404	2.6-2.8	020508-17/-KW	02 May 2008		Sand with trace silt, pale grey, fine to medium grained, dense and moist becoming moist GROUNDWATER SAMPLES	17.9
AMW201	-	290508-05-LJ	29 May 2008	WATER	Pale brown tint, almost clear, odourless.	-
AMW201	-	290508-06-LJ Field Blind Replicate Sample of 290508-05-LJ	29 May 2008	WATER	Pale brown tint, almost clear, odourless.	-
AMW201	-	290508-07-LJ Split Field Duplicate of 290508-05-LJ	29 May 2008	WATER	Pale brown tint, almost clear, odourless.	-
AMW202	-	300508-12-LJ	30 May 2008	WATER	Pale brown, turbid, odourless.	
AMW203	-	290508-01-LJ	29 May 2008	WATER	Brown tint, H2S odour.	-
AMW204 AMW205	-	290508-08-LJ 290508-04-LJ	29 May 2008 29 May 2008	WATER WATER	Orange/red, turbid, odourless. Grey tint, slightly turbid, organic odour.	-
AMW205 AMW206	-	300508-10-LJ	30 May 2008	WATER	Pale brown, slightly turbid, oldourless.	-
AMW206		300508-11-LJ	30 May 2008	WATER	Pale brown, slightly turbid, odourless.	-
AMW207	-	300508-09-LJ	30 May 2008	WATER	Pale brown tint, slightly turbid, odourless.	-
ABH202	-	290508-03-LJ	29 May 2008	WATER	Pale brown tint, sheen with hydrocarbon odour.	
ABH2105	-	290508-02-LJ	29 May 2008	WATER	Almost clear, brown tint, hydrocarbon odour.	-
ABH2110 ABH2100		300508-13-LJ 300508-14-LJ	30 May 2008 30 May 2008	WATER WATER	Almost clear, brown tint, odourless. Pale brown tint, almost clear, odourless.	-
BMW401	_	300308-14-LJ 170608-01-LJ	17 June 2008	WATER	Clear, colourless, odourless	
BMW402	-	170608-05-LJ	17 June 2008	WATER	Pale brown tint, odourless.	-
BMW403	-	170608-02-LJ	17 June 2008	WATER	Pale brown/yellow, slightly turbid, odourless.	-
BMW404	-	170608-03-LJ	17 June 2008	WATER	Black, very turbid, rich organic odour.	-
BMW404		170608-04-LJ Field Blind Replicate Sample of 170608-03-LJ	17 June 2008	WATER	Black, very turbid, rich organic odour.	-
BBH304		180608-06-LJ	18 June 2008	WATER	Brown, clear, H2S odour. GAS SAMPLES	-
ALG202		ALG202	16 June 2008	GAS	GAS SAMPLES	
BLG402	-	BLG402	16 June 2008	GAS		-
					QC SAMPLES	
Trip Blank	-	Trip Blank	5/5/08, 6/5/08 and 7/5/08	SOIL	Sand	-
Trip Spike	-	Trip Spike	5/5/08, 6/5/08 and 7/5/08	SOIL	Sand	-
Trip Blank	-	Trip Blank	8 May 2008	SOIL	Sand	-
Trip Spike Trip Blank	-	Trip Spike Trip Blank	8 May 2008 9 May 2008	SOIL SOIL	Sand Sand	-
Trip Blank Trip Spike	-	Trip Blank Trip Spike	9 May 2008 9 May 2008	SOIL	Sand Sand	-
Trip Blank	-	Trip Blank	12 May 2008	SOIL	Sand	-
Trip Spike		Trip Spike	12 May 2008	SOIL	Sand	-
Trip Blank	-	Trip Blank	13 May 2008	SOIL	Sand	-
Trip Spike	-	Trip Spike	13 May 2008	SOIL	Sand	-
Trip Blank	-	Trip Blank	15 May 2008	SOIL	Sand	-
Trip Spike Trip Blank		Trip Spike Trip Blank	15 May 2008 28/4/08 and 29/4/08	SOIL SOIL	Sand Sand	-
Trip Spike -		Trip Spike	28/4/08 and 29/4/08 28/4/08 and 29/4/08	SOIL	Sand	-
Trip Blank	-	Trip Blank	30/4/08 and 1/5/08	SOIL	Sand	-
Trip Spike -		Trip Spike	30/4/08 and 1/5/08	SOIL	Sand	-
Trip Blank -		Trip Blank	2 May 2008	SOIL	Sand	-
Trip Spike -		Trip Spike	2 May 2008	SOIL	Sand	-
Trip Blank	-	Trip Blank	29/5/08 and 30/5/08	WATER	Water	-
20.1 0 . 2	-	Trip Spike	29/5/08 and 30/5/08	WATER	Water	-
Trip Spike		090508-500 VW	9/05/2009	WATED	Water	1
Trip Spike Rinsate Trip Blank	-	090508-500-KW Trip Blank	9/05/2008 17 June 2008	WATER WATER	Water Water	-

	Table 3: Containers, preservation requirements and holding times - Soil									
Parameter	Container	Preservation	Maximum holding time	Colour code						
Acid digestible metals and metalloids (As	250 mL glass	Nil	6 months	Orange						
Mercury	250 mL glass	4°C	28 days	Orange						
TPH/BTEX	250 mL glass	4°C	14 days	Orange						
PAHs	250 mL glass	4°C, zero headspace	14 days	Orange						
OCPs/OPPs/PCBs	250 mL glass	4°C, zero headspace	14 days	Orange						
VOCs, PAAHs, Phenols	250 mL glass	4°C, zero headspace	14 days	Orange						
Nutrients	250 mL glass	4°C	7 days	Orange						
Asbestos	Sealed plastic bag	Nil	Nil	Nil						
SPOCAS	Sealed plastic bag	Frozen	Nil	Nil						
Salinity indicators	Sealed plastic bag - min 1500g	Nil	Nil	Nil						

Table 4: Containers, preservation requirements and holding times – Groundwater									
Parameter	Container Volume (mL)	Preservative	Maximum holding	Colour Code	Field Filtered				
Metals and metalloids	125 mL Plastic	$HNO_3 / 4^{\circ}C$	6 months	Red	Yes				
Anions	250 ml Plastic	None / 4°C	48 Hrs	Green	No				
Cations	125 mL Plastic	HNO ₃ / 4°C	7 days	Red	Yes				
Nutrients	250 ml Plastic	$H_2SO_4 / 4^{\circ}C$	28 days	Purple	No				
TPH (C ₆ -C ₉)/BTEX/VOCs	4 x 43 mL Glass	HCl / 4°C		Orange	No				
			14 days						
TPH (C ₁₀ -C ₃₆)/PAHs	1000 mL Glass	None / 4°C	28 days	Orange	No				
PAAHs/Phenols	1000 mL Glass	None / 4°C	28 days	Orange	No				
Salinity Indicators	1000 mL	None / 4°C	48 Hrs	Green	No				

Table 5: Containers and preservation requirements –							
Parameter	Container Volume (mL)	Preservative					
VOC	4 L	Tedlar Gas Bag					

Table 6: Analytic	al paramete	rs, PQLs an	nd methods - Soil
Parameter	Unit	PQL	Method Based On
M	etals and Met	alloids in So	il
Arsenic 1	mg kg ⁻¹	1	USEPA 200.7
Cadmiun ¹	mg kg ⁻¹	1	USEPA 200.7
1	1		
Chromium ¹	mg kg ⁻¹	1	USEPA 200.7
Copper 1	mg kg ⁻¹	1	USEPA 200.7
Mercury ²	mg kg ⁻¹	0.1	USEPA 7471A
Nickel ¹ Lead ¹	mg kg ⁻¹	1	USEPA 200.7
Zinc ¹	mg kg ⁻¹	1	USEPA 200.7
Total Petroleum H		TDH) and D	USEPA 200.7
1 otal Petroleum H	ydrocarbons	(1PH) and B	STEA Compounds
C ₆ -C ₉ fraction	mg kg ⁻¹	2	USEPA 8015B
C ₁₀ -C ₁₄ fraction	mg kg ⁻¹	50	USEPA 8015B
C ₁₅ -C ₂₈ fraction	mg kg ⁻¹	100	USEPA 8015B
C ₂₉ -C ₃₆ fraction	mg kg ⁻¹	100	USEPA 8015B
Total C ₆ -C ₃₆	mg kg ⁻¹		USEPA 8015B
Benzene	mg kg ⁻¹	0.2	USEPA 8021A
Toluene	mg kg ⁻¹	0.5	USEPA 8021A
Ethylbenzene	mg kg ⁻¹	0.5	USEPA 8021A
m&p-xylene	mg kg ⁻¹	1	USEPA 8021A
o-xylenes	mg kg ⁻¹	0.5	USEPA 8021A
	Organics	in Soil	
Polycyclic Aromatic Hydrocarbons	mg kg ⁻¹	0.5-1	USEPA 8270 SIM
Organochlorine Pesticides	mg kg ⁻¹	0.05-0.2	USEPA 8081A
Organophosphorus Pesticides	mg kg ⁻¹	0.05-0.2	USEPA 8081A
Phenols	mg kg ⁻¹	5	APHA
T Heliois	mg Kg	3	711111
Polychlorinated Biphenyls	mg kg ⁻¹	0.1	USEPA 8081A
	Asbes	stos	
Asbestos	-	-	Polarised Light Microscopy
	SPOCAS		
SPOCAS	r mol H ⁺ ton		Ahern et al (1998)
	Salinity In	dicators	
рН	pH units	0.01	AS2159:1995
Electrical Conductivity	μS cm ⁻¹	1	AS2159:1995
	ppt	1	AS2159:1995
Salinity			
Salinity Resistivity	Ohms	1	AS2159:1995
	Ohms mg kg ⁻¹ mg kg ⁻¹	1 10	AS2159:1995 AS2159:1995

Note 1: Acid soluble metals by ICP-AES.

Note 2: Total recoverable mercury.

Salinity Indicators												
рН	pH units	0.1	AS2159:1995									
Electrical conductivity	μS cm ⁻¹	1	AS2159:1995									
Salinity	ppt	1	AS2159:1995									
Total dissolved solids	mg L ⁻¹	1	AS2159:1995									
Resistivity	Ohms	1	AS2159:1995									
Alkalinity	mg L ⁻¹	1	AS2159:1995									
Sulfate	mg L ⁻¹	0.1	AS2159:1995									
Chloride	mg L ⁻¹	0.1	AS2159:1995									

	Table 8: Site Assessment Criteria – Soils (mg kg ¹)													
Contaminant	HIL (Setting C)	HIL (Setting D)	Source											
Arsenic (total)	300	3000	NEPC (2014) – Schedule (B1)											
Benzo(a)pyrene TEQ	3	40	NEPC (2014) – Schedule (B1)											
Cadmium	90	900	NEPC (2014) – Schedule (B1)											
Copper	17000	240000	NEPC (2014) – Schedule (B1)											
Lead	600	1500	NEPC (2014) – Schedule (B1)											
Mercury (inorganic)	80	730	NEPC (2014) – Schedule (B1)											
Nickel	2100	6000	NEPC (2014) – Schedule (B1)											
Zinc	30000	4000000	NEPC (2014) – Schedule (B1)											
Total PAHs	300	400	NEPC (2014) – Schedule (B1)											
TPH C ₆ -C ₉	-	-	-											
TPH C ₁₀ -C ₄₀	-	-	-											
Benzene	-	-	-											
Toluene	-	-	-											
Ethylbenzene	-	-	-											
Total Xylene	-	-	-											
Aldrin + Dieldrin	10	45	NEPC (2014) – Schedule (B1)											
Chlordane	70	530	NEPC (2014) – Schedule (B1)											
DDT+DDD+DDE	400	3600	NEPC (2014) – Schedule (B1)											
Phenol	40000	240000	NEPC (2014) – Schedule (B1)											
Heptachlor	10	50	NEPC (2014) – Schedule (B1)											
Polychlorinated Biphenyls	-	-	NEPC (2014) – Schedule (B1)											

Table 8: Site Assessment Criteria – Soils (mg kg ⁻¹)												
	EIL (Urban	EIL										
	Residential/Public	(Commercial/										
Contaminant	Open Space)	Industrial)	Source									
Arsenic (total)	100	160	NEPC (2014) – Schedule (B1)									
Benzo(a)pyrene			NEPC (2014) – Schedule (B1)									
Cadmium			NEPC (2014) – Schedule (B1)									
Chromium (III)	200	320	NEPC (2014) – Schedule (B1)									
Copper	103	148	NEPC (2014) – Schedule (B1)									
Lead	1131	1831	NEPC (2014) – Schedule (B1)									
Mercury (inorganic)			NEPC (2014) – Schedule (B1)									
Nickel	35	60	NEPC (2014) – Schedule (B1)									
Zinc	275	405	NEPC (2014) – Schedule (B1)									
Naphthalene	170	370	NEPC (2014) – Schedule (B1)									
Total PAHs			NEPC (2014) – Schedule (B1)									
TPH C ₆ -C ₉			NEPC (2014) – Schedule (B1)									
TPH C ₁₀ -C ₄₀			NEPC (2014) – Schedule (B1)									
Benzene			NEPC (2014) – Schedule (B1)									
Toluene			NEPC (2014) – Schedule (B1)									
Ethylbenzene			NEPC (2014) – Schedule (B1)									
Total Xylene			NEPC (2014) – Schedule (B1)									
Aldrin + Dieldrin			NEPC (2014) – Schedule (B1)									
Chlordane			NEPC (2014) – Schedule (B1)									
DDT+DDD+DDE			NEPC (2014) – Schedule (B1)									
DDT	180	640	NEPC (2014) – Schedule (B1)									
Phenol			NEPC (2014) – Schedule (B1)									
Heptachlor			NEPC (2014) – Schedule (B1)									
Polychlorinated			NEPC (2014) – Schedule (B1)									
Biphenyls												

Table 9: Actio Type of Material	n criteria base	Action (1	riteria if		
Type of Material		1-1000		1000 tonnes			
	Approx. clay	Sulfur trail	Acid trail	Sulfur trail	Acid trail		
Texture range ¹	content (%<0.002 mm)	% S oxidisable (oven-dry basis) eg S _{TOS} or S _{POS}	mol H+/tonne (oven-dry basis) eg TPA or TSA	% S oxidisable (oven-dry basis) eg S _{TOS} or S _{POS}	mol H+/tonne (oven-dry basis) eg TPA or TSA		
Coarse Texture	1						
Sands to loamy sands	≤5	0.03	18	0.03	18		
Medium Texture Sandy loams to light clays	May-40	0.06	18	0.03	18		
Fine Texture							
Medium to heavy clays and silty clays.	≥40	0.1	18	0.03	18		

Table 10: Summ	nary of site assessm	ent criteria - groundwater
Parameter	Criterion (µg L ⁻¹)	Source and Comments ¹
	Metals and Met	alloids
Arsenic (V)	13	NEPM 2013 GIL- Marine Waters
Cadmium	0.7	NEPM 2013 GIL- Marine Waters
Chromium VI	4.4	NEPM 2013 GIL- Marine Waters
Copper	1.3	NEPM 2013 GIL- Marine Waters
Nickel	7	NEPM 2013 GIL- Marine Waters
Lead	4.4	NEPM 2013 GIL- Marine Waters
Zinc	15	NEPM 2013 GIL- Marine Waters
Mercury (inorganic)	0.1	NEPM 2013 GIL- Marine Waters
	Nutrients	
Nitrate	700	ANZG 2018 ⁵
Ammonia	0.91	ANZG 2018
	TPH and BT	EX
TPH C ₆ -C ₃₆	285	ANZG 2018 ⁴
Benzene	500	ANZG 2018 (99 % marine)
Toluene	180	ANZG 2018
Ethylbenzene	5	ANZG 2018
m + p xylene	ID	ANZG 2018
o-xylene	350	ANZG 2018
Total xylenes	380	A1420 2010
·	olycyclic Aromatic H	vdrocarbons
Fluoranthene	1	ANZG 2018
Phenanthrene	0.6	ANZG 2018
Anthracene	0.01	ANZG 2018
Benzo(a)pyrene	0.1	ANZG 2018
Napthalene	50	ANZG 2018 (99%)
	Organic Compo	ounds
Ammonia	0.91	ANZG 2018
Organochlorine Pesticides	See Table 29	ANZG 2018
Polychlorinated		
Biphenyls	See Table 31	ANZG 2018
Volatile Organic		
Compounds	See Table 28	ANZG 2018
	Organic Compo	
Ammonia	0.91	ANZG 2018
Endosulfan Endrin	0.005 0.004	ANZG 2018 (99%) ANZG 2018 (99%)
Endrin Chlorpyrifos	0.004	ANZG 2018 (99%) ANZG 2018
1,1,2-trichloroethane	1900	ANZG 2018
1,2,4-trichlorobenzene	20	ANZG 2018 (99%)
		•

Note 1: ANZECC 2000 95% level of protection in marine water.

Note 2: EPA NSW 1994 Guidelines for Assessing Service Stations.

Note 3: ID - insufficient data for guideline development.

Note 4: Addition of the combined detection limits

Note 5: Recreational waters guideline (this level was used as there are no guidelines for marine water)

		Table 11: Soil Analytical Resul	lts - Metals¹								
Location	Sample Depth (m)	Sample ID	Date Sampled	Arsenic	Cadmium	Chromium	Copper	Nickel	Lead	Zinc	Mercury
SP4 Enterprise			Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
ABH202	0.45-0.55	090508-192-KW	09 May 2008	7.1	< 1	8.5	24	4.7	180	69	< 0.1
ABH202	1.9-2.2	090508-202-KW	09 May 2008	8	< 1	3.6	< 1	1.6	1.7	1.4	< 0.1
ABH202 ABH204	3.8-4 0.1-0.4	150508-601-KW 070508-55-KW	15 May 2008 07 May 2008	nt < 4	nt < 1	nt 3.1	nt 3.9	nt 1	9.9	nt 4.8	nt < 0.1
ABH204	0.1-0.4	070508-56-KW Field Blind Replicate Sample of 070508-55-KW	07 May 2008	< 4	< 1	3.1	6.5	1	16	16	< 0.1
ABH204	0.1-0.4	070508-57-KW Split Field Duplicate of 070508-55-KW	07 May 2008	< 5	< 1	2	6	< 2	9	8	< 0.1
ABH205 ABH205	0.1-0.2 0.4-0.5	060508-49-KW 060508-50-KW	06 May 2008 06 May 2008	< 4 9.3	< 1	3.4 7	12	3.9 1.5	33 23	64 13	< 0.14
ABH206	0.1-0.2	090508-208-KW	09 May 2008	< 4	< 1	3.1	11	2.7	47	36	0.9
ABH206 ABH207	1-1.2 0.2-0.4	090508-209-KW 090508-207-KW	09 May 2008 09 May 2008	< 4	< 1	< 1 6	1.9 2.2	< 1 1.7	< 1 6.3	33 7.1	< 0.1
ABH210	0.1-0.2	060508-46-KW	06 May 2008	13	< 1	4	8.1	3.4	26	27	< 0.1
ABH2102	0.7-0.8	090508-186-KW	09 May 2008	4.6	< 1	3.9	13	7.2	40	44	0.26
ABH2103 ABH2103	0.1-0.2 0.1-0.2	090508-194-KW 090508-195-KW Field Blind Replicate Sample of 090508-194-KW	09 May 2008 09 May 2008	< 4	< 1	9.7 4.2	13 7.3	12	950 1200	41 34	< 0.1
ABH2103	0.9-1	090508-197-KW	09 May 2008	< 4	< 1	2.8	13	1.5	61	57	0.53
ABH2104	0.3-0.5	090508-198-KW	09 May 2008	< 4	< 1	11	22	15	990	200	< 0.1
ABH2105 ABH2105	1.4-1.5 3.8-4	150508-333-KW 150508-600-KW	15 May 2008 15 May 2008	nt nt	nt nt	nt nt	nt nt	nt nt	37 2.2	nt nt	nt nt
ABH2106	0.1-0.2	090508-204-KW	09 May 2008	< 4	< 1	6.7	25	9.2	130	89	< 0.1
ABH2107 ABH2107	1-1.1 1.5-1.6	150508-341-KW 150508-342-KW	15 May 2008 15 May 2008	nt nt	nt nt	nt nt	nt nt	nt nt	58 2.8	nt nt	nt nt
ABH2108	0.1-0.2	150508-342-KW 150508-343-KW	15 May 2008	< 4	< 1	4.2	4.6	4.2	54	20	< 0.1
ABH2108	1.1-1.2	150508-345-KW	15 May 2008	nt	nt	nt	nt	nt	8.2	nt	nt
ABH2108 ABH211	4.2-4.5 1-1.2	150508-348-KW 120508-215-KW	15 May 2008 12 May 2008	nt < 4	nt < 1	nt 1.6	nt < 1	nt < 1	2.1	nt 2.1	nt 0.14
ABH211	1-1.2	120508-216-KW Split Field Duplicate Sample of 120508-215-KW	12 May 2008	< 5	< 1	2	< 5	< 2	< 5	< 5	< 0.14
ABH212	0.35-0.45 0.5-0.6	080508-161-KW	08 May 2008	6.3	< 1	7.2	240	8.6 1.3	33 10	340	< 0.1
ABH213 ABH215	0.5-0.6	120508-212-KW 060508-36-KW	12 May 2008 06 May 2008	< 4 11	< 1	17	3.1	7.4	29	11 82	< 0.1
ABH215	0.7-0.9	060508-37-KW Field Blind Replicate Sample of 060508-36-KW	06 May 2008	6.5	< 1	2.7	< 1	1.6	1.4	3	< 0.1
ABH215 ABH216	0.7-0.9 0-0.2	060508-38-KW Split Sample Replicate of Sample 060508-37-KW 060508-40-KW	06 May 2008 06 May 2008	<5 12	<1 <1	3 23	<5 10	<5 6.4	<2 20	<5 34	< 0.1
ABH216	2.6-2.8	060508-40-KW 060508-42-KW	06 May 2008	< 4	< 1	1	< 1	< 1	< 1	4.4	< 0.1
ABH217	0-0.2	060508-43-KW	06 May 2008	< 4	< 1	3.5	11	1.9	36	38	< 0.1
ABH226 ABH227	0-0.1 0.8-1	060508-06-KW 060508-09-KW	06 May 2008 06 May 2008	9.6	< 1	4.2 1.9	9.9	1.6	45 12	50 6.1	< 0.1
ABH227	0.2-0.3	060508-04-KW	06 May 2008	7	< 1	3.9	27	21	11	38	0.71
ABH229	0.5-0.6	060508-05-KW	06 May 2008	< 4	< 1	1.4	1.5	< 1	7.7	7.1	< 0.1
ABH229 ABH297	0.1-0.25 0.5-0.55	080508-158-KW 090508-165-KW	08 May 2008 09 May 2008	< 4 6.2	< 1	1.9 2.1	7.6	1.5	34 14	67 11	0.29
ABH297	0.9-1.0	090508-166-KW	09 May 2008	4.5	< 1	2.3	8.5	1.6	31	51	0.14
ABH299 ABH299	0.1-0.2 1.2-1.3	090508-168-KW 090508-182-KW	09 May 2008 09 May 2008	5.1 < 4	< 1	3.8 1.7	< 1	1.8	5.7	7.9 28	< 0.1
AMW203	0.25-0.35	090508-188-KW	09 May 2008	4.5	< 1	5.4	16	4.5	68	47	0.23
AMW203	0.7-0.8	090508-189-KW	09 May 2008	< 4	< 1	2.4	33	15	21	33	< 0.1
RE1 Public Recreatio BBH401	0.2-0.4	280408-01-KW	28 Apr 2008	4.9	< 1	4.1	3.4	2.3	7.7	12	0.13
BBH402	0.5-0.6	280408-06-KW	28 Apr 2008	8.7	< 1	15	44	32	64	65	< 0.1
BBH426 BBH426	0.1-0.2	290408-69-KW 290408-70-KW	29 Apr 2008	< 4	< 1	4.4	7.6	1.4	34	46 2.8	< 0.1
SP4 Enterprise	0.5-0.6	290400-70-KW	29 Apr 2008	< 4	< 1	< 1	< 1	< 1	2.4	2.0	< 0.1
ABH228	2.5-2.6	060508-12-KW	06 May 2008	< 4	< 1	1.2	< 1	< 1	1.2	14	< 0.1
ABH229 ABH229	0.1-0.3 0.5-0.8	060508-13-KW 060508-14-KW	06 May 2008 06 May 2008	68 < 4	< 1	9.7 2.1	31 < 1	2 < 1	68 1.1	13 36	0.27 < 0.1
ABH229	0.5-0.8	060508-15-KW Field Blind Replicate Sample of 060508-14-KW	06 May 2008	< 4	< 1	1.8	< 1	< 1	1.2	12	< 0.1
ABH229	0.5-0.8	060508-16-KW Split Field Duplicate of 060508-14-KW	06 May 2008	<5	<1	<2	<5	<5	<2	28	< 0.1
ABH230 ABH231	0.5-0.6 0-0.3	080508-149-KW 080508-151-KW	08 May 2008 08 May 2008	4.9 < 4	< 1	7.3 < 1	11 3.4	5.4 < 1	26 18	29 18	< 0.1
ABH231	0.6-0.7	080508-152-KW	08 May 2008	< 4	< 1	1.3	1.6	< 1	7.8	9	< 0.1
ABH231 RE1 Public Recreatio	0.6-0.7	080508-153-KW Field Blind Replicate Sample of 080508-152-KW	08 May 2008	< 4	< 1	1.2	1.8	< 1	9.1	12	< 0.1
ABH235	0-0.1	070508-79-KW	07 May 2008	< 4	< 1	3.4	9.5	1.4	36	21	< 0.1
ABH235	0.4-0.55	070508-80-KW	07 May 2008	23	< 1	31	8.4	11	21	40	< 0.1
SP4 Enterprise ABH236	0-0.1	080508-102-KW	08 May 2008	< 4	> 1	4.3	7.0	2.3	32	20	< 0.1
ABH236 ABH237	0-0.1	080508-102-KW 060508-27-KW	08 May 2008 06 May 2008	< 4	< 1	2.1	7.9 5.3	1.1	21	38	< 0.1
ABH238	0.1-0.5	060508-23-KW	06 May 2008	< 4	< 1	3.5	2.3	1	3.3	9.7	< 0.1
ABH240 ABH240	0.1-0.4 0.1-0.4	080508-123-KW 080508-124-KW Field Blind Replicate Sample of 080508-123-KW	08 May 2008 08 May 2008	< 4	< 1	2.6	1.8	< 1	3.5	5.3 3.3	< 0.1
ABH240	0.1-0.4	080508-125-KW Split Field Duplicate of 080508-123-KW	08 May 2008	< 5	< 1	2	< 5	< 2	< 5	< 5	< 0.1
ABH241	0-0.1	080508-127-KW	08 May 2008	< 4	< 1	3.1	12	3	27	48	< 0.1
ABH242 ABH242	0.5-0.7 0.5-0.7	080508-145-KW 080508-146-KW Field Blind Replicate Sample of 080508-145-KW	08 May 2008 08 May 2008	< 4 6.7	< 1	7.2 12	9.7	2.1	26 26	32 23	0.24
ABH242	2.6-2.8	080508-147-KW	08 May 2008	< 4	< 1	< 1	< 1	< 1	< 1	< 1	< 0.1
ABH243 RE1 Public Recreatio	0.2-0.3	080508-142-KW	08 May 2008	8.1	1.8	20	110	15	180	320	0.71
ABH247	1-1.2	070508-100-KW	07 May 2008	< 4	< 1	5.8	2.6	4	3.9	63	< 0.1
ABH248	1-1.1	080508-106-KW	08 May 2008	< 4	< 1	1	< 1	< 1	1.1	1.7	< 0.1
ABH248 SP4 Enterprise	1-1.1	080508-107-KW Field Blind Replicate Sample of 080508-106-KW	08 May 2008	< 4	< 1	< 1	< 1	< 1	< 1	4.2	< 0.1
ABH249	1-1.1	080508-110-KW	08 May 2008	< 4	< 1	1.9	8.5	6.3	2.7	49	< 0.1
	1.2-1.4	080508-111-KW	08 May 2008	< 4	< 1	1.6	< 1	< 1	< 1	4.5	< 0.1
ABH249	0.7-0.9	080508-114-KW 080508-115-KW	08 May 2008 08 May 2008	< 4 8.3	< 1	3.2 5.6	6.3	9.1 1.1	2.6 8.5	14 12	< 0.1
ABH250	1.5-1.6			< 4	< 1	3.0	6.3	1.5	20	32	< 0.1
ABH250 ABH250 ABH251	1.5-1.6 0-0.1	080508-116-KW	08 May 2008								
ABH250 ABH250 ABH251 ABH252	0-0.1 0.6-0.8	080508-116-KW 080508-131-KW	08 May 2008	11	< 1	14	9.6	5.5	22	43	< 0.1
ABH250 ABH250 ABH251	0-0.1	080508-116-KW		11 < 4 4.9	<1 <1 <1	14 5.2 7.3	9.6 18 16	5.5 2.6 3.6	22 50 35	43 73 48	< 0.1 < 0.1 < 0.1
ABH250 ABH250 ABH251 ABH252 ABH253 ABH254 ABH254	0-0.1 0.6-0.8 0-0.1 0-0.1 0.6-0.7	080508-116-KW 080508-131-KW 080508-133-KW 080508-136-KW 080508-137-KW	08 May 2008 08 May 2008 08 May 2008 08 May 2008	< 4 4.9 28	< 1 < 1 2	5.2 7.3 48	18 16 36	2.6 3.6 12	50 35 40	73 48 150	< 0.1 < 0.1 0.29
ABH250 ABH250 ABH251 ABH252 ABH253 ABH253 ABH254 ABH254 ABH254	0-0.1 0.6-0.8 0-0.1 0-0.1 0.6-0.7 0-0.2	080508-116-KW 080508-131-KW 080508-133-KW 080508-136-KW	08 May 2008 08 May 2008 08 May 2008	< 4 4.9	< 1 < 1	5.2 7.3	18 16	2.6 3.6	50 35	73 48	< 0.1 < 0.1
ABH250 ABH250 ABH251 ABH252 ABH253 ABH254 ABH254	0-0.1 0.6-0.8 0-0.1 0-0.1 0.6-0.7 0-0.2	080508-116-KW 080508-131-KW 080508-133-KW 080508-136-KW 080508-137-KW	08 May 2008 08 May 2008 08 May 2008 08 May 2008	< 4 4.9 28	< 1 < 1 2	5.2 7.3 48	18 16 36	2.6 3.6 12	50 35 40	73 48 150	< 0.1 < 0.1 0.29
ABH250 ABH250 ABH251 ABH252 ABH253 ABH254 ABH254 ABH254 ABH255 RE1 Public Recreatio	0-0.1 0.6-0.8 0-0.1 0-0.1 0.6-0.7 0-0.2	080508-116-KW 080508-131-KW 080508-133-KW 080508-136-KW 080508-137-KW 080508-139-KW	08 May 2008 08 May 2008 08 May 2008 08 May 2008 08 May 2008	< 4 4.9 28 6.3	< 1 < 1 2 < 1	5.2 7.3 48 7.8	18 16 36 9.7	2.6 3.6 12 2.8	50 35 40 21	73 48 150 36	< 0.1 < 0.1 0.29 0.15

		Table 11: Soil Analytical Resul											
Location	Sample Depth (m)	Sample ID	Date Sampled	Arsenic	Cadmium	Chromium	Copper	Nickel	Lead	Zinc	Mercury		
SP4 Enterprise			Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		
ABH261	0-0.2	120508-244-KW	12 May 2008	< 4	< 1	4.1	22	1.6	100	130	< 0.1		
ABH265	0-0.1	120508-228-KW	12 May 2008	4.7	< 1	5.1	8.3	2.3	21	32	< 0.1		
ABH265	0.9-1.1	120508-229-KW	12 May 2008	< 4	< 1	< 1	1.2	< 1	< 1	2.1	< 0.1		
ABH265	0.9-1.1	120508-230-KW Split Field Duplicate Sample of 120508-229-KW	12 May 2008	< 5	< 1	< 2	< 5	< 2	< 5	< 5	< 0.1		
ABH266	1.2-1.3	120508-227-KW	12 May 2008	5.8	< 1	15	15	2.8	18	59	< 0.1		
ABH267	0-0.2	120508-223-KW	12 May 2008	< 4	< 1	2.3	6.4	1.2	23	26	< 0.1		
ABH268	0-0.2	120508-275-KW	12 May 2008	< 4	< 1	4.6	11	2.6	28	33	0.24		
RE1 Public Recreation			•					1			,		
ABH270	0.1-0.2	130508-311-KW	13 May 2008	< 4	< 1	< 1	1.3	< 1	2.7	5.1	< 0.1		
ABH270	1.5-1.6	130508-312-KW	13 May 2008	< 4	< 1	< 1	< 1	< 1	1.2	< 1	< 0.1		
ABH271	0-0.2	130508-308-KW	13 May 2008	12	< 1	8.8	20	4.5	36	42	0.29		
ABH271 ABH272	0.4-0.5 0.1-0.5	130508-309-KW 130508-304-KW	13 May 2008 13 May 2008	< 4 < 4	< 1	< 1 4.1	1.8	< 1	< 1	< 1 120	< 0.1		
ABH272	0.1-0.5	130508-305-KW Field Blind Replicate Sample of 130508-304-KW		< 4	< 1	4.1	17	2.2	72 81	110	0.12		
ABH272	2.1-2.2	130508-305-KW Field Blind Replicate Sample of 130508-304-KW	13 May 2008 13 May 2008	24	1.3	59	36	15	92	250	0.18		
ABH273	0.05-0.15	130508-292-KW	13 May 2008	< 4	< 1	5.3	8.6	2.5	25	38	< 0.1		
ABH273	0.7-0.8	130508-293-KW	13 May 2008	< 4	< 1	2.8	3.7	< 1	13	17	< 0.1		
ABH274	0.5-0.6	130508-290-KW	13 May 2008	< 4	< 1	1.9	2.3	< 1	5.5	6.5	< 0.1		
ABH275	0.8-1.2	130508-286-KW	13 May 2008	< 4	< 1	< 1	< 1	< 1	< 1	3.5	< 0.1		
ABH275	0.8-1.2	130508-287-KW Field Blind Replicate Sample of 130508-286-KW	13 May 2008	< 4	< 1	< 1	< 1	< 1	< 1	1.3	< 0.1		
ABH275	0.8-1.2	130508-288-KW Split Field Duplicate of 130508-286-KW	13 May 2008	< 5	< 1	< 2	< 5	< 2	< 5	< 5	< 0.1		
ABH276	0.05-0.25	130508-282-KW	13 May 2008	4.5	< 1	16	45	11	110	150	0.16		
ABH276	0.8-1	130508-283-KW	13 May 2008	4	< 1	19	66	18	120	110	0.16		
SP4 Enterprise													
ABH277	1.1-1.2	130508-280-KW	13 May 2008	12	< 1	7.3	15	3.9	45	14	0.15		
ABH277	2.1-2.2	130508-281-KW	13 May 2008	< 4	< 1	8.4	2	1.1	4.3	3.6	< 0.1		
RE1 Public Recreation			•										
ABH283	0-0.2	150508-381-KW	15 May 2008	26	< 1	58	48	6.4	75	77	0.37		
ABH284	1.3-1.6	150508-385-KW	15 May 2008	< 4	< 1	2	1.7	1.3	2.7	25	< 0.1		
ABH284 ABH284	1.3-1.6 1.3-1.6	150508-386-KW Field Blind Replicate Sample of 150508-385-KW	15 May 2008 15 May 2008	< 4 < 5	< 1	1.1	1.4	1.3	1.2	16 26	< 0.1		
SP4 Enterprise	1.5-1.0	150508-387-KW Split Field Duplicate of 150508-385-KW	13 May 2008	< 3	< 1	4	0	0	9	20	< 0.1		
ABH285	0-0.2	150508-389-KW	15 May 2008	11	< 1	21	30	7.5	160	150	0.53		
ABH286	0.1-0.3	150508-393-KW	15 May 2008	< 4	< 1	2.2	3.5	1.4	11	14	< 0.1		
ABH286	2.3-2.5	150508-393-KW	15 May 2008	< 4	< 1	4.2	< 1	< 1	2.1	1.9	< 0.1		
ABH286	2.3-2.5	150508-394-KW Field Blind Replicate Sample of 150508-393-KW	15 May 2008	< 4	< 1	4.1	< 1	1	1.8	1.2	< 0.1		
RE1 Public Recreation		Α Α											
ABH287	0-0.4	150508-378-KW	15 May 2008	4.5	< 1	7.4	5.4	2.3	14	31	< 0.1		
ABH287	0-0.4	150508-379-KW Field Blind Replicate Sample of 150508-378-KW	15 May 2008	< 4	< 1	5.9	5.7	1.8	18	26	< 0.1		
ABH288	0.7-0.8	150508-374-KW	15 May 2008	7.6	< 1	8.9	4.5	2.8	5.6	11	< 0.1		
ABH289	0-0.3	150508-370-KW	15 May 2008	22	< 1	42	28	8.5	65	88	0.3		
ABH289	0-0.3	150508-371-KW Field Blind Replicate Sample of 150508-370-KW	15 May 2008	25	< 1	53	40	9.5	77	100	0.44		
ABH290	1.3-1.4	150508-359-KW	15 May 2008	7.7	< 1	22	19	5.2	48	67	0.3		
SP4 Enterprise			T		1			1 .			1 .		
ABH291	0.1-0.5	150508-352-KW	15 May 2008	< 4	< 1	2	2.2	1.9	64	14	< 0.1		
ABH291	0.1-0.5	150508-353-KW Field Blind Replicate Sample of 150508-352-KW	15 May 2008	< 4	< 1	1.6	2.7	1.4	140	20	< 0.1		
ABH291 ABH291	0.1-0.5 2.7-2.8	150508-354-KW Split Field Duplicate of 150508-352-KW	15 May 2008 15 May 2008	< 5 17	< 1	< 2 4.9	< 5 16	< 2 4.2	46 130	13 12	< 0.1		
ABH291 ABH291	2.7-2.8 4-4.2	150508-356-KW 150508-357-KW	15 May 2008 15 May 2008	< 4	< 1	5.4	1.1	2.1	2.8	4	< 0.1		
RE1 Public Recreation		150500-557-1XW	15 May 2008	` *	\ 1	J.4	1.1	2.1	2.0	1 7	< 0.1		
ABH293	0.4-0.5	130508-328-KW	13 May 2008	< 4	< 1	6.5	9.4	3.6	56	42	< 0.1		
ABH293	2.1-2.2	130508-330-KW	13 May 2008	19	2.4	50	40	15	120	260	0.65		
ABH294	0.5-0.6	150508-368-KW	15 May 2008	18	1	34	26	11	61	110	0.27		
ALG204	1.6-1.7	150508-377-KW	15 May 2008	< 4	< 1	< 1	< 1	< 1	< 1	< 1	< 0.1		
ALG205	1.1-1.2	150508-364-KW	15 May 2008	< 4	< 1	3.5	3.1	2.3	5.3	30	< 0.1		
ALG205	2.6-2.8	150508-365-KW	15 May 2008	< 4	< 1	3.7	3.9	< 1	8.9	33	< 0.1		
AMW204	0.9-1	080508-119-KW	08 May 2008	19	< 1	27	8.1	9.8	20	29	< 0.1		
AMW204	2.6-2.8	080508-120-KW	08 May 2008	22	< 1	6.7	< 1	5.1	2.6	3.2	< 0.1		
	0.1-0.2	080508-155-KW	08 May 2008	< 4	< 1	1.5	< 1	< 1	5.8	16	< 0.1		
AMW205											< 0.1		
AMW205	2-2.2	080508-157-KW	08 May 2008	< 4	< 1	2.4	< 1	1.3	1.1	10	< 0.1		
AMW205 AMW207	2-2.2 0.5-0.7	120508-219-KW	12 May 2008	9.9	< 1	20	7500	59	350	540	< 0.1		
AMW205	2-2.2												

		Table 11: Soil Analytical Resul	lts - Metals ¹								
Location	Sample Depth (m)	Sample ID	Date Sampled Units	Arsenic	Cadmium Cadmium	Chromium	Copper	Nickel	Lead	Zinc	Mercury Mercury
BBH403	1.1-1.4	280408-13-KW Field Blind Replicate Sample of 280408-12-KW	28 Apr 2008	mg/kg 5.8	< 1	mg/kg 5.2	mg/kg 3.4	mg/kg 1.9	mg/kg 11	mg/kg 7.5	< 0.1
BBH403	1.1-1.4	280408-14-KW Split Field Duplicate of 280408-12-KW	28 Apr 2008	11	< 1	4	< 5	< 2	< 5	< 5	< 0.1
BBH404	0-0.1	280408-15-KW	28 Apr 2008	< 4	< 1	14	24	42	12	40	< 0.1
BBH405	0-0.2	290408-48-KW	28 Apr 2008	< 4	< 1	4.2	3.6	2.3	68	25	< 0.1
BBH405	0.4-0.5	290408-49-KW	28 Apr 2008	< 4	< 1	4	9.9	6.2	140	62	0.15
BBH407 BBH411	0.05-0.15 0.2-0.4	290408-43-KW 290408-36-KW	29 Apr 2008 29 Apr 2008	8 7.3	< 1	7 11	6.1	6.1 7.1	43 16	29 13	< 0.1
BBH411	0.8-0.9	290408-30-KW 290408-37-KW	29 Apr 2008	9.7	< 1	70	90	49	230	180	< 0.1
BBH415	0.1-0.3	300408-78-KW	30 Apr 2008	9.6	< 1	13	19	1.6	13	9.1	< 0.1
SP4 Enterprise											
BBH421	0-0.1	300408-105-KW	30 Apr 2008	< 4	< 1	3.1	5.2	1.2	16	22	< 0.1
BBH422	2-2.2	300408-113-KW	30 Apr 2008	29	1.9	38	15	16	40	110	0.33
RE1 Public Recreation		200100 01 7777				0.0	_				0.4
BBH423 BBH423	0.1-0.3 0.7-0.8	300408-81-KW 300408-82-KW	30 Apr 2008	4.7	< 1	3.7 5	5 6.7	2.3 3.2	20 10	51 7.4	< 0.1
BBH460	0-0.15	010508-114-KW	30 Apr 2008 01 May 2008	5.2	< 1	7.5	7	1.7	18	22	< 0.1
BMW401	0.15-0.35	020508-14KW	02 May 2008	< 4	< 1	2.8	4.1	1.1	75	27	0.11
BMW401	1.3-1.4	020508-188-KW	02 May 2008	< 4	1	35	110	12	360	200	3.7
BBH454	0-0.1	010508-126-KW	01 May 2008	6.5	< 1	8.4	6	3.8	12	24	< 0.1
BBH454	2.2-2.3	010508-128-KW	01 May 2008	< 4	< 1	5.9	44	1.1	36	57	0.36
BBH406	0.1-0.2	290408-46-KW	29 Apr 2008	15	< 1	26	79	4.2	130	120	0.34
BBH406	0.6-0.8	290408-47-KW	29 Apr 2008	38	< 1	7.3	12	2.1	62	43	0.27
BBH409	0.2-0.5	290408-39-KW	29 Apr 2008	82	< 1	73	160	3.8	290	140	0.49
BBH409 BBH409	0.2-0.5 0.2-0.5	290408-40-KW Field Blind Replicate Sample of 290408-39-KW 290408-41-KW Split Field Duplicate of 290408-39-KW	29 Apr 2008 29 Apr 2008	40 56	< 1	97 72	150 133	4.3	360 268	150 111	0.58
BBH417	0.2-0.4	290408-41-KW Spirit Field Duplicate of 290408-39-KW	29 Apr 2008	8.7	< 1	16	60	9.2	69	160	0.3
BBH429	0-0.1	010508-152-KW	01 May 2008	< 4	< 1	8.4	36	9.2	160	100	0.15
BBH429	2.4-2.5	010508-155-KW	01 May 2008	14	< 1	15	90	30	450	420	2.1
SP4 Enterprise			•	•	•		•		•		
BBH430	2.4-2.6	300408-107-KW	30 Apr 2008	44	3	65	260	59	2100	1100	0.65
RE1 Public Recreation	1	200100 01 7777		т.					1		
BBH431	0.1-0.2	300408-84-KW	30 Apr 2008	< 4	< 1	3.1	5.1	1.1	13	25	< 0.1
BBH431 BBH432	0.5-0.6 0-0.1	300408-85-KW 010508-160-KW	30 Apr 2008 01 May 2008	< 4 10	< 1	7.4	12 24	2.8 6.8	9.3 59	23 120	< 0.1
SP4 Enterprise	0-0.1	WA-001-60C010	01 May 2008	10	< 1	20	24	0.0	39	120	0.20
BBH433	0.1-0.3	010508-156-KW	01 May 2008	16	< 1	19	66	12	110	190	0.4
BBH433	0.1-0.3	010508-157-KW Field Blind Replicate Sample of 010508-156-KW	01 May 2008	7.9	< 1	14	41	6.6	160	180	0.35
BBH433	2.4-2.5	010508-159-KW	01 May 2008	28	7.7	87	180	18	4400	7800	0.93
BBH434	0-0.2	300408-108-KW	30 Apr 2008	< 4	< 1	2.5	5.9	< 1	30	36	< 0.1
BBH434	0.5-0.6	300408-109-KW	30 Apr 2008	< 4	< 1	1.9	3.3	< 1	42	75	< 0.1
BBH435	0.1-0.3	300408-110-KW	30 Apr 2008	4.8	< 1	7.3	13	2.2	55	42	0.12
RE1 Public Recreation											
BBH436	0.1-0.3	300408-87-KW	30 Apr 2008	< 4	< 1	7.1	6.4	1.8	26	40	< 0.1
BBH436 BBH439	0.5-0.6 0.1-0.2	300408-88-KW 010508-133-KW	30 Apr 2008 01 May 2008	4.5 8.2	< 1	3.7	4.8 34	1 12	3.9 75	17 110	< 0.1
BBH439	0.2-0.4	010508-134-KW	01 May 2008	11	1.1	20	71	17	140	260	0.54
BBH440	0.2-0.4	010508-148-KW	01 May 2008	< 4	< 1	2	2.4	< 1	4	6.5	< 0.1
BBH440	1-1.1	010508-149-KW	01 May 2008	< 4	< 1	1	3.8	< 1	2.7	9.5	< 0.1
SP4 Enterprise	•		•				•		•	•	
BBH441	0-0.2	010508-150-KW	01 May 2008	< 4	< 1	2.5	6.1	1.3	110	39	< 0.1
BBH442	0.1-0.4	300408-101-KW	30 Apr 2008	5	< 1	7.8	86	2.4	48	86	0.22
BBH442	0.1-0.4	300408-102-KW Field Blind Replicate Sample of 300408-101-KW	30 Apr 2008	< 4	< 1	5.8	40	1.8	30	61	0.12
RE1 Public Recreation											
BBH443	0.4-0.5	300408-89-KW	30 Apr 2008	5.3	< 1	8.8	11	< 1	9.1	2.1	< 0.1
BBH443 BBH443	0.4-0.5 2.2-2.4	300408-90-KW Field Blind Replicate Sample of 300408-89-KW 300408-91-KW	30 Apr 2008 30 Apr 2008	< 4 11	< 1	4.6	6.3 2.2	2.7	8.6 4.4	8.4 2.7	< 0.1
BBH445	0.1-0.4	010508-136-KW	01 May 2008	< 4	< 1	1.4	1.9	< 1	3	6.9	< 0.1
BBH445	0.1-0.4	010508-137-KW Field Blind Replicate Sample of 010508-136-KW	01 May 2008	< 4	< 1	1.4	2.3	< 1	5	8.7	< 0.1
BBH445	0.1-0.4	010508-138-KW Split Field Duplicate Sample of 010508-136-KW	01 May 2008	<5	<1	3	6	<2	18	18	< 0.1
BBH445	1.8-1.9	010508-139-KW	01 May 2008	23	< 1	38	17	12	40	89	0.48
SP4 Enterprise											
BBH446	0.1-0.2	010508-146-KW	01 May 2008	11	< 1	11	26	3.5	66	84	0.27
BBH447	0.1-0.2	010508-144-KW	01 May 2008	< 4	< 1	1.6	3.8	< 1	51	25	< 0.1
BBH448 RE1 Public Recreation	0.1-0.2	300408-98-KW	30 Apr 2008	7.4	< 1	13	10	4.5	22	30	< 0.1
BBH450	0.4-0.5	010508-140-KW	01 May 2008	< 4	< 1	< 1	< 1	< 1	1.9	3	< 0.1
BBH450	0.8-1	010508-141-KW	01 May 2008	< 4	< 1	< 1	<1	1.5	1.1	2.2	< 0.1
BBH451	0-0.2	010508-142-KW	01 May 2008	4.7	< 1	9.7	19	3.4	58	52	< 0.1
SP4 Enterprise											
BBH452	0.1-0.2	300408-96-KW	30 Apr 2008	8.5	< 1	14	21	5.5	48	68	0.25
RE1 Public Recreation		200409 02 1/W	20 4 2000			0.2	10	2.7	25	10	-01
BBH453	0.2-0.3	300408-92-KW	30 Apr 2008	< 4	< 1	8.3	12	2.7	25	18	< 0.1
BBH455	0.1-0.2 0.5-0.6	010508-120-KW	01 May 2008	< 4	< 1	1.8	1.3	1.2	4.9	17	< 0.1
BBH455 BBH456	0.5-0.6	010508-121-KW 010508-118-KW	01 May 2008 01 May 2008	22 < 4	< 1	7.5	30 5.3	7.5	54 120	56 78	0.3 < 0.1
BBH456	1-1.2	010508-118-KW 010508-119-KW	01 May 2008 01 May 2008	< 4	< 1	< 1	< 1	< 1	1.7	2.3	< 0.1
BBH457	0.45-0.6	300408-94-KW	30 Apr 2008	< 4	< 1	5.1	12	11	3.3	9.9	< 0.1
BBH457	1.1-1.2	300408-95-KW	30 Apr 2008	12	< 1	20	3.5	6.6	8.3	13	< 0.1
HIL-C Recreation			· · · · · · · · · · · · · · · · · · ·	300	90		17000	1200	600	30000	80
HIL-D Commercia	al			3000	900	-	240000	6000	1500	400000	730
EIL - Urban reside	ential / public open sp	ace		100	-	200	103	35	1131	275	-
EIL - Commercial	/ Industrial			160	-	320	148	60	1831	405	-
Concentrations above this ac	ction level are shown in bold tex	ut.					_				

<### Represents results below the laboratory Practical Quantitation Limit.</p>
nt = Not Tested
-- = Action Level not established

		Table	e 12: Soil Analytica	al Results -		X1							
Location	Sample Depth (m)	Sample ID	Date Sampled Units	6O - 9O HAL Ce - Co	g TPH C10 - C14	My TPH C15 - C28	M TPH C29 - C36	Benzene mg/kg	Toluene Toluene	Ethylbenzene	meta- & para- Xylene	mg/kg	Total Xylenes
SP4 Enter ABH202	prise 0.45-0.55	090508-192-KW	09 May 2008	< 25	< 50	< 100	< 100	< 0.5	< 0.5	< 1	< 2	< 1	< 1
ABH202 ABH202	1.9-2.2 3.8-4	090508-202-KW 150508-601-KW	09 May 2008 15 May 2008	< 25 < 25	< 50 < 50	< 100 < 100	< 100 < 100	< 0.5	< 0.5	<1	< 2	<1	< 1
ABH204 ABH204	0.1-0.4 0.1-0.4	070508-55-KW 070508-56-KW Field Blind Replicate Sample of 070508-55-KW	07 May 2008 07 May 2008	< 25 < 25	< 50 < 50	< 100 < 100	< 100 < 100	< 0.5 < 0.5	< 0.5	<1	< 2	<1	< 1
ABH204 ABH205	0.1-0.4 0.1-0.2 0.1-0.2	070508-57-KW Split Field Duplicate of 070508-55-KW 060508-49-KW 060508-46-KW	07 May 2008 06 May 2008	< 10	< 50 < 50	< 100	< 100 < 100 < 100	< 0.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
ABH210 ABH210 ABH2103	0.1-0.2 0.3-0.5 0.9-1	060508-46-KW 060508-47-KW 090508-197-KW	06 May 2008 06 May 2008 09 May 2008	< 25 < 25 < 25	50 < 50 < 50	< 100 < 100 < 100	< 100 < 100 < 100	< 0.5 < 0.5 < 0.5	< 0.5 < 0.5	<1	< 2 < 2 < 2	<1	<1 <1 <1
ABH2103 ABH2104	1.3-1.4 0.3-0.5	090508-197-KW 090508-199-KW 090508-198-KW	09 May 2008 09 May 2008 09 May 2008	< 25 < 25 < 25	< 50 < 50	< 100 < 100 < 100	< 100 < 100 < 100	< 0.5 < 0.5	< 0.5	<1	< 2	<1	<1
ABH2105 ABH2105	1.4-1.5	150508-333-KW 150508-346-KW	15 May 2008 15 May 2008	200	720	130	< 100	8.9	2.1	22	53	3.4	56.4
ABH2105 ABH2106	3.8-4 1.1-1.2	150508-600-KW 090508-205-KW	15 May 2008 09 May 2008	< 25	< 50 < 50	< 100 < 100	< 100 < 100	< 0.5	< 0.5	<1	< 2	<1	< 1
ABH2107 ABH2107	0.5-0.6 1-1.1	150508-340-KW 150508-341-KW	15 May 2008 15 May 2008	< 25 1400	< 50 2400	< 100 190	< 100 < 100	< 0.5 51	< 0.5	< 1 120	< 2 470	< 1 160	< 1 630
ABH2107 ABH2108	1.5-1.6 0.1-0.2	150508-342-KW 150508-343-KW	15 May 2008 15 May 2008	1900 < 25	4300 < 50	590 < 100	< 100 < 100	96 < 0.5	470 < 0.5	88 < 1	340 < 2	130 < 1	470 <1
ABH2108 ABH2108	1.1-1.2 3-3.1	150508-345-KW 150508-347-KW	15 May 2008 15 May 2008	860 < 25	2900 < 50	270 < 100	< 100 < 100	28 < 0.5	150 < 0.5	59 < 1	250 < 2	88 < 1	338 < 1
ABH2108 ABH212 ABH217	4.2-4.5 0.35-0.45 0.2-0.5	150508-348-KW 080508-161-KW 060508-44-KW	15 May 2008 08 May 2008 06 May 2008	< 25 < 25 < 25	< 50 < 50 < 50	< 100 < 100 < 100	<100 <100 <100	< 0.5 < 0.5 < 0.5	< 0.5 < 0.5	<1	< 2 < 2 < 2	<1	<1 <1 <1
ABH219 ABH220	0.2-0.5 0-0.2 0.2-0.3	060508-08-KW 060508-04-KW	06 May 2008 06 May 2008	< 25 < 25 < 25	< 50 < 50	< 100 < 100 130	< 100 < 100 < 100	< 0.5 < 0.5	< 0.5	<1	< 2	<1	<1 <1
ABH221	0.75-0.85 ic Recreation	080508-159-KW	08 May 2008	< 25	< 50	< 100	< 100	< 0.5	< 0.5	<1	< 2	<1	<1
BBH401 BBH402	0.5-0.6	280408-02-KW 280408-07-KW	28 Apr 2008 28 Apr 2008	< 25 nt	< 50 nt	< 100 nt	< 100 nt	< 0.5	< 0.5	<1	< 2	<1	<1
BBH426 BBH438	1.7-1.8	290408-71-KW 290408-73-KW	29 Apr 2008 30 Apr 2008	< 25	< 50 < 50	< 100 < 100	< 100 200	< 0.5	< 0.5	<1	< 2	<1	< 1
SP4 Enter ABH225	0.2-0.6	060508-34-KW	06 May 2008	< 25	< 50	< 100	< 100	< 0.5	< 0.5	<1	< 2	< 1	< 1
ABH226 ABH227	0.1-0.2 0.2-0.6	060508-20-KW 060508-17-KW	06 May 2008 06 May 2008	< 25 < 25	< 50 < 50	< 100 < 100	< 100 < 100	< 0.5	< 0.5	<1	< 2	<1	<1
ABH227 ABH229	0.2-0.6 0.5-0.8	060508-18-KW Field Blind Replicate Sample of 060508-17-KW 060508-14-KW	06 May 2008 06 May 2008	< 25 < 25	< 50 < 50	< 100 < 100	< 100 < 100	< 0.5	< 0.5	<1	< 2	<1	<1
ABH229 ABH229	0.5-0.8	060508-15-KW Field Blind Replicate Sample of 060508-14-KW 060508-16-KW Split Field Duplicate of 060508-14-KW	06 May 2008 06 May 2008	< 25 <10	< 50 <50	<100 <100	< 100 <100	< 0.5	< 0.5	<0.5	< 2	<0.5	<0.5
ABH231 ABH231	0.5-0.6 0.6-0.7 0.6-0.7	080508-149-KW 080508-152-KW 080508-153-KW Field Blind Replicate Sample of 080508-152-KW	08 May 2008 08 May 2008 08 May 2008	< 25 < 25 < 25	< 50 < 50 < 50	< 100 < 100 < 100	<100 <100 <100	< 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5	<1 <1 <1	< 2	<1 <1 <1	<1 <1 <1
ABH231 ABH238 ABH240	0.6-0.7 1.5-1.6 0.1-0.4	080508-153-KW Field Blind Replicate Sample of 080508-152-KW 060508-26-KW 080508-123-KW	08 May 2008 06 May 2008 08 May 2008	< 25 < 25 < 25	< 50 < 50 < 50	< 100 < 100 < 100	< 100 < 100 < 100	< 0.5 < 0.5 < 0.5	< 0.5 < 0.5	<1 <1	< 2 < 2 < 2	<1 <1 <1	<1 <1 <1
ABH240 ABH240	0.1-0.4	080508-124-KW Field Blind Replicate Sample of 080508-123-KW 080508-125-KW Split Field Duplicate of 080508-123-KW	08 May 2008 08 May 2008	< 25	< 50 < 50	< 100	< 100	< 0.5	< 0.5	<1	< 2	<1	<1
ABH240 ABH241	0.8-1 0.5-0.6	080508-126-KW 080508-128-KW	08 May 2008 08 May 2008	nt < 25	nt < 50	nt < 100	nt < 100	< 0.5	< 0.5	<1	< 2	<1	< 1
ABH243	0.2-0.3 ic Recreation	080508-142-KW	08 May 2008	< 25	< 50	< 100	< 100	< 0.5	< 0.5	<1	< 2	<1	< 1
ABH247 ABH247	0.1-0.4 0.1-0.4	070508-98-KW 070508-99-KW Field Blind Replicate Sample of 070508-98-KW	07 May 2008 07 May 2008	< 25	< 50 < 50	< 100 < 100	< 100 < 100	< 0.5	< 0.5	<1	< 2	<1	<1
ABH248 SP4 Enter		080508-108-KW	08 May 2008	< 25	< 50	< 100	< 100	< 0.5	< 0.5	<1	< 2	< 1	< 1
ABH249 ABH250	1-1.1 0.7-0.9	080508-110-KW 080508-114-KW	08 May 2008 08 May 2008	< 25 < 25	< 50 < 50	< 100 < 100	< 100 < 100	< 0.5	< 0.5	<1	< 2	<1	< 1
ABH252 ABH253 ABH254	0.6-0.8 2-2.1 0-0.1	080508-131-KW 080508-135-KW 080508-136-KW	08 May 2008 08 May 2008 08 May 2008	< 25 < 25 < 25	< 50 < 50 < 50	< 100 < 100 < 100	< 100 < 100 < 100	< 0.5 < 0.5 < 0.5	< 0.5 < 0.5	<1 <1 <1	< 2	<1 <1 <1	<1 <1 <1
ABH255 REI Publi	0.9-1	080508-140-KW	08 May 2008	< 25	< 50	< 100	< 100	< 0.5	< 0.5	<1	< 2	<1	<1
ABH259 ABH260	0.6-0.7	120508-249-KW 120508-245-KW	12 May 2008 12 May 2008	< 25	< 50 < 50	< 100 < 100	< 100 < 100	< 0.5	< 0.5	<1	< 2	<1	<1
ABH260 SP4 Enter	0.6-0.8	120508-246-KW Field Blind Replicate Sample of 120508-245-KW	12 May 2008	< 25	< 50	< 100	< 100	< 0.5	< 0.5	<1	< 2	<1	< 1
ABH261 ABH263	0-0.2 1-1.2	120508-244-KW 120508-236-KW	12 May 2008 12 May 2008	< 25	< 50 < 50	< 100 < 100	< 100 < 100	< 0.5	< 0.5	<1	< 2	<1	<1
ABH265 ABH266	0-0.1 1.2-1.3	120508-228-KW 120508-227-KW	12 May 2008 12 May 2008	< 25 < 25	< 50 < 50	< 100 < 100	< 100 < 100	< 0.5	< 0.5	<1	< 2	<1	< 1
ABH275 ABH275	0.8-1.2 0.8-1.2	130508-286-KW 130508-287-KW Field Blind Replicate Sample of 130508-286-KW	13 May 2008 13 May 2008	nt nt	nt nt	nt nt	nt nt	< 0.5	< 0.5	<1	< 2	<1	<1
	0.8-1.2 ic Recreation	130508-288-KW Split Field Duplicate of 130508-286-KW	13 May 2008	nt	nt	nt	nt	< 0.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
ABH276 SP4 Enter ABH277		130508-283-KW 130508-281-KW	13 May 2008	. 18 - 25	nt - 50	nt < 100	nt < 100	< 0.5	< 0.5	<1	<2	<1	<1
REI Publi ABH281	ic Recreation 0-0.2	130508-302-KW	13 May 2008	< 25	< 50	< 100	< 100	< 0.5	< 0.5	<1		<1	<1
ABH287 ABH287	0-0.4	150508-378-KW 150508-379-KW Field Blind Renlicate Samule of 150508-378-KW	15 May 2008 15 May 2008	< 25	< 50	< 100	<100	< 0.5	< 0.5	<1	< 2	<1	<1
ABH288 ABH289	0.7-0.8 0-0.3	150508-374-KW 150508-370-KW	15 May 2008 15 May 2008	nt < 25	nt < 50	nt < 100	nt < 100	< 0.5 < 0.5	< 0.5	<1	< 2	<1	<1
ABH289 SP4 Enter	0-0.3 prise	150508-371-KW Field Blind Replicate Sample of 150508-370-KW	15 May 2008	< 25	< 50	< 100	< 100	< 0.5	< 0.5	< 1	< 2	< 1	< 1
ABH291 ABH291	0.1-0.5 0.1-0.5	150508-352-KW 150508-353-KW Field Blind Replicate Sample of 150508-352-KW	15 May 2008 15 May 2008	< 25 < 25	< 50 < 50	< 100 < 100	< 100 < 100	< 0.5 < 0.5	< 0.5	<1	< 2	<1	< 1
	0.1-0.5 ic Recreation	150508-354-KW Split Field Duplicate of 150508-352-KW	15 May 2008 13 May 2008	< 10	< 50	< 100	< 100	< 0.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
ABH293 SP4 Enter		130508-329-KW 090508-166-KW		< 25	< 50	< 100	< 100	< 0.5	< 0.5	<1	< 2	<1	<1
ABH297 ABH297 ABH299	0.5-0.55 0.1-0.2	090508-165-KW 090508-165-KW 090508-168-KW	09 May 2008 09 May 2008 09 May 2008	< 25	< 50 < 50	< 100 < 100 < 100	<100 <100 <100	< 0.5 < 0.5 < 0.5	< 0.5 < 0.5	<1	< 2	<1	<1
ABH299	1.2-1.3 ic Recreation	090508-165-KW	09 May 2008	< 25	< 50	< 100	< 100	< 0.5	< 0.5	<1	< 2	<1	<1
AMW204 AMW205	2.6-2.8 2-2.2	080508-120-KW 080508-157-KW	08 May 2008 08 May 2008	< 25 < 25	< 50 < 50	< 100 < 100	< 100 < 100	< 0.5 < 0.5	< 0.5	<1	< 2	<1	<1
AMW207 BBH403	0.5-0.7	120508-219-KW 280408-12-KW	12 May 2008 28 Apr 2008	nt < 25	nt < 50	nt < 100	nt < 100	< 0.5	< 0.5	<1	< 2	<1	<1
BBH403 BBH403	1.1-1.4	280408-13-KW Field Blind Replicate Sample of 280408-12-KW 280408-14-KW Split Field Duplicate of 280408-12-KW	28 Apr 2008 28 Apr 2008	< 25 < 10	< 50 < 50	< 100 < 100	< 100 < 100	< 0.5	< 0.5	< 0.5	< 2 < 0.5	<1 <0.5	< 0.5
BBH405 BBH407	0.4-0.5 0.4-0.5	290408-49-KW 290408-44-KW	28 Apr 2008 29 Apr 2008	< 25 < 25	< 50 < 50	< 100 < 100	< 100 < 100	< 0.5	< 0.5	<1	< 2	<1	<1
BBH411 BBH415 BBH415	0.2-0.4 0.1-0.3 0.9-1	290408-36-KW 300408-78-KW 300408-79-KW	29 Apr 2008 30 Apr 2008 30 Apr 2008	< 25 < 25	< 50 < 50 < 50	< 100 < 100 < 100	< 100 < 100 < 100	< 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5	<1	< 2	<1	<1
SP4 Enter BBH421	0.9-1 prise 0-0.1	300408-79-KW 300408-105-KW	30 Apr 2008 30 Apr 2008	< 25	< 50	< 100	< 100	< 0.5	< 0.5	<1	2	<1	<1
REI Publi BBH423		300408-105-RW 300408-82-KW	30 Apr 2008	< 25	< 50	< 100	< 100	< 0.5	< 0.5	<1	< 2	<1	<1
BBH423 BBH409 BBH409	0.7-0.8 0.2-0.5 0.2-0.5	300408-82-KW 290408-39-KW 290408-40-KW Field Blind Replicate Sample of 290408-39-KW	30 Apr 2008 29 Apr 2008 29 Apr 2008	< 25 < 25 < 25	< 50 < 50 < 50	< 100 < 100 < 100	< 100 < 100 < 100	< 0.5 < 0.5 < 0.5	< 0.5 < 0.5	<1 <1 <1	< 2 < 2 < 2	<1	<1 <1 <1
BBH409 BBH409	0.2-0.5 1.9-2	290408-41-KW Split Field Duplicate of 290408-39-KW 290408-42-KW	29 Apr 2008 29 Apr 2008	< 10 nt	< 50 nt	< 100 nt	< 100 nt	< 0.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
BBH417 BBH429	1.1-1.2 0-0.1	290408-30-KW 010508-152-KW	29 Apr 2008 01 May 2008	< 25 < 25	< 50 < 50	< 100 < 100	< 100 < 100	< 0.5	< 0.5	<1	< 2	<1	<1
BBH429 SP4 Enter	2.4-2.5 prise	010508-155-KW	01 May 2008	< 25	< 50	< 100	< 100	< 0.5	< 0.5	<1	< 2	< 1	< 1
BBH430 RE1 Publi	2.4-2.6 ic Recreation	300408-107-KW	30 Apr 2008	< 25	< 50	< 100		< 0.5	< 0.5	< 1	< 2	<1	< 1
BBH431 SP4 Enter	0.5-0.6 prise	300408-85-KW	30 Apr 2008	< 25	< 50	< 100	< 100	< 0.5	< 0.5	<1	< 2	<1	<1
BBH433 BBH434 BBH435	0.5-0.6	010508-159-KW 300408-109-KW 300408-111-KW	01 May 2008 30 Apr 2008 20 Apr 2008	< 25	< 50 < 50 < 50	< 100 < 100	< 100 < 100	< 0.5 < 0.5 < 0.5	< 0.5 < 0.5	<1	< 2	<1	<1
REI Publi BBH436	1-1.1 ic Recreation 0.1-0.3	300408-111-RW 300408-87-KW	30 Apr 2008 30 Apr 2008	< 25	< 50	< 100	< 100	•	< 0.5	<1	<2	<1	<1
BBH436 BBH440 SP4 Enter	1-1.1	300408-87-KW 010508-149-KW	30 Apr 2008 01 May 2008	< 25 < 25	< 50 < 50	130 < 100	< 100 < 100	< 0.5	< 0.5	<1	< 2	<1	<1
BBH442 BBH442	0.1-0.4 0.1-0.4	300408-101-KW 300408-102-KW Field Blind Replicate Sample of 300408-101-KW	30 Apr 2008 30 Apr 2008	< 25 < 25	< 50 < 50	< 100	< 100 < 100	< 0.5 < 0.5	< 0.5	<1	< 2	<1	<1
REI Publi		010508-136-KW	01 May 2008	< 25	< 50	< 100	< 100	< 0.5	< 0.5	<1	< 2	<1	<1
BBH445 BBH445	0.1-0.4 0.1-0.4	010508-137-KW Field Blind Replicate Sample of 010508-136-KW 010508-138-KW Split Field Duplicate Sample of 010508-136-KW	01 May 2008 01 May 2008	< 25 <10	< 50 <50	< 100 < 100	< 100 <100	< 0.5	< 0.5	<1	< 2	<1	<1 <0.5
SP4 Enter BBH446		010508-147-KW	01 May 2008	< 25	< 50	< 100	< 100	< 0.5	< 0.5	<1	< 2	<1	<1
BBH447 BBH447	0.1-0.2 0.7-0.8	010508-144-KW 010508-145-KW	01 May 2008 01 May 2008	< 25 nt	< 50 nt	< 100 nt	< 100 nt	< 0.5	< 0.5	<1	< 2	<1	<1 <1
REI Publi BBH450	0.4-0.5	010508-140-KW	01 May 2008	nt	nt	nt	nt	< 0.5	< 0.5	<1	< 2	<1	<1
BBH451 SP4 Enter		010508-142-KW	01 May 2008	< 25	< 50	< 100	< 100	< 0.5	< 0.5	< 1	< 2	< 1	< 1
BBH452 RE1 Publi	0.1-0.2 ic Recreation	300408-96-KW	30 Apr 2008	< 25	< 50	< 100	< 100	< 0.5	< 0.5	< 1	< 2	<1	< 1
BBH453 BBH457	0.2-0.3 1.1-1.2	300408-92-KW 300408-95-KW	30 Apr 2008 30 Apr 2008	< 25 < 25	< 50 < 50	620 < 100	300 < 100	< 0.5	< 0.5	<1	< 2	<1	<1
		010508-122-KW Open Space (SAND 0m to <1m)	01 May 2008	nt -	nt -	nt -	nt -	< 0.5 NL	< 0.5 NL	NL NI	< 2	<1	< 1 NL
ESL Urba	an Residential	adustrial (SAND 0m to <1m) and Public Open Space		÷	÷	-	-	3 50 75	NL 85 135	NL 70 165	÷	Ė	230 45 95
	mercial and In	idustrial Tare shown in bold text.		<u> </u>			<u> </u>	/>	135	105			75

						Table 13:	Soil Analyt	ical Result	s - PAH ¹											
Location	Sample Depth (m)	Sumple ID	Date Sampled Units	Naphthalene	Acemphihylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(a)anthracene	Chrysene	Berzo(b)& (k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-ed)pyrene	. Dibenz(a,h)anthra cene	Benzo(g,h,i)perylene	Benzo(a)pyrene TEQ	Total Pah
SP4 Enter BBH437	2.6-2.8	290408-77-KW	30 Apr 2008	mg/kg 0.1	mg/kg 0.1	mg/kg 0.1	mg/kg 0.1	mg/kg 0.1	mg/kg 0.1	mg/kg 0.1	mg/kg 0.1	mg/kg 0.1	mg/kg 0.1	mg/kg 0.22	mg/kg 0.07	mg/kg 0.1	mg/kg 0.1	mg/kg 0.1	mg/kg 0.244	mg/kg 1.59
ABH202 ABH204	1.9-2.2 0.1-0.4	090508-202-KW 070508-55-KW	09 May 2008 07 May 2008	0.1	0.1	0.1	0.1	0.1 0.1	0.1 0.1	0.1 0.1	0.1	0.1 0.1	0.1	0.2 0.22	0.05	0.1 0.1	0.1	0.1 0.1	0.242 0.244	1.55 1.725
ABH204 ABH204 ABH206	0.1-0.4 0.1-0.4 1-1.2	070508-56-KW Field Blind Replicate Sample of 070508-55-KW 070508-57-KW Split Field Duplicate of 070508-55-KW 090508-209-KW	07 May 2008 07 May 2008 09 May 2008	0.1 0.25 0.1	0.1 0.25 0.1	0.1 0.25 0.1	0.1 0.25 0.1	0.1 0.25 0.1	0.1 0.25 0.1	0.3 0.25 0.1	0.3 0.25 0.1	0.1 0.25 0.1	0.2 0.25 0.1	0.4 nt 0.22	0.2 0.25 0.205	0.1 0.25 0.1	0.1 0.25 0.1	0.1 0.25 0.1	0.463 nt 0.244	2.4 3.5 1.725
ABH207 ABH208	0.2-0.4	090508-207-KW 070508-68-KW	09 May 2008 07 May 2008	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.22	0.205 0.205	0.1	0.1	0.1	0.244	1.725
ABH209 ABH210	0.15-0.25 0.1-0.2	070508-62-KW 060508-46-KW	07 May 2008 06 May 2008	0.1	0.1	0.1	0.1	0.1 0.1	0.1 0.1	0.1	0.1	0.1	0.1 0.2	0.22	0.205	0.1 0.1	0.1	0.1 0.1	0.244 0.453	1.725 2.3
ABH2101 ABH2102	0.1-0.2 0.4-0.5 0.7-0.8	090508-171-KW 090508-175-KW 090508-186-KW	09 May 2008 09 May 2008 09 May 2008	0.1 0.1	0.1 0.1	0.1 0.1 0.1	0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.2	0.1 0.1 0.2	0.1 0.1 0.1	0.1 0.1 0.1	0.22 0.22 0.22	0.205 0.06 0.07	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1	0.244 0.244 0.344	1.725 1.58 1.79
ABH2104 ABH2106	0.3-0.5	090508-198-KW 090508-205-KW	09 May 2008 09 May 2008	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.22	0.1	0.1	0.1	0.1	0.244	1.62
ABH2108 ABH212	1.1-1.2 0.35-0.45	150508-345-KW 080508-161-KW	15 May 2008 08 May 2008	30 0.1	0.1	0.6	1.2 0.1	5.1 0.1	1.5 0.1	4.8 0.1	4 0.1	1.4 0.1	1.3 0.1	1.4 0.22	0.8 0.205	0.5 0.1	0.1	0.3	4.446 0.244	53.1 1.725
ABH213 ABH214 ABH218	0.5-0.6 0.4-0.5 0.4-0.5	120508-212-KW 070508-71-KW 060508-07-KW	12 May 2008 07 May 2008 06 May 2008	0.1 0.1	0.1 0.1	0.1 0.1	0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	0.22 0.22 0.22	0.205 0.205 0.07	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1	0.244 0.244 0.244	1.725 1.725 1.59
ABH220 ABH221	0.2-0.3	060508-04-KW 060508-04-KW 080508-159-KW	06 May 2008 08 May 2008	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.22	0.205	0.1	0.1	0.1	0.244	1.725
ABH297 AMW203	0.9-1.0 0.25-0.35	090508-166-KW 090508-188-KW	09 May 2008 09 May 2008	0.1	0.1	0.1	0.1	0.1	0.1 0.1	0.1	0.1	0.1	0.1	0.22 0.8	0.205	0.1	0.1	0.1	0.244 1.268	1.725 5.6
AMW203 REI Public AMW203	0.7-0.8 Recreation	090508-189-KW 090508-190-KW	09 May 2008	0.1	0.1	0.1	0.1	0.7	0.1	0.4	0.4	0.2	0.4	0.3	0.1	0.1	0.1	0.1	0.565	3.3
BBH402 BBH402	1.9-2 0.5-0.6 0.8-0.9	090508-190-KW 280408-06-KW 280408-07-KW	09 May 2008 28 Apr 2008 28 Apr 2008	0.1 0.1	0.1 0.2 0.1	0.1 0.4 0.1	0.1 0.5 0.1	0.1 7.1 0.1	0.1 1.7 0.1	9.3 0.2	0.1 8.3 0.2	0.1 3.4 0.1	0.1 3.6 0.1	0.22 5.5 0.2	0.205 2.7 0.2	0.1 0.2 0.1	0.1 2.6 0.1	0.1 2.2 0.1	0.244 11.868 0.342	1.725 47.8 1.9
BBH426 SP4 Enter	0.5-0.6 prise	290408-70-KW	29 Apr 2008	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.22	0.205	0.1	0.1	0.1	0.244	1.725
ABH225 ABH226	0.2-0.6 0.1-0.2	060508-34-KW 060508-20-KW	06 May 2008 06 May 2008	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.22	0.205 0.205	0.1 0.1	0.1	0.1	0.244 0.244	1.725 1.725
ABH226 ABH227 ABH227	0.4-0.5 0.2-0.6 0.2-0.6	060508-21-KW 060508-17-KW 060508-18-KW Field Blind Replicate Sample of 060508-17-KW	06 May 2008 06 May 2008 06 May 2008	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.4 0.2	0.1 0.4 0.2	0.1 0.1 0.1	0.1 0.2 0.1	0.22 0.4 0.22	0.205 0.2 0.1	0.1 0.2 0.1	0.1 0.1 0.1	0.1 0.2 0.1	0.244 0.574 0.344	1.725 2.8 1.82
ABH227 ABH228	0.2-0.6 0.2-0.6 0.2-0.3	060508-18-KW Field Blind Replicate Sample of 060508-17-KW 060508-19-KW 060508-10-KW	06 May 2008 06 May 2008	0.1 0.1	0.1 0.1	0.1	0.1 0.1	0.1 0.1	0.1 0.1	0.2 0.1 0.1	0.2 0.1 0.2	0.1 0.1	0.1 0.1	0.22 0.22	0.205 0.07	0.1 0.1	0.1 0.1	0.1 0.1	0.344 0.344	1.82 1.725 1.69
ABH229 ABH229	0.1-0.3 0.5-0.8	060508-13-KW 060508-14-KW	06 May 2008 06 May 2008	0.1	0.1	0.1	0.1	0.1	0.1	0.3	0.3	0.1	0.2	0.3 0.22	0.2	0.1	0.1	0.1	0.453 0.244	2.3 1.725
ABH229 ABH229	0.5-0.8 0.5-0.8 0.6-0.7	060508-15-KW Field Blind Replicate Sample of 060508-14-KW 060508-16-KW Split Field Duplicate of 060508-14-KW 080508-152-KW	06 May 2008 06 May 2008	0.1	0.1	0.1 0.25 0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.22 nt	0.205 0.25	0.1 0.25 0.1	0.1	0.1	0.244 nt 0.244	1.725 3.5
ABH231 ABH231 ABH232	0.6-0.7 1.9-2.1	080508-152-KW 080508-153-KW Field Blind Replicate Sample of 080508-152-KW 060508-54-KW	08 May 2008 08 May 2008 06 May 2008	0.1 0.1 0.1	0.1 0.1 0.1	0.1	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	0.22 0.22 0.22	0.205 0.205 0.205	0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	0.244	1.725 1.725 1.725
ABH238 ABH239	1.5-1.6 0.4-0.5	060508-26-KW 080508-122-KW	06 May 2008 08 May 2008	0.1	0.1	0.1	0.1	0.1 0.1	0.1	0.1	0.1	0.1	0.1	0.22 0.22	0.205 0.205	0.1	0.1 0.1	0.1	0.244	1.725
ABH240 ABH240 ABH240	0.1-0.4 0.1-0.4 0.1-0.4	080508-123-KW 080508-124-KW Field Blind Replicate Sample of 080508-123-KW 080508-124-KW Field Displayage of 080508-123-KW	08 May 2008 08 May 2008 08 May 2008	0.1 0.1 0.25	0.1 0.1 0.25	0.1 0.1 0.25	0.1 0.1 0.25	0.1 0.1 0.25	0.1 0.1 0.25	0.1 0.1 0.25	0.1 0.1 0.25	0.1 0.1 0.25	0.1 0.1 0.25	0.22 0.22	0.205 0.205 0.25	0.1 0.1 0.25	0.1 0.1 0.25	0.1 0.1 0.25	0.244	1.725 1.725 3.5
ABH243	0.2-0.3 c Recreation	080508-125-KW Split Field Duplicate of 080508-123-KW 080508-142-KW	08 May 2008	0.25	0.1	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.4	nt 0.9	0.25	0.25	0.25	0.25	nt 0.868	4.9
ABH247 ABH247	0.1-0.4 0.1-0.4	070508-98-KW 070508-99-KW Field Blind Replicate Sample of 070508-98-KW	07 May 2008 07 May 2008	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.22	0.205	0.1	0.1	0.1	0.244	1.725
ABH248 SP4 Enter		080508-108-KW	08 May 2008	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.22	0.205	0.1	0.1	0.1	0.244	1.725
ABH249 ABH249 ABH250	1-1.1 1.2-1.4 0.7-0.9	080508-110-KW 080508-111-KW 080508-114-KW	08 May 2008 08 May 2008 08 May 2008	0.1 0.1 0.1	0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	0.22 0.22 0.22	0.205 0.205 0.205	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1	0.244 0.244 0.244	1.725 1.725 1.725
ABH250 ABH254	1.5-1.6 0.6-0.7	080508-115-KW 080508-137-KW	08 May 2008 08 May 2008	0.1	0.1	0.1	0.1	0.1	0.1 0.1	0.1	0.1	0.1	0.1	0.22	0.205	0.1	0.1	0.1	0.244	1.725
ABH260	0.6-0.8	120508-245-KW	12 May 2008	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.22	0.205	0.1	0.1	0.1	0.244	
SP4 Enter ABH261	0.6-0.8 prise 0-0.2	120508-246-KW Field Blind Replicate Sample of 120508-245-KW 120508-244-KW	12 May 2008 12 May 2008	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.22	0.205	0.1	0.1	0.1	0.244	1.725
REI Publi	c Recreation 0.4-0.5	130508-309-KW	13 May 2008	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.22	0.205	0.1	0.1	0.1	0.244	1.725
ABH276 SP4 Enter	0.8-1 prise	130508-283-KW	13 May 2008	0.2	0.5	0.1	0.2	1.7	0.5	3.4	4	1.9	2.1	3.9	2.5	2	0.2	1.6	5.017	24.8
RE1 Publi		130508-281-KW	13 May 2008	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.22	0.205	0.1	0.1	0.1	0.244	1.725
			12 May 2009	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.22	0.205	0.2	0.1	0.2	0.255	1.025
ABH283 ABH283	0-0.2 0-0.2 0.5-0.6	130508-302-KW 150508-381-KW 150508-382-KW	13 May 2008 15 May 2008 15 May 2008	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.2 0.1	0.1 0.1 0.1	0.1 0.6 0.1	0.1 0.6 0.1	0.1 0.3 0.1	0.1 0.4 0.1	0.22 0.7 0.22	0.205 0.4 0.205	0.2 0.3 0.1	0.1 0.1 0.1	0.2 0.3 0.1	0.255 0.837 0.244	1.925 4.4 1.725
ABH283 ABH283 SP4 Enter ABH286	0.0.2 0.5-0.6 prise 0.1-0.3	150508-381-KW	15 May 2008	0.1 0.1	0.1	0.1	0.1	0.2	0.1	0.6	0.6	0.3	0.4	0.7	0.4	0.3	0.1	0.3	0.837	4,4 1.725
ABH283 SP4 Enter ABH286 RE1 Publi ABH289	0-0.2 0.5-0.6 prise 0.1-0.3 c Recreation	150508-381-KW 150508-382-KW 150508-391-KW 150508-370-KW	15 May 2008 15 May 2008 15 May 2008 15 May 2008	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	0.2 0.1 0.1	0.1 0.1 0.1	0.6 0.1 0.1	0.6 0.1 0.1	0.3 0.1 0.1	0.4 0.1 0.1	0.7 0.22 0.22	0.4 0.205 0.205	0.3 0.1 0.1	0.1 0.1 0.1	0.3 0.1 0.1	0.837 0.244 0.244	1.725 1.725
ABH283 ABH283 SP4 Enter ABH286 RE1 Publi	0.0.2 0.5-0.6 prise 0.1-0.3 c Recreation	150508-381-KW 150508-382-KW 150508-391-KW	15 May 2008 15 May 2008 15 May 2008	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	0.2 0.1	0.1 0.1 0.1	0.6 0.1	0.6 0.1 0.1	0.3 0.1	0.4 0.1 0.1	0.7 0.22 0.22	0.4 0.205 0.205	0.3 0.1 0.1	0.1 0.1	0.3 0.1	0.837 0.244 0.244	1.725 1.725
ABH283 ABH283 SP4 Enter ABH286 RE1 Publi ABH289 ABH289 SP4 Enter ABH291 ABH291 ABH291	0-0.2 0.5-0.6 prise 0.1-0.3 c Recreation 0-0.3 0-0.3 prise 0.1-0.5 0.1-0.5	1.5006.31 k.W 1.5006.32 k.W 1.5006.39 k.W 1.5006.37 k.W 1.5006	15 May 2008 15 May 2008	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.25	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.25	0.2 0.1 0.1 0.3 0.2 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.6 0.1 0.1 0.8 0.7 0.1 0.1 0.1 0.25	0.6 0.1 0.1 0.8 0.7 0.1 0.1 0.1 0.25	0.3 0.1 0.1 0.5 0.4 0.1 0.1 0.1 0.25	0.4 0.1 0.1 0.6 0.5 0.1 0.1 0.25	0.7 0.22 0.22 1 1 0.22 0.22 0.22 nt	0.4 0.205 0.205 0.5 0.5 0.205 0.205 0.205	0.3 0.1 0.1 0.4 0.4 0.4 0.1 0.1 0.25	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.25	0.3 0.1 0.4 0.4 0.4 0.1 0.1 0.25	0.837 0.244 0.244 1.1 0.989 0.244 0.244	1.725 1.725 5.9 5.4 1.725 1.725 1.725 3.5
ABH283 ABH283 SP4 Enter ABH286 RE1 Publi ABH289 ABH289 SP4 Enter ABH291 ABH291 ABH291 ABH291 ABH291 ABH291	0-0.2 0.5-0.6 prise 0.1-0.3 c Recreation 0-0.3 0-0.3 prise 0.1-0.5 0.1-0.5 0.1-0.5 0.1-0.5 0.1-0.5	15006.31 kW 15006.31 kW 15006.31 kW 15006.37 kW 15006.37 kW 15006.37 kW Feld Blind Replicars Sumple of 150506.70 kW 15006.37 kW Feld Blind Replicars Sumple of 150506.37 kW 15006.33 kW Feld Blind Replicars Sumple of 150506.35 kW	15 May 2008 15 May 2008 15 May 2008 15 May 2008 15 May 2008 15 May 2008 15 May 2008	0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.2 0.1 0.1 0.3 0.2 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1	0.6 0.1 0.1 0.8 0.7	0.6 0.1 0.1 0.8 0.7	0.3 0.1 0.1 0.5 0.4 0.1	0.4 0.1 0.1 0.6 0.5	0.7 0.22 0.22 1 1 0.22 0.22	0.4 0.205 0.205 0.5 0.5 0.5 0.205	0.3 0.1 0.1 0.4 0.4 0.4	0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.3 0.1 0.1 0.4 0.4 0.4	0.837 0.244 0.244 1.1 0.989 0.244 0.244	1.725 1.725 5.9 5.4 1.725 1.725
ABH283 ABH283 SP4 Enter ABH289 ABH289 ABH289 ABH289 ABH291	0-0.2 0.5-0.6 orise 0.1-0.3 c Recreation 0-0.3 0-0.3 orise 0.1-0.5 0.1-0.5 0.1-0.5 2.7-2.8 4-4.2 c Recreation	15006.314.W 15006.870.KW 15006.870.KW 15006.870.KW 15006.870.KW 15006.870.KW 15006.770.KW 15006.771.KW Field Binds Reposite of 15006.770.KW 15006.771.KW Field Binds Reposite of 15006.870.KW 15006.875.KW Field Binds Reposite of 15006.875.KW 15006.875.KW Field Binds Reposite of 15006.875.KW 1	15 May 2008 15 May 2008	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.25 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.25 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.25 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.25 0.1	0.2 0.1 0.1 0.3 0.2 0.1 0.1 0.2 0.2 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.25 0.1	0.6 0.1 0.1 0.8 0.7 0.1 0.1 0.25 0.7 0.1	0.6 0.1 0.1 0.8 0.7 0.1 0.1 0.25 0.6 0.1	0.3 0.1 0.1 0.5 0.4 0.1 0.1 0.25 0.3 0.1	0.4 0.1 0.1 0.6 0.5 0.1 0.1 0.25 0.4 0.1	0.7 0.22 0.22 1 1 1 0.22 0.22 nt 0.7 0.22	0.4 0.205 0.205 0.5 0.5 0.205 0.205 0.205 0.205 0.205	0.3 0.1 0.1 0.4 0.4 0.4 0.1 0.1 0.25 0.3 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.25 0.1 0.1	0.3 0.1 0.4 0.4 0.4 0.1 0.1 0.25 0.2 0.1	0.837 0.244 0.244 1.1 0.989 0.244 0.244 gg 0.836 0.244	1.725 1.725 5.9 5.4 1.725 1.725 3.5 4.3 1.725
ABH283 ABH283 SP4 Enter ABH286 REI Publi ABH289 ABH289 SP4 Enter ABH291 ABH291 ABH291 ABH291 ABH291 ABH293 ABH293 ABH293 ABH293 ABH293 ABH293 ABH293 ABH293	0.02 0.5-0.6 prise 0.1-0.3 0.0-3 0.0-3 0.0-3 0.1-0.5 0.1-0.5 0.1-0.5 2.7-2.8 4-4.2 c Recreation 0.4-0.5 1.3-1.4 2.1-2.2 0.0.1	1,5006,314,3W 1,5006,324,3W 1,5006,324,3W 1,5006,324,3W 1,5006,374,3W	15 May 2008 15 May 2008 13 May 2008 13 May 2008 13 May 2008 13 May 2008 13 May 2008	0.1 0.1 0.1 0.1 0.1 0.1 0.25 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.25 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.25 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.25 0.1 0.1 0.1	0.2 0.1 0.1 0.3 0.2 0.1 0.1 0.1 0.25 0.2	0.1 0.1 0.1 0.1 0.1 0.1 0.25 0.1 0.1 0.1 0.1	0.6 0.1 0.1 0.8 0.7 0.1 0.1 0.1 0.25 0.7 0.1 0.1 0.2 0.2 0.2 0.2 0.2	0.6 0.1 0.1 0.8 0.7 0.1 0.1 0.1 0.25 0.6 0.1 0.1 0.2 1.3	0.3 0.1 0.1 0.5 0.4 0.1 0.1 0.1 0.25 0.3	0.4 0.1 0.1 0.6 0.5 0.1 0.1 0.25 0.4 0.1	0.7 0.22 0.22 1 1 0.22 0.22 0.22 nt 0.7 0.22	0.4 0.205 0.205 0.5 0.5 0.205 0.205 0.205 0.205 0.205 0.205 0.3 0.205	0.3 0.1 0.1 0.4 0.4 0.4 0.1 0.1 0.25 0.3	0.1 0.1 0.1 0.1 0.1 0.1 0.25 0.1 0.1 0.1 0.1	0.3 0.1 0.4 0.4 0.4 0.1 0.1 0.25 0.2	0.837 0.244 1.1 0.989 0.244 0.244 nt 0.836 0.244 0.244 0.342 1.588 0.342	1.725 1.725 5.9 5.4 1.725 1.725 3.5 4.3 1.725 1.61 1.8 6.8
ABH283 ABH283 SP4 Enter ABH286 REI Publi ABH289 ABH289 ABH289 ABH291 ABH291 ABH291 ABH293 ABH293 ABH293 ABH293 ABH293 ABH294 ABH294 ABH294 ABH294 ABH295 ABH295 ABH494 ABH495 ABH495 ABH496 ABH496	0.0.2 0.5-0.6 prise 0.1-0.3 c Recreation 0-0.3 0-0.3 orise 0.1-0.5 0.1-0.5 2.7-2.8 4-4.2 c Recreation 0.4-0.5 1.3-1.4 2.1-2.2 0.0.1 0.4-0.5 0.0.1 0.4-0.5 0.0.1 0.0.4 0.0.1	1.5006.314.KW 1.5006.324.KW 1.5006.325.KW 1.5006.325.KW 1.5006.375.KW	15 May 2008 15 May 2008 13 May 2008 13 May 2008 13 May 2008 13 May 2008 28 Apr 2008 28 Apr 2008 29 Apr 2008 29 Apr 2008	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.25 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.25 0.1 0.1 0.1 0.1 0.1	0.2 0.1 0.1 0.3 0.2 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.2 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.6 0.1 0.1 0.8 0.7 0.1 0.1 0.1 0.1 0.1 0.2 0.2 1.2 0.2 4.7 0.1	0.6 0.1 0.1 0.8 0.7 0.1 0.1 0.25 0.6 0.1	0.3 0.1 0.1 0.5 0.4 0.1 0.1 0.25 0.3 0.1 0.1 0.6 0.1 2.3 0.1	0.4 0.1 0.1 0.6 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.4 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.7 0.22 0.22 1 1 0.22 0.22 0.22 0.7 0.7 0.22 0.22 0.22 0.	0.4 0.205 0.205 0.5 0.5 0.205 0.205 0.205 0.205 0.205 0.205 0.3 0.205 0.09 0.1 0.5	0.3 0.1 0.4 0.4 0.4 0.1 0.1 0.2 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.25 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.3 0.1 0.4 0.4 0.4 0.1 0.1 0.2 0.1 0.1 0.3 0.1 1.3 0.1	0.837 0.244 0.244 1.1 0.989 0.244 0.244 mt 0.836 0.244 0.342 1.588 0.342 1.588	4.4 1.725 1.725 5.9 5.4 1.725 1.725 1.725 4.3 1.725 1.8 6.8 1.8 2.7 1.725
ABH283 ABH283 SP4 Enter ABH286 REI Publi ABH289 ABH289 ABH289 ABH291 ABH291 ABH291 ABH291 ABH293 ABH293 ABH293 ABH293 ABH293 ABH404 BBH404 BBH407 BBH407 BSH407 SP4 Enter	0.02 0.50.6 orise 0.1-0.3 0.03 0.03 0.03 0.03 0.10.5 0.1-0.5 0.1-0.5 0.1-0.5 2.7-2.8 4-42 c Recreation 0.4-0.5 1.3-1.4 2.1-2.2 0.01 0.40.5	1.5006.31 K.W 1.5006.32 K.W 1.5006.32 K.W 1.5006.32 K.W 1.5006.37 K.W 1.	15 May 2008 15 May 2008 13 May 2008 13 May 2008 13 May 2008 13 May 2008 13 May 2008 13 May 2008 28 Apr 2008 28 Apr 2008	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.25 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.2 0.1 0.1 0.3 0.2 0.1 0.1 0.1 0.25 0.2 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.6 0.1 0.1 0.8 0.7 0.1 0.1 0.1 0.25 0.7 0.1 0.1 0.2 1.2 0.2 1.2	0.6 0.1 0.1 0.8 0.7 0.1 0.1 0.1 0.1 0.25 0.6 0.1 0.1 0.2 1.3 0.2 4.9	0.3 0.1 0.1 0.5 0.4 0.1 0.1 0.25 0.3 0.1 0.1 0.1 0.1 0.1 0.1	0.4 0.1 0.6 0.5 0.1 0.1 0.25 0.4 0.1 0.1 0.1 0.1 0.25 0.4 0.1 0.1 0.1 0.1 0.1 0.1	0.7 0.22 0.22 1 1 0.22 0.22 mt 0.7 0.22 0.22 0.22 0.22 0.22	0.4 0.205 0.205 0.5 0.5 0.5 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205	0.3 0.1 0.4 0.4 0.4 0.1 0.1 0.25 0.3 0.1 0.1 0.1 0.1 1.2	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.1	0.3 0.1 0.4 0.4 0.4 0.1 0.1 0.1 0.25 0.2 0.1 0.1 0.1 1.3	0.837 0.244 1.1 0.989 0.244 0.244 18 0.836 0.244 0.342 1.588 0.342 1.588 0.342	4.4 1.725 1.725 5.9 5.4 1.725 1.725 3.5 4.3 1.725 1.61 1.8 6.8 1.8 27 1.725 7.7
ABH283 ABH285 SP4 Enter ABH286 REI Publ ABH289 ABH289 ABH291 ABH291 ABH291 ABH291 ABH293 ABH293 ABH293 ABH293 ABH293 ABH494 ABH294 ABH295 BBH404 BBH404 BBH407 BBH411 SBH407 BBH411 SBH407 BBH411 SBH408	0.02 0.50.6 orise 0.1-0.3 0.03 0.03 0.03 0.03 0.10.5 0.1-0.5 0.1-0.5 0.1-0.5 2.7-2.8 4-42 c Recreation 0.4-0.5 1.3-1.4 2.1-2.2 0.01 0.40.5	1,5006,314,3W 15008,324,32W 15008,324,32W 15008,324,32W 15008,324,32W 15008,371,32W	15 May 2008 15 May 2008 13 May 2008 13 May 2008 13 May 2008 13 May 2008 28 Apr 2008 28 Apr 2008 29 Apr 2008 29 Apr 2008	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.2 0.1 0.1 0.3 0.2 0.1 0.1 0.1 0.25 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.6 0.1 0.1 0.8 0.7 0.1 0.1 0.1 0.25 0.7 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.6 0.1 0.1 0.8 0.8 0.7 0.1 0.1 0.1 0.25 0.6 0.1 0.1 0.2 1.3 0.2 4.9 0.1 1 0.1 0.1 0.1	0.3 0.1 0.1 0.5 0.4 0.1 0.1 0.1 0.25 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.4 0.1 0.1 0.6 0.5 0.1 0.1 0.25 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.5 0.1 0.1 0.5 0.1 0.1 0.5 0.1 0.1 0.1 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.7 0.22 1 1 1 0.22 0.22 1 0.22 0.22 1 0.27 0.22 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.	0.4 0.205 0.205 0.5 0.5 0.205 0.205 0.205 0.205 0.205 0.205 0.3 0.205 0.09 0.1 0.5	0.3 0.1 0.1 0.4 0.4 0.4 0.1 0.1 0.1 0.25 0.3 0.1 0.1 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.3 0.1 0.4 0.4 0.4 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.837 0.244 1.1 0.989 0.244 0.244 18 0.836 0.244 0.342 0.342 0.342 0.244 1.384 0.244	4.4 1.725 1.725 5.9 5.4 1.725 1.725 3.5 4.3 1.725 1.8 6.8 1.8 27 1.725 7.7
ABH23 ABH23 SP4 Enter ABH286 RESP ABH29 ABH29 ABH29 ABH291 ABH291 ABH291 ABH291 ABH291 ABH293 ABH293 ABH293 ABH293 BBH404 BBH405 BBH407 BBH407 BBH401 BBH402 BBH403 BBH404 BBH402 BBH404 BBH402 BBH404 BBH402 BBH404 BBH405 BBH404 BBH404 BBH404 BBH405 BBH404 BBH404 BBH404 BBH404 BBH404 BBH405	0-0.2 0-5.0.5 orise 0.1-0.3 0.1-0.3 0.0.3 0.0.3 0.0.3 0.0.3 0.1-0.5 0.1-0.5 0.1-0.5 2.7-2.8 4-4.2 c Recreation 0.4-0.5 1.3-1.4 2.1-2.2 0.4-0.5 0.4-0.5 0.8-0.9 orise 0.5-0.6 c Recreation 0.5-0.6 c Recreation	1.5006.31 k.W 1.5006.32 k.W 1.5006.32 k.W 1.5006.32 k.W 1.5006.37 k.W 1.5006.35 k.W	15 May 2008 13 May 2008 13 May 2008 13 May 2008 28 Apr 2008 29 Apr 2008 29 Apr 2008 29 Apr 2008 29 Apr 2008 20 Apr 2008 30 Apr 2008	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.2 0.1 0.1 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.6 0.1 0.1 0.8 0.7 0.1 0.1 0.1 0.25 0.7 0.1 0.1 0.2 1.2 0.2 4.7 0.1 0.8 0.1 0.8 0.1 0.1 0.1 0.2 1.4 0.2 1.4 0.1 0.1 0.1 0.1 0.2 1.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.6 0.1 0.1 0.8 0.7 0.1 0.1 0.25 0.6 0.1 0.1 0.2 1.3 0.2 4.9 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.3 0.1 0.1 0.5 0.4 0.1 0.1 0.25 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1	0.4 0.1 0.1 0.6 0.5 0.1 0.1 0.25 0.4 0.1 0.1 0.1 0.5 0.1 0.1 0.5 0.1 0.1 0.5 0.1 0.1 0.8 0.1 0.1 0.8 0.1 0.1 0.8 0.1 0.1 0.8	0.7 0.22 1 1 1 0.22 0.22 81 0.7 0.22 81 0.7 0.22 0.2 0.2 0.2 0.2 0.2 0.2 0.2 1.5 0.22 1.4 1.9	0.4 0.205 0.205 0.5 0.5 0.5 0.205 0.205 0.205 0.205 0.205 0.205 0.09 0.1 0.09 0.1 0.205 0.9 0.1 0.006 0.1 1.13	0.3 0.1 0.1 0.4 0.4 0.4 0.1 0.1 0.1 0.25 0.3 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.3 0.1 0.4 0.4 0.4 0.1 0.1 0.25 0.2 0.1 0.1 0.3 0.1 1.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.837 0.244 1.1 0.989 0.244 0.244 6 0.836 0.244 0.342 1.588 0.342 1.588 0.244 1.384 0.244 0.244 0.342 1.588	4.4 1.725 1.725 5.9 5.4 1.725 1.725 3.5 4.3 1.725 1.61 1.8 6.8 1.8 27 1.725 7.7 1.725
ABH23 ABH23 SP4 Enter ABH296 ABH299 ABH291 ABH293 ABH404 ABH407 A	0-0.2 0-5.0.6	1 55006, 314, KW 1 55006, 324, KW 1 5500	15 May 2008 13 May 2008 13 May 2008 24 Apr 2008 29 Apr 2008 29 Apr 2008 20 Apr 2008 30 Apr 2008	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.2 0.1 0.1 0.3 0.2 0.1 0.1 0.1 0.25 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.6 0.1 0.1 0.8 0.7 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.1 0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.3 0.3 0.7	0.6 0.1 0.1 0.8 0.7 0.1 0.1 0.1 0.25 0.6 0.1 0.1 0.2 1.3 0.2 4.9 0.1 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	0.3 0.1 0.1 0.5 0.4 0.1 0.1 0.1 0.25 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.4 0.1 0.1 0.6 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.5 0.1 0.1 0.1 0.5 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.7 0.22 1 1 1 0.22 0.22 mt 0.7 0.22 0.22 0.22 0.22 0.22 1.5 0.22 1.5 0.22 0.22 1.5 0.22 0.22 0.20 0.20 0.20 0.20 0.20 0.	0.4 0.205 0.205 0.5 0.5 0.5 0.205 0.205 0.205 0.205 0.205 0.205 0.09 0.1 0.09 0.1 0.205 0.5 0.1 0.1 1.3 0.3 0.305	0.3 0.1 0.1 0.4 0.4 0.4 0.1 0.1 0.25 0.3 0.1 0.1 0.1 0.2 0.3 0.1 0.1 0.2 0.3 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.2 0.2 0.2 0.2	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.3 0.1 0.4 0.4 0.4 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.837 0.244 1.1 0.989 0.244 0.244 1.5 0.836 0.244 0.342 1.588 0.342 5.755 0.244 1.388 0.244 1.388 0.342 5.755	4.4 1.725 1.725 5.9 5.4 1.725 1.725 1.725 3.5 4.3 1.725 1.61 1.8 27 1.725 7.7 7.7 1.6 1.68 9.7 1.725 1.68 1.725 1.
ABH233 ABH233 SP4 Enter ABH286 REI Publi ABH299 ABH291 ABH291 ABH291 ABH291 ABH291 ABH291 ABH293 ABH293 ABH293 ABH293 ABH293 ABH293 ABH293 ABH293 ABH493 ABH293 ABH493 ABH	0-0.2 0-5.0.5 0-5.0.5 0-10.3 c Recreation 0-0.3 0-0.3 0-0.3 0-0.3 0-0.3 0-0.5 0-10.5 0-10.5 0-10.5 0-10.5 0-10.5 0-10.5 0-10.5 0-10.5 0-10.5 0-10.5 0-10.5 0-10.5	1.5006.314.KW 1.5006.324.KW 1.5006.324.KW 1.5006.324.KW 1.5006.324.KW 1.5006.324.KW 1.5006.325.KW	15 May 2008 13 May 2008 13 May 2008 22 Agr 2008 22 Agr 2008 23 Agr 2008 24 Agr 2008 29 Agr 2008 29 Agr 2008 20 Agr 2008	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.2 0.1 0.1 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.6 0.1 0.1 0.8 0.7 0.1 0.1 0.1 0.25 0.7 0.1 0.1 0.25 0.7 0.1 0.1 0.2 1.2 0.2 1.2 0.3 0.1 0.1 0.8	0.6 0.1 0.1 0.8 0.7 0.1 0.1 0.1 0.25 0.6 0.1 0.1 0.2 1.3 0.2 4.9 0.1 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	0.3 0.1 0.1 0.5 0.4 0.1 0.1 0.1 0.25 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.7 0.1 0.1 0.7 0.1 0.1 0.7 0.1 0.1 0.7 0.1 0.1 0.7 0.1 0.1 0.7 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.4 0.1 0.1 0.6 0.5 0.1 0.1 0.25 0.4 0.1 0.1 0.1 0.1 0.1 0.5 0.1 0.1 0.5 0.1 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.8	0.7 0.22 1 1 1 0.22 mt 0.22 mt 0.7 0.22 0.22 0.2 0.2 0.2 0.2 1.5 0.22 1.5	0.4 0.205 0.205 0.5 0.5 0.5 0.5 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.1 0.5 0.1 0.5 0.1 1.3 0.306	0.3 0.1 0.1 0.4 0.4 0.4 0.1 0.1 0.1 0.25 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.25 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.3 0.1 0.4 0.4 0.1 0.1 0.1 0.25 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.837 0.244 1.1 0.989 0.244 0.244 0.342 1.588 0.342 1.588 0.342 1.588 0.344 0.342 1.384 0.244 0.342 0.342 0.342 0.342 0.342 0.342 0.342 0.342 0.342 0.343	4.4 1.725 1.725 5.9 5.4 1.725 3.5 4.3 1.725 1.72
ABHESS ABHESS SP4 Enter ABHESS REI Publi ABHESS ABH	0.02 0.50.6 0.50.6 0.10.3 0.10.3 0.01 0.03 0.03 0.10.5 0.1	1.5006.31 KW 1.5006.32 KW 1.5006.33 KW 1.500	15 May 2008 13 May 2008 13 May 2008 29 Ag 2008 29 Ag 2008 29 Ag 2008 20 Ag 2008 2	01 01 01 01 01 01 01 01 01 01 01 01 01 0	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.2 0.1 0.1 0.3 0.2 0.1 0.1 0.1 0.25 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.6 0.1 0.1 0.8 0.8 0.7 0.1 0.1 0.25 0.7 0.1 0.2 1.2 0.2 4.7 0.1 0.1 0.2 1.2 0.2 4.7 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1	0.6 0.1 0.1 0.8 0.8 0.7 0.1 0.1 0.1 0.25 0.6 0.1 0.1 0.2 1.3 0.2 4.9 0.1 1.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.3 0.1 0.1 0.5 0.4 0.4 0.1 0.1 0.25 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.4 0.1 0.1 0.6 0.5 0.5 0.5 0.1 0.1 0.1 0.25 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.7 0.22 1 1 1 1 0.22 0.22 0.22 0.2 0.2 0.2 0.2 0.2 0.2	0.4 0.205 0.205 0.5 0.5 0.5 0.205	0.3 0.1 0.1 0.4 0.4 0.4 0.1 0.1 0.1 0.25 0.3 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.3 0.1 0.4 0.4 0.4 0.4 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.6 0.9 0.9 0.2 0.2 0.2 0.1	0.837 0.244 1.1 0.989 0.244 gr 0.244 gr 0.244 0.244 0.342 1.588 0.342 5.755 0.244 1.384 1.384 0.244 1.384 0.244 0.	4.4 1.725 5.9 5.4 1.725 1.725 1.725 1.725 1.725 1.61 1.8 1.8 27 1.725 7.7 1.68 9.7 1.39 3.4 3.5 4.3 4.3 4.3 4.3 4.3 4.3 4.3
ABICSS STATEMENT ABICS STATEMENT ABICSS	0.02 0.5.0,6 0.5.0,6 0.5.0,6 0.1.0.3 0.0.3 0.0.3 0.0.3 0.0.3 0.0.3 0.1.0.5 0.1	1.5006.31 KW 1.5006.32 K KW	15 May 2008 20 Age 2008	01 01 01 01 01 01 01 01 01 01 01 01 01 0	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.6 0.1 0.1 0.8 0.7 0.1 0.1 0.1 0.25 0.7 0.1 0.1 0.2 0.2 0.7 0.1 0.1 0.2 0.2 0.7 0.1 0.1 0.2 0.2 0.7 0.1 0.1 0.3 0.3 0.7 0.1 0.8	0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.4 0.1 0.1 0.1 0.1 0.0 0.6 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.72 0.22 1 1 1 1 0.22 0.22 81 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.7	0.4 0.205 0.205 0.5 0.5 0.5 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.3 0.205 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.3 0.1 0.4 0.4 0.4 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.3 0.3 0.1 0.3 0.3 0.1 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	0.337 0.244 1.1 0.244 0.244 0.244 0.244 0.244 0.244 0.244 0.342 0.344 0.342 0.344 0.342 0.344 0.342 0.344 0.342 0.344 0.342 0.344 0.343 0.342 0.344 0.344 0.344 0.344 0.344 0.344 0.344 0.344 0.344 0.344 0.344 0.344 0.344 0.344	4.4 1.725 1.725 5.4 1.725 1.725 1.725 1.725 1.725 1.725 1.725 1.725 1.725 7.7 1.6 1.8 1.8 1.8 1.725 7.7 1.73 1.73 1.73 1.73 1.73 1.73 1.73
ABILESS ABILES	0.0.2 0.5.0.6 0.5.0.6 0.10.3 0.10.3 0.10.3 0.10.3 0.10.3 0.10.5 0	1.5006.31 KW 1.5006.32 KW 1.500	15 May 2008 10 May 2008 20 Age 2008 20 May 2008	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	02 01 01 01 01 01 01 01 01 01 01 01 01 01	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	0.6 0.6 0.7 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.4 0.1 0.1 0.1 0.1 0.6 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.72 0.22 1 1 0.22 0.22 0.22 0.22 0.22 0.22	0.4 0.205 0.205 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.205 0.205 0.205 0.205 0.305	0.1 0.1 0.1 0.4 0.4 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.3 0.1 0.4 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	0.837 0.244 1.1 0.244 0.244 0.244 0.345 0.346 0.346 0.346 0.347 1.384 0.342 1.384 0.342 0.344 0.34	4.4 1.725 1.725 5.4 1.725 1.725 1.725 1.725 1.725 1.725 1.725 1.725 1.725 7.7 1.6 1.8 1.8 1.8 1.725 7.7 1.73 1.73 1.73 1.73 1.73 1.73 1.73
ABIESTS ABIEST	0.0.2 0.5.0.6 0.5.0.6 0.5.0.6 0.10.3 0.10.3 0.10.5	1 55006, 314, KW 1 55006, 324, KW 1 5500	15 May 2008 28 Agr 2008 29 Agr 2008 10 May 2008	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	02 03 03 02 01 01 01 01 01 01 01 01 01 01 01 01 01	01 01 01 01 01 01 01 01 01 01 01 01 01 0	0.6 0.8 0.8 0.7 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.6 0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	031 031 031 031 031 035 04 04 04 031 031 031 031 031 031 031 031 031 031	0.4 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.72 0.22 0.22 0.22 0.22 0.22 0.22 0.23 0.23	0.4 0.5 0.50 0.50 0.50 0.50 0.50 0.50 0.	031 041 044 040 041 041 041 041 041 041 04	0:1 0:1 0:1 0:1 0:1 0:1 0:1 0:1 0:1 0:1	03 0.1 0.1 0.4 0.4 0.4 0.1 0.1 0.2 0.2 0.1 0.1 0.3 0.3 0.3 0.1 0.1 0.3 0.3 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.877 0.244 1.11 0.989 0.244 0.342 0.344 6.0.436 0.344 6.0.442 0.342 0.342 1.1588 0.342 0.344 0.342 0.344 0.342 0.344 0.342 0.344 0.342 0.344 0.342 0.344 0.342 0.344 0.343 0.342 0.344 0.343 0.342 0.344 0.344 0.342 0.344 0.342 0.344 0.342 0.344	4.4 4.7 1.725 5.9 5.4 1.725 5.4 1.725 3.5 4.3 1.725 3.5 4.3 1.725
ANDESS AND	002 003	1.5006.3.14.KW 1.5006.3.74.KW	15 May 2008 10 Apr 2008 20 Apr 2008	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	02 03 03 03 02 01 01 01 01 01 01 01 01 01 01 01 01 01	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.6 0.8 0.8 0.7 0.1 0.1 0.1 0.25 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	031 031 031 031 031 031 031 031 031 031	0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.72 0.22 0.22 0.22 0.22 0.22 0.22 0.22	0.4 0.205 0.	03 03 04 04 04 04 01 01 02 02 03 03 01 01 01 02 03 03 03 04 04 01 02 03 03 03 04 04 04 04 04 04 04 04 04 04 05 05 06 06 06 06 06 06 06 06 06 06 06 06 06	01 01 01 01 01 01 01 01 01 01 01 01 01 0	03 0.1 0.1 0.4 0.4 0.4 0.1 0.1 0.2 0.2 0.1 0.1 0.3 0.3 0.3 0.1 0.1 0.3 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.837 0.244 0.244 1.1 0.989 0.244 82 0.244 82 0.244 82 0.244 1.588 0.342 1.588 0.342 1.588 0.344 0.345 0.344 0.345 0.344 0.345 0.344 0.345 0.344 0.345 0.344 0.345 0.344 0.344 0.344 0.344 0.345 0.344 0.345	4.4 4.7 1.725 1.725 5.9 5.4 1.725 5.4 1.725 3.5 1.725 3.5 1.725 3.5 1.725 3.5 1.725 3.5 1.725 3.5 1.725 3.5 1.725 3.5 1.725 3.5 1.725
AMICSS STATEMENT AMICSS	002 003	1 55006, 314, KW 1 55006, 324, KW 1 5500	15 May 2008 28 Agr 2008 29 Agr 2008 10 May 2008	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	02 03 03 02 01 01 01 01 01 01 01 01 01 01 01 01 01	01 01 01 01 01 01 01 01 01 01 01 01 01 0	0.6 0.8 0.8 0.7 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.6 0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	031 031 031 031 031 035 04 04 04 031 031 031 031 031 031 031 031 031 031	0.4 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.72 0.22 0.22 0.22 0.22 0.22 0.22 0.23 0.23	0.4 0.5 0.50 0.50 0.50 0.50 0.50 0.50 0.	031 041 044 040 041 041 041 041 041 041 04	0:1 0:1 0:1 0:1 0:1 0:1 0:1 0:1 0:1 0:1	03 0.1 0.1 0.4 0.4 0.4 0.1 0.1 0.2 0.2 0.1 0.1 0.3 0.3 0.3 0.1 0.1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	0.877 0.244 1.11 0.989 0.244 0.342 0.344 6.0.436 0.344 6.0.442 0.342 0.342 1.1588 0.342 0.344 0.342 0.344 0.342 0.344 0.342 0.344 0.342 0.344 0.342 0.344 0.342 0.344 0.343 0.342 0.344 0.343 0.342 0.344 0.344 0.342 0.344 0.342 0.344 0.342 0.344	4.4 4.7 1.725 5.9 5.4 1.725 5.4 1.725 3.5 4.3 1.725 3.5 4.3 1.725
ABILESS STA Extended ABILESS S	002 003	1 55006.31 KW 1 55006.12 KW 1 55006.13 KW	15 May 2008 10 May 2008 20 Apr	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	02 01 01 01 01 01 01 01 01 01 01 01 01 01	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	03 01 01 01 01 01 01 01 01 01 01 01 01 01	0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.72 0.22 0.22 0.22 0.22 0.22 0.22 0.22	0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	01 01 01 01 01 01 01 01 01 01 01 01 01 0	03 0.1 0.1 0.4 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.837 0.244 1.1 0.990 0.254 1.1 0.990 0.254 0.456 0.457 0.254 0.457 0.244	4.4 4.7 1.725 1.725 5.9 5.4 5.7 1.725 5.9 1.725 1.727 1.725
ABILESS SPI Extended Services	002 003	1.5006.31 KW 1.5006.15 KW	15 May 2008 16 May 2008 17 May 2008 18 May 2008 18 May 2008 19 May 2008 19 May 2008 19 May 2008 19 May 2008 10 May 2008	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	02 02 03 04 04 04 04 04 04 04 04 04 04 04 04 04	01 01 01 01 01 01 01 01 01 01 01 01 01 0	0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	031 011 011 011 011 011 011 011 011 011	0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.72 0.22 0.22 1 1 1 0.72 0.22 0.22 0.23 0.22 0.23 0.20 0.20 0.2	0.4 0.205	0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	01 01 01 01 01 01 01 01 01 01 01 01 01 0	03 0.1 0.1 0.1 0.4 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.837 0.244 1.1 0.990 0.244	4.4 4.7 1.725 5.9 5.9 5.4 1.725 1.725 1.725 1.725 1.725 1.725 1.725 1.725 1.725 1.725 1.725 1.725 1.725 1.725 1.725 1.725 1.725 1.725
ABILISS SPI Enter ABICSS SPI ENTER ABICS	002 003	15006.151 KW 15006.152 KW 15006.153 KW 15006.153 KW 15006.153 KW	15 May 2008 16 May 2008 17 May 2008 18 May 2008 19 May 2008 10 May 2008	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	021 031 031 031 031 031 031 031 031 031 03	01 01 01 01 01 01 01 01 01 01 01 01 01 0	0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	031 041 041 041 041 041 041 041 041 041 04	0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.72 0.22 0.22 0.22 0.22 0.22 0.22 0.22	0.4 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0	0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	01 01 01 01 01 01 01 01 01 01 01 01 01 0	03 0.1 0.1 0.1 0.4 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.837 0.244	4.4 4.7 1.725 5.9 5.9 5.4 1.725 1.725 1.725 1.725 1.726 1.727 1.727 1.727 1.727 1.727 1.727 1.727 1.727 1.727 1.727 1.727 1.727 1.727 1.727 1.728 1.728 1.728 1.729
ABILISS ABICSIS ABICS ABICSIS	0.025 0.025	15006.151.KW 15006.152.KW	15 May 2008 16 May 2008 16 May 2008 16 May 2008 17 May 2008 18 May 2008 18 May 2008 18 May 2008 19 May 2008 10 May 2008	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	021 011 011 011 012 013 013 014 015 015 016 017 017 017 017 017 017 017 017 017 017	01 01 01 01 01 01 01 01 01 01 01 01 01 0	0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.31 0.11 0.11 0.12 0.13 0.14 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17	0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.72 0.22	0.4 0.4 0.209 0.200 0.200 0.200 0.200 0.200 0.20	031 041 041 044 044 044 044 044 044 044 04	01 01 01 01 01 01 01 01 01 01 01 01 01 0	031 0.1 0.1 0.1 0.1 0.1 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.877 1.1 1.1 1.1 1.1 1.1 1.1 1.1	4.4 4.4 1.725 1.725 5.9 5.4 1.725 1.725 1.725 1.725 1.725 1.725 1.725 1.725 1.725 1.725 1.727 1.72 1.72 1.72 1.72 1.72 1.72 1.7
AMICSO SPI Enter EL Paulin	002 003	15006.151 KW 15006.152 KW 15006.153 KW 15006.153 KW 15006.153 KW	15 May 2008 16 May 2008 17 May 2008 18 May 2008 19 May 2008 10 May 2008	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	021 031 031 031 031 031 031 031 031 031 03	01 01 01 01 01 01 01 01 01 01 01 01 01 0	0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	031 041 041 041 041 041 041 041 041 041 04	0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.72 0.22 0.22 0.22 0.22 0.22 0.22 0.22	0.4 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0	0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	01 01 01 01 01 01 01 01 01 01 01 01 01 0	03 0.1 0.1 0.1 0.4 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.837 0.244	4.4 4.4 1.725 1.725 1.725 5.9 5.9 1.725 5.1 1.725 5.1 1.725
AMICSO ANT STATE AND ANY	0.025 0.	1.5006.3.14.KW 1.5006.37.14.KW	15 May 2008 10 May 2008 20 Apr 2008 30 Apr 2008	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	021 031 031 031 031 031 031 031 031 031 03	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.7 0.22 0	0.4 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0	0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	01 01 01 01 01 01 01 01 01 01 01 01 01 0	031 031 041 041 041 041 041 041 041 041 041 04	0.877 1.024 0.244	4.4 4.1 1.725 1.725 5.9 5.9 1.725 5.1 1.725 5.1 1.725
AMICES ANT EMERICA ANTICES SPI EMERICA ANTICES	002 003	150006.151.KW 150006.751.KW	15 May 2008 16 May 2008 26 Age 2008 26 Age 2008 26 Age 2008 27 Age 2008 27 Age 2008 27 Age 2008 28 Age 2008 29 Age 2008 20 Age	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	01 01 01 01 01 01 01 01 01 01 01 01 01 0	0.6 0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.72 0.22 0.22 0.23 0.25	0.4 0.4 0.50 0.50 0.50 0.50 0.50 0.50 0.	0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	01 01 01 01 01 01 01 01 01 01 01 01 01 0	0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.377 0.344 0.344 1.1 1.1 1.1 1.1 0.349 0.399 0.399 0.340 0.340 0.340 0.340 0.341	4.4 4.4 1.725 1.725 1.725 5.9 5.9 1.725 5.1 1.725 5.1 1.725
AMICS ST Extended BERT Extended BERT	002 003	150006.151.KW 150006.751.KW	15 May 2008 10 May 2008	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.72 0.22	0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	01 01 01 01 01 01 01 01 01 01 01 01 01 0	0.3 0.1 0.1 0.1 0.4 0.4 0.4 0.4 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.3 0.3 0.3 0.1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	0.877 1 0.244 0.244	4.4 1.725 1.725 5.9 1.725 5.9 1.725
AMICES ANT STATE	0022 00	150006.151 KW 150006.752 KW 150006.753 KW	15 May 2008 16 May 2008 16 May 2008 10 May 2008 11 May	011 011 011 011 011 011 011 011 011 011	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	01 01 01 01 01 01 01 01 01 01 01 01 01 0	0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	0.6 0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.31 0.10 0.11 0.11 0.12 0.13 0.14 0.14 0.16 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17	0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.72 0.22	0.4 0.4 0.200 0.20	0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	01 01 01 01 01 01 01 01 01 01 01 01 01 0	031 011 01 01 04 04 04 04 01 01 01 01 01 01 01 01 01 01 01 01 01	0.877 0.244	4.4 1.725 1.725 1.725 1.725 1.725 1.725 1.725 1.727 1.727 1.728 1.729 1.
AMICSS SY LEAVEN AMICS SY LEAV	002 003	150006.151.KW 150006.751.KW	15 May 2008 16 May 2008 10 May	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.6 0.6 0.7 0.7 0.6 0.6 0.7 0.7 0.6 0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.3 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.72 0.22	0.4 0.4 0.50 0.50 0.50 0.50 0.50 0.50 0.	0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	01 01 01 01 01 01 01 01 01 01 01 01 01 0	0.3 0.1 0.1 0.1 0.4 0.4 0.4 0.4 0.5 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.877 0.244	4.4 1.725 1.725 5.9 1.725 5.9 1.725
AMICSS SY LEADER STATE AMICS STATE A	002 003	1.50006.151.KW 1.50006.751.KW	15 May 2008 16 May 2008 26 Apr 2008 27 Apr 2008 27 Apr 2008 27 Apr 2008 28 Apr 2008 29 Apr 2008 20 Apr 2008 21 May 2008	011 011 011 011 011 011 011 011 011 011	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 02 03 04 04 04 04 04 04 04	0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	01 01 01 01 01 01 01 01 01 01 01 01 01 0	0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.31 0.11 0.11 0.12 0.13 0.14 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.72 0.22 0.22 0.23 0.25	0.4 0.4 0.50 0.50 0.50 0.50 0.50 0.50 0.	0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	01 01 01 01 01 01 01 01 01 01 01 01 01 0	0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.877 0.244	4.4 1.725 5.9 1.725 5.4 1.725 5.4 1.725 5.4 1.725 1.725 1.725 1.725 1.725 1.725 1.727 1.727 1.727 1.727 1.727 1.727 1.727 1.727 1.727 1.727 1.728 1.729 1.72
ABILIZES SP4 Enter ABILIZES SP4 Enter ABILIZES SP4 Enter ABILIZES ABI	002 003	150006.151.KW 150006.751.KW	15 May 2008 16 May 2008 10 May 208 10 May	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.31 0.10 0.11 0.11 0.12 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.72 0.22 1.2 0.22 0	0.4 0.200 0.	0.31 0.11 0.11 0.12 0.13 0.14 0.15 0.15 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17	01 01 01 01 01 01 01 01 01 01 01 01 01 0	031 041 041 041 041 041 041 041 041 041 04	0.877 0.244	4.4 1.725 1.
AMICSO AMICSO SY LEAD AMICSO A	0.025 0.021 0.021 0.021 0.021 0.021 0.031 0.031 0.031 0.032 0.032 0.032 0.032 0.032 0.033 0.035 0.	1.50006.151.KW 1.50006.751.KW 1.5000	15 May 2008 16 May 2008 26 Apr 2008 27 Apr 2008 27 Apr 2008 27 Apr 2008 27 Apr 2008 28 Apr 2008 29 Apr 2008 20 Apr 2008 21 May	011 011 011 011 011 011 011 011 011 011	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	0.6 0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.31 0.10 0.11 0.11 0.12 0.13 0.14 0.14 0.15 0.15 0.15 0.15 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17	0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.72 0.22	0.4 0.4 0.50 0.50 0.50 0.50 0.50 0.50 0.	0.31 0.11 0.11 0.12 0.13 0.14 0.14 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	01 01 01 01 01 01 01 01 01 01 01 01 01 0	031 040 041 041 041 041 041 041 041 041 04	0.877 0.244	4.4 1.725 1.725 5.9 1.725 5.4 1.725 5.4 1.725 5.4 1.725 1.72
AMICSO AMICSO SY LEAD AMICSO A	0.025 0.021 0.021 0.021 0.021 0.021 0.031 0.031 0.031 0.032 0.032 0.032 0.032 0.032 0.033 0.035 0.	1.5006.3.14.KW 1.5006.37.14.KW	15 May 2008 16 May 2008 16 May 2008 16 May 2008 10 May	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	01 01 01 01 01 01 01 01 01 01 01 01 01 0	0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	0.6 0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.31 0.10 0.11 0.11 0.12 0.13 0.14 0.14 0.15 0.15 0.15 0.15 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17	0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.72 0.22	0.4 0.500 0.	0.31 0.11 0.11 0.12 0.13 0.14 0.14 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	01 01 01 01 01 01 01 01 01 01 01 01 01 0	031 040 041 041 041 041 041 041 041 041 04	0.877 0.244	4.4 1.725 1.725 1.725 1.725 1.725 1.725 1.727 1.727 1.727 1.727 1.727 1.727 1.727 1.727 1.727 1.727 1.727 1.727 1.727 1.727 1.727 1.727 1.727 1.727 1.728 1.729 1.

								Table	14: Soil Ar	alytical R	esults - OCI) 1													—
Location	Sample Depth (m)	Sample ID	Date Sampled Units	alpha- BCH	Hexachio robenzen	DH BHC	gamma- gg BHC (Lindane)	G-BHC d-BHC	Heptachi	mg/kg	Heptachl or epoxide	Chlordan e - trans	Sylem Chlordan e - cis	Endosulf an alpha	Dieldrin	ayka 4,4-DDE	mg/kg	mg/kg	Endosulf an II	Endrin	Endosuif an sulphate	ayka 4,4-DDT	Methoxyc	B DDT+DD	Mdrin+D
SP4 Enter	01.02	060508_49.KW	06 May 2008		<01	<01		< 0.1				< 0.1			< 0.1									< 0.1	< 0.1
ABH205 ABH206	0.1-0.2	060508-49-KW 090508-208-KW	09 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH207 ABH2102	0.2-0.4	090508-207-KW 090508-185-KW	09 May 2008 09 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH2102 ABH2103	0.2-0.3	090508-185-KW 090508-194-KW	09 May 2008 09 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH2103	0.1-0.2	090508-195-KW Field Blind Replicate Sample of 090508-194-KW	09 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH2106 ABH211	0.1-0.2	090508-204-KW 120508-214-KW	09 May 2008 12 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH216	0-0.2	060508-40-KW	06 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH218 ABH221	0-0.1 0.1-0.25	060508-06-KW 080508-158-KW	06 May 2008 08 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
REI Publi BBH401	0.2-0.4	n 280408-01-KW	28 Apr 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BBH404	0-0.1	280408-15-KW	28 Apr 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BBH425 BBH426	0.2-0.4 0.1-0.2	290408-57-KW 290408-69-KW	29 Apr 2008 29 Apr 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BBH438	0.2-0.3	290408-72-KW	30 Apr 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
SP4 Enter	0-0.2	060508.33.KW	06 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH229	0.5-0.8	060508-14-KW	06 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH229 ABH229	0.5-0.8	060508-15-KW Field Blind Replicate Sample of 060508-14-KW 060508-16-KW Split Field Duplicate of 060508-14-KW	06 May 2008 06 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH230	0.1-0.2	080508-14-KW 080508-148-KW	08 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.03	< 0.1	< 0.03	< 0.1	< 0.1	< 0.1	< 0.1
REI Publi	0-0.1	n 070508-79-KW	07 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-01	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
SP4 Enter	prise			•																					
ABH237 ABH239	0-0.2	060508-27-KW 080508-121-KW	06 May 2008 08 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH240	0.1-0.4	080508-123-KW	08 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH240 ABH240	0.1-0.4 0.1-0.4	080508-124-KW Field Blind Replicate Sample of 080508-123-KW 080508-125-KW Split Field Duplicate of 080508-123-KW	08 May 2008 08 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH243	0-0.1	080508-125-KW Spit Fred Duplicate of 080508-123-KW 080508-141-KW	08 May 2008 08 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.10	< 0.1	< 0.05	< 0.1	< 0.1	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.2	< 0.1	< 0.1
ABH247		n 070508-98-KW	07 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH247	0.1-0.4	070508-99-KW Field Blind Replicate Sample of 070508-98-KW	07 May 2008 07 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
SP4 Enter		080508-116-KW	08 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH253 ABH255	0-0.1	080508-133-KW	08 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH255 RE1 Public	0-0.2	080508-139-KW	08 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH259	0-0.1	120508-248-KW	12 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH260	0-0.2	120508-243-KW	12 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
SP4 Enter	0-0.1	120508-235-KW	12 May 2008	< 0.1		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH264 ABH266	0-0.1	120508-232-KW 120508-226-KW	12 May 2008 12 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH267	0-0.2	120508-223-KW	12 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
REI Publi ABH268	0-0.2	n 120508-275-KW	12 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH271	0-0.2	130508-308-KW	13 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH272 ABH272	0.1-0.5 0.1-0.5	130508-304-KW 130508-305-KW Field Blind Replicate Sample of 130508-304-KW	13 May 2008 13 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH274	0.1-0.3	130508-289-KW	13 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH276 ABH282	0.05-0.25	130508-282-KW 130508-296-KW	13 May 2008 13 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH283	0-0.2	150508-381-KW	15 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
SP4 Enter	0-0.2	150508-389-KW	15 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.1	0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.1	< 0.1	0.3	< 0.1
REI Publi	c Recreation	n														0.1						0.1			
ABH287 ABH287	0-0.4	150508-378-KW 150508-379-KW Field Blind Replicate Sample of 150508-378-KW	15 May 2008 15 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH288	0-0.2	150508-373-KW	15 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH290 ALG205	0-0.2	150508-358-KW 150508-363-KW	15 May 2008 15 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
AMW205 RRH415	0.1-0.2	080508-155-KW 300408-78-KW	08 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1 < 0.1 < 0.1
SP4 Enter		300408-78-RW	30 Apr 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BBH421 RE1 Publi	0-0.1	300408-105-KW	30 Apr 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
REI Publi BBH454	0-0.1	n 010508-126-KW	01 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BBH406 BBH407	0.1-0.2	290408-46-KW 290408-43-KW	29 Apr 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BBH409	0.2-0.5	290408-39-KW	29 Apr 2008 29 Apr 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BBH409 BBH409	0.2-0.5	290408-40-KW Field Blind Replicate Sample of 290408-39-KW 290408-41-KW Solis Field Duplicate of 290408-39-KW	29 Apr 2008 29 Apr 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BBH429	0-0.1	010508-152-KW	01 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
SP4 Enter	0-0.1	010508-160-KW	01 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BBH433	0.1-0.3	010508-156-KW	01 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BBH433	0.1-0.3 c Recreation	010508-157-KW Field Blind Replicate Sample of 010508-156-KW	01 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BBH436	0.1-0.3	300408-87-KW	30 Apr 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BBH439 RRH440	0.1-0.2 0.2-0.4	010508-133-KW 010508-148-KW	01 May 2008 01 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
SP4 Enter	prise	ATTENDED				. 0.1			. 0.1	. 0.1				- 46.1	- 0.1	- 0.1	- 0.1	- 0.1	- 0.1	. 0.1	. 0.1	- 0.1	- 3.1	- 3-1	
BBH441 BBH442	0-0.2 0.1-0.4	010508-150-KW 300408-101-KW	01 May 2008 30 Apr 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BBH442	0.1-0.4	300408-102-KW Field Blind Replicate Sample of 300408-101-KW	30 Apr 2008 30 Apr 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
REI Publi BBH445	0.1-0.4	n 010508-136-KW	01 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BBH445	0.1-0.4	010508-137-KW Field Blind Replicate Sample of 010508-136-KW	01 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
SP4 Enter	0.1-0.4 prise	010508-138-KW Split Field Duplicate Sample of 010508-136-KW	01 May 2008	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.2	< 0.2	0.1	< 0.1
BBH446	0.1-0.2	010508-146-KW	01 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BBH447 BBH448	0.1-0.2	010508-144-KW 300408-98-KW	01 May 2008 30 Apr 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
REI Publi	c Recreation					100					7.001				< 0.1	V.0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	- 0.1		. 0.1	
BBH451 BBH453	0.0.2	010508-142-KW 300408-92-KW	01 May 2008 30 Apr 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BBH455	0.1-0.2	010508-120-KW	01 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BBH456 BBH457	0.2-0.4	010508-118-KW 300408-94-KW	01 May 2008 30 Apr 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
many)		н	L-C Recreational		10				10		-	-	70	340				20	-		-		400	400	10
-		EIL . Urban ravidantial /	HIL-D Commercial nublic onen space	-	80	-	+ :	-	50	-	-	-	530	2000	-	-	-	100	-	-	1	180	2500	3600	45
		EIL - Urban residential / EIL - Comr	nercial/ Industrial	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	640			

		Table 15: Soil A	Analytical Resul	ts - OPP						
	Sample		Date Sampled	Dimeth	Diazin	Chlorp yrifos- methyl	Ronnel	Fenitro	Chlorp yrifos	Ethion
Location	Depth (m)	Sample ID	Units	mg/kg	mg/kg	mg/kg	ıng/kg	ੁੰ≅ mg/kg	ਰ ≒ mg/kg	⊞ mg/kg
SP4 Enter										
ABH205 ABH206	0.1-0.2 0.1-0.2	060508-49-KW 090508-208-KW	06 May 2008 09 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH207	0.2-0.4	090508-207-KW	09 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH2102 ABH2103	0.2-0.3 0.1-0.2	090508-185-KW 090508-194-KW	09 May 2008 09 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH2103	0.1-0.2	090508-195-KW Field Blind Replicate Sample of 090508-194-KW	09 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH2106 ABH211	0.1-0.2 0-0.1	090508-204-KW 120508-214-KW	09 May 2008 12 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH216	0-0.2	060508-40-KW	06 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH218 ABH221	0-0.1 0.1-0.25	060508-06-KW 080508-158-KW	06 May 2008 08 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
RE1 Publi BBH401	0.2-0.4	n 280408-01-KW	20 4 2000	.01	-0.1	.0.1	-0.1	-01	-01	.0.1
BBH454	0.2-0.4	280408-01-KW 010508-126-KW	28 Apr 2008 01 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BBH425 BBH426	0.2-0.4	290408-57-KW 290408-69-KW	29 Apr 2008 29 Apr 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BBH438	0.2-0.3	290408-72-KW	30 Apr 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
SP4 Enter ABH225	prise 0-0.2	060508-33-KW	06 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH229	0.5-0.8	060508-14-KW	06 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH229 ABH229	0.5-0.8 0.5-0.8	060508-15-KW Field Blind Replicate Sample of 060508-14-KW 060508-16-KW Split Field Duplicate of 060508-14-KW	06 May 2008 06 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH230	0.1-0.2	080508-148-KW	08 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH235	0-0.1	n 070508-79-KW	07 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
SP4 Enter						. 0.1				
ABH237 ABH239	0-0.2 0-0.1	060508-27-KW 080508-121-KW	06 May 2008 08 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH240	0.1-0.4	080508-123-KW	08 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH240 ABH240	0.1-0.4 0.1-0.4	080508-124-KW Field Blind Replicate Sample of 080508-123-KW 080508-125-KW Split Field Duplicate of 080508-123-KW	08 May 2008 08 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH243	0-0.1	080508-141-KW	08 May 2008	< 0.03	< 0.03	< 0.03	< 0.1	< 0.1	< 0.03	< 0.03
ABH247	0.1-0.4	n 070508-98-KW	07 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH247	0.1-0.4	070508-99-KW Field Blind Replicate Sample of 070508-98-KW	07 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
SP4 Enter ABH251	prise 0-0.1	080508-116-KW	08 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH253	0-0.1	080508-133-KW	08 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH255 RE1 Publi	0-0.2 ic Recreation	080508-139-KW n	08 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH259	0-0.1	120508-248-KW	12 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
SP4 Enter	0-0.2 prise	120508-243-KW	12 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH263	0-0.1	120508-235-KW	12 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH264 ABH266	0-0.1 0.1-0.2	120508-232-KW 120508-226-KW	12 May 2008 12 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH267	0-0.2	120508-223-KW	12 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH268	0-0.2	120508-275-KW	12 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH271 ABH272	0-0.2 0.1-0.5	130508-308-KW 130508-304-KW	13 May 2008 13 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH272	0.1-0.5	130508-305-KW Field Blind Replicate Sample of 130508-304-KW	13 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH274 ABH276	0.1-0.3 0.05-0.25	130508-289-KW 130508-282-KW	13 May 2008 13 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH282	0-0.2	130508-296-KW	13 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH283 SP4 Enter	0-0.2	150508-381-KW	15 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH285	0-0.2	150508-389-KW	15 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH287	0-0.4	n 150508-378-KW	15 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH287	0-0.4	150508-379-KW Field Blind Replicate Sample of 150508-378-KW	15 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ABH288 ABH290	0-0.2 0-0.2	150508-373-KW 150508-358-KW	15 May 2008 15 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ALG205	0-0.15	150508-363-KW	15 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
AMW205 BBH404	0.1-0.2 0-0.1	080508-155-KW 280408-15-KW	08 May 2008 28 Apr 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BBH415	0.1-0.3	300408-78-KW	30 Apr 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
SP4 Enter BBH421		300408-105-KW	30 Apr 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
RE1 Publi	ic Recreation		20 4 2000					0.1	0.4	0.1
BBH406 BBH407	0.1-0.2 0.05-0.15	290408-46-KW 290408-43-KW	29 Apr 2008 29 Apr 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BBH409	0.2-0.5	290408-39-KW	29 Apr 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BBH409 BBH409	0.2-0.5 0.2-0.5	290408-40-KW Field Blind Replicate Sample of 290408-39-KW 290408-41-KW Split Field Duplicate of 290408-39-KW	29 Apr 2008 29 Apr 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1 < 0.05
BBH429 BBH432	0-0.1 0-0.1	010508-152-KW 010508-160-KW	01 May 2008 01 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
SP4 Enter	prise				< 0.1		< 0.1			< 0.1
BBH433 BBH433	0.1-0.3 0.1-0.3	010508-156-KW 010508-157-KW Field Blind Replicate Sample of 010508-156-KW	01 May 2008 01 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	ic Recreation	n	01 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BBH436 BBH439	0.1-0.3 0.1-0.2	300408-87-KW 010508-133-KW	30 Apr 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BBH449 BBH440	0.1-0.2	010508-133-KW 010508-148-KW	01 May 2008 01 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
SP4 Enter BBH441	prise 0-0.2	010508-150-KW	01 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BBH442	0.1-0.4	300408-101-KW	30 Apr 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BBH442 RE1 Publi	0.1-0.4 ic Recreation	300408-102-KW Field Blind Replicate Sample of 300408-101-KW	30 Apr 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BBH445	0.1-0.4	010508-136-KW	01 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BBH445 BBH445	0.1-0.4	010508-137-KW Field Blind Replicate Sample of 010508-136-KW 010508-138-KW Split Field Duplicate Sample of 010508-136-KW	01 May 2008 01 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1 nt	< 0.1 < 0.05	< 0.1 < 0.05
SP4 Enter	prise									
BBH446 BBH447	0.1-0.2 0.1-0.2	010508-146-KW 010508-144-KW	01 May 2008	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1	< 0.1	< 0.1 < 0.1	< 0.1	< 0.1
BBH448	0.1-0.2	300408-98-KW	01 May 2008 30 Apr 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1 < 0.1	< 0.1
RE1 Publi BBH451	0-0.2	n 010508-142-KW	01 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BBH453	0.2-0.3	300408-92-KW	30 Apr 2008	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
BBH455 BBH456	0.1-0.2 0.2-0.4	010508-120-KW 010508-118-KW	01 May 2008 01 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BBH457	0.45-0.6	300408-94-KW	30 Apr 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
<u> </u>			L-C Recreational IL-D Commercial	- :	-	-	-	-	250 2000	-
Concentrations	A 4.1	n level are shown in bold text.		•					2000	<u> </u>

		Table 16: Soil 4	Analytical Resul	ts - PCR ¹						
Location	Sample Depth (m)	Sample ID	Date Sampled	Arodor 1016	Arodor 1232	Arodor 1242	Arodor 1248	Arodor 1254	Arodor 1260	Total PCBs
SP4 Enter	prise		Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
ABH205	0.1-0.2	060508-49-KW	06 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
ABH206 ABH207	0.1-0.2 0.2-0.4	090508-208-KW 090508-207-KW	09 May 2008 09 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
ABH211	0-0.1	120508-214-KW	12 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
ABH216	0-0.2	060508-40-KW	06 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
ABH218 ABH221	0-0.1 0.1-0.25	060508-06-KW 080508-158-KW	06 May 2008 08 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
ABH229	0.5-0.8	060508-14-KW	06 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
ABH229 ABH229	0.5-0.8 0.5-0.8	060508-15-KW Field Blind Replicate Sample of 060508-14-KW 060508-16-KW Split Field Duplicate of 060508-14-KW	06 May 2008 06 May 2008	< 0.1 nt	< 0.1 nt	< 0.1 nt	< 0.1 nt	< 0.1 nt	< 0.1 nt	< 0.1
ABH2102	0.2-0.3	090508-185-KW	09 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
ABH2103 ABH2103	0.1-0.2 0.1-0.2	090508-194-KW 090508-195-KW Field Blind Replicate Sample of 090508-194-KW	09 May 2008 09 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
ABH2106	0.1-0.2	090508-193-KW Field Blind Replicate Sample of 090508-194-KW	09 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
	c Recreation		T							
BBH401 BBH426	0.2-0.4 0.1-0.2	280408-01-KW 290408-69-KW	28 Apr 2008 29 Apr 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	nt nt
BBH438	0.2-0.3	290408-72-KW	30 Apr 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	nt
BBH425 ABH225	0.2-0.4 0-0.2	290408-57-KW 060508-33-KW	29 Apr 2008 06 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	nt
SP4 Enter		000308-33-KW	00 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
ABH230	0.1-0.2	080508-148-KW	08 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
ABH235	0-0.1	n 070508-79-KW	07 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	1
SP4 Enter		070308-79-KW	07 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
ABH237	0-0.2	060508-27-KW	06 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
ABH239 ABH240	0-0.1 0.1-0.4	080508-121-KW 080508-123-KW	08 May 2008 08 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
ABH240	0.1-0.4	080508-124-KW Field Blind Replicate Sample of 080508-123-KW	08 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
ABH240	0.1-0.4	080508-125-KW Split Field Duplicate of 080508-123-KW	08 May 2008	nt	nt	nt	nt	nt	nt	< 0.1
ABH243 RE1 Publi	0-0.1 ic Recreation	080508-141-KW n	08 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
ABH247	0.1-0.4	070508-98-KW	07 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
ABH247 SP4 Enter	0.1-0.4	070508-99-KW Field Blind Replicate Sample of 070508-98-KW	07 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	_
SP4 Enter ABH251	0-0.1	080508-116-KW	08 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
ABH253	0-0.1	080508-133-KW	08 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
ABH255 RE1 Publi	0-0.2	080508-139-KW	08 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
ABH259	0-0.1	120508-248-KW	12 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
ABH260	0-0.2	120508-243-KW	12 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
SP4 Enter ABH263	0-0.1	120508-235-KW	12 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
ABH264	0-0.1	120508-232-KW	12 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
ABH266 ABH267	0.1-0.2 0-0.2	120508-226-KW 120508-223-KW	12 May 2008 12 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
	ic Recreation		12 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
ABH268	0-0.2	120508-275-KW	12 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
ABH271 ABH272	0-0.2 0.1-0.5	130508-308-KW 130508-304-KW	13 May 2008 13 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
ABH272	0.1-0.5	130508-305-KW Field Blind Replicate Sample of 130508-304-KW	13 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
ABH274 ABH276	0.1-0.3 0.05-0.25	130508-289-KW 130508-282-KW	13 May 2008 13 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
ABH282	0.03-0.23	130508-286-KW	13 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
ABH283	0-0.2	150508-381-KW	15 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
SP4 Enter ABH285	prise 0-0.2	150508-389-KW	15 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
	ic Recreation									
ABH287	0-0.4	150508-378-KW	15 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
ABH287 ABH288	0-0.4 0-0.2	150508-379-KW Field Blind Replicate Sample of 150508-378-KW 150508-373-KW	15 May 2008 15 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
ABH290	0-0.2	150508-358-KW	15 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
ALG205 AMW205	0-0.15 0.1-0.2	150508-363-KW 080508-155-KW	15 May 2008 08 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
BBH404	0-0.1	280408-15-KW	28 Apr 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	nt
BBH415	0.1-0.3	300408-78-KW	30 Apr 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	nt
SP4 Enter BBH421	prise 0-0.1	300408-105-KW	30 Apr 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	nt
RE1 Publi	ic Recreation	n								
BBH406	0.1-0.2	290408-46-KW	29 Apr 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	nt
BBH407 BBH409	0.05-0.15 0.2-0.5	290408-43-KW 290408-39-KW	29 Apr 2008 29 Apr 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	nt nt
BBH409	0.2-0.5	290408-40-KW Field Blind Replicate Sample of 290408-39-KW	29 Apr 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	nt
BBH409 BBH429	0.2-0.5 0-0.1	290408-41-KW Split Field Duplicate of 290408-39-KW 010508-152-KW	29 Apr 2008 01 May 2008	nt < 0.1	nt < 0.1	nt < 0.1	nt < 0.1	nt < 0.1	nt < 0.1	< 0.1 nt
BBH432	0-0.1	010508-160-KW	01 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	nt
SP4 Enter	prise 0.1-0.3	010500 157 170	0134 2000	-0.1				.0.	-0.1	
BBH433 BBH433	0.1-0.3	010508-156-KW 010508-157-KW Field Blind Replicate Sample of 010508-156-KW	01 May 2008 01 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	nt nt
RE1 Publi	ic Recreation	n								
BBH436 BBH439	0.1-0.3	300408-87-KW 010508-133-KW	30 Apr 2008 01 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	nt nt
BBH440	0.2-0.4	010508-133-KW 010508-148-KW	01 May 2008 01 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	nt nt
SP4 Enter					_	_	_	•		
BBH441 BBH442	0-0.2 0.1-0.4	010508-150-KW 300408-101-KW	01 May 2008 30 Apr 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	nt nt
BBH442	0.1-0.4	300408-102-KW Field Blind Replicate Sample of 300408-101-KW	30 Apr 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	nt
	c Recreation		01 M 2000							
BBH445 BBH445	0.1-0.4 0.1-0.4	010508-136-KW 010508-137-KW Field Blind Replicate Sample of 010508-136-KW	01 May 2008 01 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	nt nt
BBH445	0.1-0.4	010508-138-KW Split Field Duplicate Sample of 010508-136-KW	01 May 2008	nt	nt	nt	nt	nt	nt	< 0.1
SP4 Enter		010606 147 1770	01 M - 2000	-01	-01	-01	.01	-01	-01	
BBH446 BBH447	0.1-0.2 0.1-0.2	010508-146-KW 010508-144-KW	01 May 2008 01 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	nt nt
BBH448	0.1-0.2	300408-98-KW	30 Apr 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	nt
RE1 Publi BBH451	0-0.2	n 010508-142-KW	01 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	n#
BBH453	0.2-0.3	010508-142-KW 300408-92-KW	30 Apr 2008	< 0.1	< 0.1	< 0.1	< 1	< 0.1	< 0.1	nt nt
BBH455	0.1-0.2	010508-120-KW	01 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	nt
BBH456 BBH457	0.2-0.4 0.45-0.6	010508-118-KW 300408-94-KW	01 May 2008 30 Apr 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	nt nt
BLG404	0-0.2	020508-178-KW	02 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	nt
BMW404	0.1-0.2	020508-175-KW	02 May 2008	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	nt
 			L-C Recreational HL-D Commercial	-	-	-	-	-	-	7
Concentrations	shows this action	level are shown in bold text.								

Concentrations above this action level are shown in **bold** text.

<#### Represents results below the laboratory Practical Quantitation Limit.</p>
nt = Not Tested
= Action Level not established

		Table 17: Soil Analytical Results - Phenols ¹		
Location	Sample Depth (m)	Sample ID	Date Sampled Units	Total Phenolics
SP4 Enter	nrise		Cints	mg/kg
ABH202	1.9-2.2	090508-202-KW	09 May 2008	< 5
ABH210	0.1-0.2	060508-46-KW	06 May 2008	< 5
ABH212	0.35-0.45	080508-161-KW	08 May 2008	< 5
ABH219	0-0.2	060508-08-KW	06 May 2008	< 5
ABH220	0.2-0.3	060508-04-KW	06 May 2008	< 5
ABH299	0.1-0.2	090508-168-KW	09 May 2008	< 5
ABH2103	1.3-1.4	090508-199-KW	09 May 2008	< 5
ABH2106	1.1-1.2	090508-205-KW	09 May 2008	< 5
	c Recreation	200 22.11		
BBH426	1.7-1.8	290408-71-KW	29 Apr 2008	< 5
SP4 Enter		2/0 100 / 1 11 11	25 T.p. 2000	
ABH226	0.1-0.2	060508-20-KW	06 May 2008	< 5
ABH229	0.5-0.8	060508-14-KW	06 May 2008	< 5
ABH229	0.5-0.8	060508-15-KW Field Blind Replicate Sample of 060508-14-KW	06 May 2008	< 5
ABH229	0.5-0.8	060508-16-KW Split Field Duplicate of 060508-14-KW	06 May 2008	< 0.5
ABH231	0.6-0.7	080508-152-KW	08 May 2008	< 5
ABH231	0.6-0.7	080508-153-KW Field Blind Replicate Sample of 080508-152-KW	08 May 2008	< 5
ABH239	0.4-0.5	080508-122-KW	08 May 2008	< 5
ABH240	0.8-1	080508-126-KW	08 May 2008	< 5
ABH243	0.2-0.3	080508-142-KW	08 May 2008	< 5
ABH249	1-1.1	080508-110-KW	08 May 2008	< 5
ABH265	0-0.1	120508-228-KW	12 May 2008	< 5
RE1 Publi	c Recreation			
ABH289	2-2.2	150508-372-KW	15 May 2008	< 5
AMW207	1.4-1.5	120508-220-KW	12 May 2008	< 5
SP4 Enter			,	
BBH421	0-0.1	300408-105-KW	30 Apr 2008	< 5
BBH407	0.4-0.5	290408-44-KW	29 Apr 2008	< 5
BBH424	1.4-1.6	290408-55-KW	29 Apr 2008	< 5
	c Recreation		r	
BBH429	2.4-2.5	010508-155-KW	01 May 2008	< 5
BBH437	2.6-2.8	290408-77-KW	30 Apr 2008	< 5
BBH443	0.4-0.5	300408-89-KW	30 Apr 2008	< 5
BBH443	0.4-0.5	300408-90-KW Field Blind Replicate Sample of 300408-89-KW	30 Apr 2008	< 5
BBH445	0.1-0.4	010508-136-KW	01 May 2008	< 5
BBH445	0.1-0.4	010508-137-KW Field Blind Replicate Sample of 010508-136-KW	01 May 2008	< 5
BBH445	0.1-0.4	010508-138-KW Split Field Duplicate Sample of 010508-136-KW	01 May 2008	<5
SP4 Enter		•	<u> </u>	
BBH447	0.1-0.2	010508-144-KW	01 May 2008	< 5
BBH447	0.7-0.8	010508-145-KW	01 May 2008	< 5
	c Recreation		<u> </u>	
BBH450	0.4-0.5	010508-140-KW	01 May 2008	< 5
			L-C Recreational	40000
			HIL-D Commercial	240000

Concentrations above this action level are shown in **bold** text

<### Represents results below the laboratory Practical Quantitation Limit.</p>

nt = Not Tested

⁻⁻ = Action Level not established

Part					Tab	le 18: Soil	Analytica	l Results -	Nutrients	and Sali	nity ¹									
Per	Location	Depth	Sample ID	Date Sampled		Total Nirogen	8	8	Total Phosphorous	Hq	Texture	Electrical Conductivity	ECE	Salinty as NACL	Resistivity	Sulphate as SO ₄	Sulphite as SO ₃	Sulphate as SO ₃	Choride	Choride
March Marc	nn. n	L		Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	pН	-	us/cm	dS/m	mg/kg	ohm m	mg/kg	mg/kg	%	mg/kg	%
Second Control Contr			150508-363-KW	15 May 2008	nt	nt	nf	nt	nf	7.3	nt	180	nr	120	56	<25	nt	nf	<100	nf
ABEN	SP4 Enter	prise																		
March Marc																				
Minor Mino																				
March Marc	ABH217	0-0.2		06 May 2008	11	3300	< 0.1	< 0.5	350	nt				nt		nt			nt	
ABECT 1962 ABECT 1962 ABECT ABECT ABECT ABET																				
ABECT 262-54																				
MINISTREET MIN										0.10										
Math																				
March Marc																				
SPIESTOFF SPIEST			07030033-811	07 May 2000		2700	1.0	3.7	440					in.	iii.				- m	
MISTING Gold GROWN Gro	ABH235	0-0.1	070508-79-KW	07 May 2008	14	4600	0.2	2.9	250	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt
Marcia Control Contr			040508 27 VW	06 May 2000	4.5	2700	0.2	2.0	150	nf	nt	nt	nt.	nt	nt	est	nd.	nt	nt	nt
ABINC S. 1.57 SOUTH SO			080508-127-KW																	
AMES 0-01 60058-14-EW		0.5-0.7	080508-145-KW	08 May 2008	2.5	320	< 0.1	0.8	120											
March Marc																				
Miles Mile			000300-141- N W	00 May 2008	3.2	4100	< 0.1	2.3	+30	nt	att	ılt	м	- AL	nt	ıll	ı a	ılt	nt	nt
MINISTON GOSSIA-JONE GOS	ABH247	0.1-0.4	070508-98-KW	07 May 2008	1.5	840	< 0.1	2.1	400	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt
MINISTER						1			1				1					1		
March Marc																				
March Marc																				
SPEELENTING																				
March Marc		0.00 0.00	120508-238-KW	12 May 2008	0.7	240	< 0.1	< 0.5	77	8.6	nt	70	nt	45	140	<25	nt	nt	<100	nt
MAISTON 1.0006			120508-223-KW	12 May 2008	1.3	1700	< 0.1	< 0.5	84	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt
MAILTO M						1			1				1					1		
ABMETING GOOL GENERAL STANDAM GENERAL ST																				
MRIBER 0.00 0.00 0.00 13508-59-68 13 May 2008 at																				
ABHESI O. O. 15068-596-KW 15Mg 208 2.8 2.0 0.0		0.0-0.2	130508-285-KW	13 May 2008	nt	nı		nt	nt							<25	nt	nt	<100	nı
ABIES 0-015 150868-SR-KW 1518-W-2008 28 240 0-01 0-02 1 0-02 150868-SR-KW 1518-W-2008 83 1509 0-01 0-02 1 0-02 150868-SR-KW 1518-W-2008 82 1509 0-02 150868-SR-KW 1518-W-2008 82 1509 0-02 1509 0-02 1509 0-02 1509 0-02 1509 0-02 1509		0.05-0.25	130508-282-KW	13 May 2008	1.6	610	< 0.1	< 0.5	380	nt	nt				nt	nt	nt	nt	nt	nt
ABHEND O-0-2 15058(3-15/KW 15 May 2008 4.5 3000 0-1 6 5-40 1st st st st st st st s	ABH280	0.05-0.25 0.0-0.2	130508-282-KW 130508-299-KW	13 May 2008 13 May 2008	1.6 nt	610 nt	< 0.1 nt	< 0.5 nt	380 nt	nt 8.4	nt nt	90	nt	58	nt 110	nt <25	nt nt	nt nt	nt <100	nt nt
ABHE90 O-0-2 13058-322-KW 13 May 2008 2-2 300 0-1 0-0-5 64 11 11 11 11 11 11 11	ABH280 ABH282	0.05-0.25 0.0-0.2 0-0.2	130508-282-KW 130508-299-KW 130508-296-KW	13 May 2008 13 May 2008 13 May 2008	1.6 nt 5.1	610 nt 530	< 0.1 nt < 0.1	< 0.5 nt 2.3	380 nt 200	nt 8.4 nt	nt nt nt	90 nt	nt nt	58 nt	nt 110 nt	nt <25 nt	nt nt nt	nt nt nt	nt <100 nt	nt nt nt
ABHEY OLD 1 12068-261-KW 12 May 2008 2 9 1700 0.01 0.05 1000 4.8 mt 99 nt 63 1000 0.25 nt nt nt 1 nt nt 1 nt nt 1 nt nt 1 nt	ABH280 ABH282 ABH284 ABH288	0.05-0.25 0.0-0.2 0-0.2 0-0.15 0-0.2	130508-282-KW 130508-299-KW 130508-296-KW 150508-384-KW 150508-373-KW	13 May 2008 13 May 2008 13 May 2008 15 May 2008 15 May 2008	1.6 nt 5.1 2.8 8.3	610 nt 530 2400 1500	< 0.1 nt < 0.1 < 0.1 < 0.1	< 0.5 nt 2.3 6.2 3.2	380 nt 200 420 430	nt 8.4 nt nt	nt nt nt nt	90 nt nt	nt nt nt	58 nt nt nt	nt 110 nt nt	nt <25 nt nt	nt nt nt nt	nt nt nt nt	nt <100 nt nt	nt nt nt nt
AMM/200 0.1-0.2 1.20508-257-KW 1.2 May 2008 0.8 5100 0.1 0.0 0.5 7.00 art nt nt nt nt nt nt nt	ABH280 ABH282 ABH284 ABH288 ABH294	0.05-0.25 0.0-0.2 0-0.2 0-0.15 0-0.2 0-0.2	130508-282-KW 130508-299-KW 130508-296-KW 150508-384-KW 150508-373-KW 150508-377-KW	13 May 2008 13 May 2008 13 May 2008 15 May 2008 15 May 2008 15 May 2008 15 May 2008	1.6 nt 5.1 2.8 8.3 4.5	610 nt 530 2400 1500 3000	< 0.1 nt < 0.1 < 0.1 < 0.1 < 0.1	< 0.5 nt 2.3 6.2 3.2 6	380 nt 200 420 430 540	nt 8.4 nt nt nt	nt nt nt nt nt	90 nt nt nt nt	nt nt nt nt	58 nt nt nt nt	nt 110 nt nt nt	nt <25 nt nt nt nt	nt nt nt nt nt	nt nt nt nt nt	nt <100 nt nt nt	nt nt nt nt nt
BBHHQ 0.2-04 28.049-01.KW 28.Ag-2008 0.6 440 0.1 < 0.5 74 18 18 18 18 18 18 18 1	ABH280 ABH282 ABH284 ABH288 ABH294 ABH295	0.05-0.25 0.0-0.2 0-0.2 0-0.15 0-0.2 0-0.2 0-0.2	13908-22-KW 13908-29-W 13008-29-W 13008-296-KW 15008-34-KW 15008-373-KW 15008-373-KW 15008-373-KW	13 May 2008 13 May 2008 13 May 2008 15 May 2008 15 May 2008 15 May 2008 15 May 2008 13 May 2008	1.6 nt 5.1 2.8 8.3 4.5 2.2	610 nt 530 2400 1500 3000 300	< 0.1 nt < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	< 0.5 nt 2.3 6.2 3.2 6 < 0.5	380 nt 200 420 430 540 64	nt 8.4 nt nt nt nt	nt nt nt nt nt nt nt nt	90 nt nt nt nt	nt nt nt nt nt	58 nt nt nt nt nt	nt 110 nt nt nt nt	nt <25 nt nt nt nt nt	nt nt nt nt nt nt	nt nt nt nt nt nt	nt <100 nt nt nt nt nt nt	nt nt nt nt nt nt
BBHI40 0.1-0.3 280406-05-KW 28 Apr 2008 nt nt nt nt nt nt nt n	ABH280 ABH282 ABH284 ABH288 ABH294 ABH295 ABH296 ALG202	0.05-0.25 0.0-0.2 0-0.2 0-0.15 0-0.2 0-0.2 0-0.2 0-0.2 0-0.2 0-0.2	13908-22-KW 13908-29-W 13908-39-W 13008-39-KW 15088-38-KW 15088-37-KW 15088-37-KW 15088-37-KW 15088-37-KW 15088-37-KW 15088-37-KW 12088-32-KW 12088-32-KW	13 May 2008 13 May 2008 13 May 2008 15 May 2008 15 May 2008 15 May 2008 15 May 2008 12 May 2008 12 May 2008	1.6 nt 5.1 2.8 8.3 4.5 2.2 2.9 2.4	610 nt 530 2400 1500 3000 300 17000 520	< 0.1 nt < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	<0.5 nt 2.3 6.2 3.2 6 <0.5 <0.5	380 nt 200 420 430 540 64 1000 200	nt 8.4 nt nt nt nt 4.8 6.3	nt	90 nt nt nt nt nt nt 99	nt	58 nt nt nt nt nt ot 54	nt 110 nt nt nt nt nt 100	nt <25 nt nt nt nt nt <25 <25 <25 <25	nt n	nt	nt <100 nt nt nt nt +100 nt 100 <100 <100	nt
BBHH 0 0 0 2 2 2 2 2 2	ABH280 ABH282 ABH284 ABH288 ABH294 ABH295 ABH296 ALG202 AMW201	0.05-0.25 0.0-0.2 0-0.2 0-0.15 0-0.2 0-0.2 0-0.2 0-0.2 0-0.2 0-0.2 0-0.2 0-0.2	13068-224-XW 13058-299-KW 13058-299-KW 15058-384-KW 15058-374-KW 15058-374-KW 15058-371-KW 12058-367-KW 12058-261-KW 12058-274-KW 12058-275-KW	13 May 2008 13 May 2008 13 May 2008 15 May 2008 15 May 2008 15 May 2008 15 May 2008 12 May 2008 12 May 2008 12 May 2008 12 May 2008	1.6 nt 5.1 2.8 8.3 4.5 2.2 2.9 2.4 0.8	610 nt 530 2400 1500 3000 300 17000 520 5100	<0.1 nt < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	<0.5 nt 2.3 6.2 3.2 6 <0.5 <0.5 <0.5	380 nt 200 420 430 540 64 1000 200	nt 8.4 nt nt nt nt 4.8 6.3 nt	nt n	90 nt nt nt nt nt nt	nt	58 nt nt nt nt nt 63 54 nt	nt 110 nt nt nt nt nt 100 120 nt	nt <25 nt nt nt nt nt c25 nt nt nt nt nt nt nt nt nt c25 <25 nt	nt n	nt	nt <100 nt nt nt nt nt <100 <100 <100 nt	nt
BBH41 0.2-04 29.0408-36-KW 29.047-2008 1.4 330 0.3 <0.5 75 7.7 1ghc lay 92 0.78 59 110 0.2 49,6 0.00496 -100 <0.01 0.1	ABH280 ABH282 ABH284 ABH288 ABH294 ABH295 ABH296 ALG202 AMW201 BBH401	0.05-0.25 0.0-0.2 0-0.2 0-0.15 0-0.2 0-0.2 0-0.2 0-0.2 0-0.2 0.2-0.4 0.1-0.2 0.2-0.4	13908-22-KW 13908-29-WW 13908-39-KW 13908-39-KW 15088-37-KW 15088-37-KW 15088-37-KW 15088-37-KW 15088-37-KW 12088-37-KW 12088-32-KW 12088-32-KW 12088-31-KW 12088-31-KW 12088-31-KW 12088-37-KW 12088-37-KW 12088-37-KW	13 May 2008 13 May 2008 13 May 2008 15 May 2008 15 May 2008 15 May 2008 12 May 2008 12 May 2008 12 May 2008 12 May 2008 12 May 2008 12 May 2008	1.6 nt 5.1 2.8 8.3 4.5 2.2 2.9 2.4 0.8	610 nt 530 2400 1500 3000 300 17000 520 5100 440	<0.1 nt < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	<0.5 nt 2.3 6.2 3.2 6 <0.5 <0.5 <0.5 <0.5	380 nt 200 420 430 540 64 1000 200 1700 74	nt 8.4 nt	nt n	90 nt	nt n	58 nt	nt 110 nt nt nt nt 100 120 nt	nt	nt n	nt	nt	nt n
BBH327 0.1-03 300408-81-KW 30 Ayr 2008 1.3 2.50 0.1 0.05 1.20 nt nt nt nt nt nt nt n	ABH280 ABH282 ABH284 ABH288 ABH294 ABH295 ABH296 ALG202 AMW201 BBH401 BBH402 BBH405	0.05-0.25 0.0-0.2 0-0.2 0-0.15 0-0.2 0-0.2 0-0.2 0-0.2 0-0.2 0.2-0.4 0.1-0.2 0.2-0.4 0.1-0.3	13908-22-KW 13908-29-KW 13908-39-KW 13908-39-KW 1508-38-KW 15088-37-KW 15088-37-KW 15088-37-KW 12088-36-KW 12088-37-KW 12088-21-KW 12088-21-KW 2088-21-KW 2088-21-KW 2088-39-KW 2088-39-KW 2088-39-KW 2088-39-KW 2088-39-KW	13 May 2008 13 May 2008 13 May 2008 15 May 2008 15 May 2008 15 May 2008 15 May 2008 12 May 2008 12 May 2008 12 May 2008 12 May 2008 28 Apr 2008 29 Apr 2008	1.6 nt 5.1 2.8 8.3 4.5 2.2 2.9 2.4 0.8 0.6 nt nt	610 nt 530 2400 1500 3000 3000 17000 520 5100 440 nt	< 0.1 nt < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 1	<0.5 nt 2.3 6.2 3.2 6 <0.5 <0.5 <0.5 <0.5 0.5 0.5 nt nt	380 nt 200 420 430 540 64 1000 200 1700 74 nt	nt 8.4 nt nt nt nt 14.8 6.3 nt nt nt 15.9 9.1	nt n	90 nt nt nt nt nt nt nt 43	nt n	58 nt nt nt nt nt nt nt nt 28	nt 110 nt nt nt nt nt 100 nt nt nt nt 100 120 nt nt 130	nt	nt n	nt n	nt	nt n
SNE Enter-street RET Rec	ABH280 ABH282 ABH284 ABH288 ABH294 ABH295 ABH296 ALG202 AMW201 BBH401 BBH401 BBH405 BBH405	0.05-0.25 0.0-0.2 0-0.2 0-0.15 0-0.2 0-0.2 0-0.2 0-0.2 0-0.2 0.2-0.4 0.1-0.2 0.2-0.4 0.1-0.2 0.1-0.3 0.0-0.2 0.1-0.3	13908-22-KW 13058-29-KW 13058-29-KW 13058-39-KW 15058-38-KW 15058-34-KW 15058-37-KW 15058-37-KW 15058-37-KW 12058-37-KW 12058-37-KW 12058-37-KW 12058-37-KW 12058-37-KW 12058-37-KW 12058-37-KW 12058-37-KW 12058-38-KW 12058-38-KW 28040-61-KW 28040-61-KW 29048-48-KW	13 May 2008 13 May 2008 13 May 2008 15 May 2008 15 May 2008 15 May 2008 15 May 2008 12 May 2008 12 May 2008 12 May 2008 12 May 2008 28 Apr 2008 28 Apr 2008 29 Apr 2008 29 Apr 2008	1.6 nt 5.1 2.8 8.3 4.5 2.2 2.9 2.4 0.8 nt nt 0.9	610 nt 530 2400 1500 3000 300 17000 520 5100 440 nt nt	<0.1 nt <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.5 nt 2.3 6.2 3.2 6 <0.5 <0.5 <0.5 <0.5 nt nt 4.2	380 nt 200 420 430 540 64 1000 200 1700 74 nt nt 2800	nt 8.4 nt nt nt nt nt 4.8 6.3 nt	nt n	90 nt nt nt nt nt nt nt 43 75 nt	nt n	58 nt nt nt nt nt nt ent 63 54 nt nt nt nt nt	nt 110 nt nt nt nt 120 nt nt 120 nt 120 nt	nt <25 nt nt nt nt nt nt nt <25 <25 nt nt nt nt nt nt <25 <25 <25 nt	nt n	nt n	nt	nt n
BBH49 0.4 0.5 0.	ABH280 ABH282 ABH284 ABH294 ABH295 ABH296 ALG202 AMW201 BBH401 BBH402 BBH405 BBH405 BBH405 BBH401 BBH401	0.05-0.25 0.0-0.2 0-0.15 0-0.2 0-0.2 0-0.2 0-0.2 0-0.2 0.2-0.4 0.1-0.2 0.2-0.4 0.1-0.3 0.0-0.2 0.1-0.2 0.2-0.4	13908-22-KW 13058-29-KW 13058-29-KW 13058-29-KW 13058-39-KW 15058-38-KW 15058-38-KW 15058-37-KW 15058-37-KW 15058-37-KW 12058-37-KW 12058-37-KW 12058-21-KW 12058-21-KW 12058-21-KW 12058-25-KW 12058-25-KW 12058-35-KW	13 May 2008 13 May 2008 13 May 2008 15 May 2008 15 May 2008 15 May 2008 13 May 2008 12 May 2008 12 May 2008 12 May 2008 12 May 2008 28 Apr 2008 29 Apr 2008 29 Apr 2008 29 Apr 2008 30 Apr 2008	1.6 nt 5.1 2.8 8.3 4.5 2.2 2.9 2.4 0.8 0.6 nt nt 0.9 1.4 1.3	610 nt 530 2400 1500 3000 3000 17000 520 5100 440 nt nt 460 380 250	<0.1 nt <0.1 c0.1 <0.1 <0.1 <0.1 <0.1 <0.1 c0.1 c0.1 c0.1 c0.1 nt nt 0.4 0.3 <0.1	<0.5 nt 2.3 6.2 3.2 6 <0.5 <0.5 <0.5 <0.5 nt nt 4.2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	380 nt 200 420 430 540 64 1000 200 74 nt nt 2800 75 120	nt 8.4 nt nt nt nt nt 4.8 6.3 nt nt nt nt 1 7.7 nt	nt n	90 nt nt nt nt nt nt nt nt 143 nt nt nt 99 84 nt nt nt 99 84 nt nt nt 43 75 nt 92 nt	nt n	58 nt nt nt nt nt nt 63 54 nt nt 28 nt nt	nt 110 nt nt nt nt nt 100 120 nt nt 110 nt 1100 1230 1330 nt 1110 nt	nt <25 nt nt nt nt nt nt nt <25 <a <="" en="" example.com="" href="https://example.com/en/en/en/en/en/en/en/en/en/en/en/en/en/</td><td>nt nt n</td><td>nt nt n</td><td>nt <100 nt nt nt nt nt ot 100 nt nt nt ot 100 ct 100 ct 100 ct 100 ct 100 nt ot 100 nt</td><td>nt nt n</td></tr><tr><td>REI Rec-restoral BBH432</td><td>ABH280 ABH282 ABH284 ABH288 ABH294 ABH295 ABH296 ALG202 AMW201 BBH402 BBH405 BBH406 BBH411 BBH423 BBH427</td><td>0.05-0.25
0.0-0.2
0-0.2
0-0.15
0-0.2
0-0.2
0-0.2
0-0.2
0-0.2
0.2-0.4
0.1-0.2
0.2-0.4
0.1-0.2
0.2-0.4
0.1-0.2
0.1-0.2
0.2-0.4
0.1-0.2
0.1-0.2
0.1-0.2
0.1-0.2
0.1-0.2
0.1-0.2
0.1-0.2
0.1-0.2
0.1-0.2</td><td>13908-22-KW 13058-29-KW 13058-29-KW 13058-29-KW 13058-39-KW 15058-38-KW 15058-38-KW 15058-37-KW 15058-37-KW 15058-37-KW 12058-37-KW 12058-37-KW 12058-21-KW 12058-21-KW 12058-21-KW 12058-25-KW 12058-25-KW 12058-35-KW 12058-35-KW</td><td>13 May 2008
13 May 2008
13 May 2008
15 May 2008
15 May 2008
15 May 2008
13 May 2008
12 May 2008
12 May 2008
12 May 2008
12 May 2008
28 Apr 2008
29 Apr 2008
29 Apr 2008
29 Apr 2008
30 Apr 2008</td><td>1.6 nt 5.1 2.8 8.3 4.5 2.2 2.9 2.4 0.8 0.6 nt nt 0.9 1.4 1.3</td><td>610
nt
530
2400
1500
3000
3000
17000
520
5100
440
nt
nt
460
380
250</td><td><0.1 nt <0.1 c0.1 <0.1 <0.1 <0.1 <0.1 <0.1 c0.1 c0.1 c0.1 c0.1 nt nt 0.4 0.3 <0.1</td><td><0.5 nt 2.3 6.2 3.2 6 <0.5 <0.5 <0.5 <0.5 nt nt 4.2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5</td><td>380 nt 200 420 430 540 64 1000 200 74 nt nt 2800 75 120</td><td>nt 8.4 nt nt nt nt nt 4.8 6.3 nt nt nt nt 1 7.7 nt nt</td><td>nt nt n</td><td>90 nt nt nt nt nt nt nt nt 143 nt nt nt 99 84 nt nt nt 99 84 nt nt nt 43 75 nt 92 nt</td><td>nt nt n</td><td>58 nt nt nt nt nt nt 63 54 nt nt 28 nt nt</td><td>nt 110 nt nt nt nt nt 100 120 nt nt 110 nt 1100 1230 1330 nt 1110 nt</td><td>nt <25 nt nt nt nt nt nt nt <25 <td>nt nt n</td><td>nt nt n</td><td>nt <100 nt nt nt nt nt ot 100 nt nt nt ot 100 ct 100 ct 100 ct 100 ct 100 nt ot 100 nt</td><td>nt nt n</td>	nt n	nt n	nt <100 nt nt nt nt nt ot 100 nt nt nt ot 100 ct 100 ct 100 ct 100 ct 100 nt ot 100 nt	nt n
BBH442 0.1-04 010508-168-KW 01 May 2008 17 250 0.4 0.8 700 nt	ABH280 ABH282 ABH284 ABH294 ABH295 ABH296 ALG202 AMW201 BBH401 BBH401 BBH405 BBH401 BBH405 BBH411 BBH427 SP4 Enter	0.05-0.25 0.0-0.2 0-0.2 0-0.15 0-0.2 0-0.2 0-0.2 0-0.2 0-0.2 0.2-0.4 0.1-0.2 0.2-0.4 0.1-0.2 0.2-0.4 0.1-0.3 0.1-0.2 0.2-0.4 0.1-0.2	13068-28-XW 13068-29-XW 13058-296-XW 13058-296-XW 15058-37-XW 15058-37-XW 15058-37-XW 15058-37-XW 12058-27-XW 12058-27-XW 12058-27-XW 12058-27-XW 280408-1-XW 280408-4-XW 280408-4-XW 280408-4-XW 290408-3-XW 20048-3-XW 20048-3-XW	13 May 2008 13 May 2008 13 May 2008 13 May 2008 15 May 2008 15 May 2008 15 May 2008 15 May 2008 13 May 2008 12 May 2008 12 May 2008 12 May 2008 28 Apr 2008 28 Apr 2008 29 Apr 2008 29 Apr 2008 29 Apr 2008 30 Apr 2008	1.6 nt 5.1 2.8 8.3 4.5 2.2 2.9 2.4 0.8 0.6 nt nt 1.3 0.7	610 nt 530 2400 1500 3000 3000 520 5100 440 nt nt 460 380 250 690	<0.1 nt <0.1 c0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <	<0.5 nt 2.3 6.2 3.2 6 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	380 nt 200 420 430 540 64 1000 1700 74 nt 2800 75 120 260	nt 8.4 nt nt nt nt nt nt 4.8 6.3 nt	nt n	90 nt nt nt nt nt nt 1 1 1 1 1 1 1 1 1 1 1	nt n	58 nt nt nt nt nt nt 63 54 nt nt 28 48 nt nt 59 nt	nt 110 nt nt nt nt nt nt 100 120 nt 130 nt 110 nt	nt <25 nt nt nt nt nt nt nt nt <25 nt nt nt nt nt nt <25 <25 nt nt nt nt nt nt nt nt <25 <25 <25 nt nt nt <25 <25 <25 <25 <25 <25 <25 <25 <25 <25	nt n	nt n	nt <100 nt nt nt nt 100 nt nt nt 100 nt nt nt 100 nt 100 nt 100 nt 100 nt 100 nt 100 nt nt nt nt nt nt 100 nt	nt n
SPE Enterprise BBH442	ABH280 ABH282 ABH284 ABH294 ABH295 ABH296 ALG202 AMW201 BBH401 BBH402 BBH405 BBH408 BBH411 BBH423 BBH427 SP4 Enter BBH430	0.05-0.25 0.0-0.2 0-0.15 0-0.2 0-0.15 0-0.2 0-0.2 0-0.2 0-0.2 0.2-0.4 0.1-0.3 0.0-0.2 0.2-0.4 0.1-0.3 0.1-0.3 0.1-0.3 0.1-0.3 0.1-0.3	13068-28-XW 13068-29-XW 13058-296-XW 13058-296-XW 15058-37-XW 15058-37-XW 15058-37-XW 15058-37-XW 12058-27-XW 12058-27-XW 12058-27-XW 12058-27-XW 280408-1-XW 280408-4-XW 280408-4-XW 280408-4-XW 290408-3-XW 20048-3-XW 20048-3-XW	13 May 2008 13 May 2008 13 May 2008 13 May 2008 15 May 2008 15 May 2008 15 May 2008 15 May 2008 13 May 2008 12 May 2008 12 May 2008 12 May 2008 28 Apr 2008 28 Apr 2008 29 Apr 2008 29 Apr 2008 29 Apr 2008 30 Apr 2008	1.6 nt 5.1 2.8 8.3 4.5 2.2 2.9 2.4 0.8 0.6 nt nt 1.3 0.7	610 nt 530 2400 1500 3000 3000 520 5100 440 nt nt 460 380 250 690	<0.1 nt <0.1 c0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <	<0.5 nt 2.3 6.2 3.2 6 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	380 nt 200 420 430 540 64 1000 1700 74 nt 2800 75 120 260	nt 8.4 nt nt nt nt nt nt 4.8 6.3 nt	nt n	90 nt nt nt nt nt nt 1 1 1 1 1 1 1 1 1 1 1	nt n	58 nt nt nt nt nt nt 63 54 nt nt 28 48 nt nt 59 nt	nt 110 nt nt nt nt nt nt 100 120 nt 130 nt 110 nt	nt <25 nt nt nt nt nt nt nt nt <25 nt nt nt nt nt nt <25 <25 nt nt nt nt nt nt nt nt <25 <25 <25 nt nt nt <25 <25 <25 <25 <25 <25 <25 <25 <25 <25	nt n	nt n	nt <100 nt nt nt nt 100 nt nt nt 100 nt nt nt 100 nt 100 nt 100 nt 100 nt 100 nt 100 nt nt nt nt nt nt 100 nt	nt n
BBH442 0.1-04 300408-101-KW 300409-101-KW 30 Age 2008 1.8 830 -0.1 1.9 160 8.4 sundy loam 67 0.94 150 4.3 -2.5 c.20 c.0002 -100 c.001 c.00	ABH280 ABH282 ABH284 ABH288 ABH294 ABH296 ALG202 AMW201 BBH402 BBH402 BBH406 BBH411 BBH423 BBH423 BBH427 SP4 Enter BBH430 REI Recr	0.05-0.25 0.0-0.2 0-0.15 0-0.2 0-0.2 0-0.2 0-0.2 0-0.2 0.2-0.4 0.1-0.3 0.0-0.2 0.2-0.4 0.1-0.3 0.1-0.3 prise 0.1-0.3 easimal	130/08.252.KW 130/08.296.KW 130/08.296.KW 159/08.296.KW 159/08.375.KW 159/08.375.KW 159/08.375.KW 159/08.375.KW 130/08.325.KW 130/08.325.KW 130/08.325.KW 120/08.325.KW	13 May 2008 13 May 2008 13 May 2008 13 May 2008 15 May 2008 15 May 2008 15 May 2008 15 May 2008 12 May 2008 12 May 2008 12 May 2008 12 May 2008 22 Apr 2008 28 Apr 2008 29 Apr 2008 29 Apr 2008 29 Apr 2008 30 Apr 2008 30 Apr 2008 30 Apr 2008	1.6 nt 5.1 2.8 8.3 4.5 2.2 2.9 2.4 0.8 0.6 nt nt 0.9 1.4 1.3 0.7 <<0.5	610 nt 530 2400 1500 3000 3000 17000 520 5100 440 nt 460 380 2550 680	<0.1 nt <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.	<0.5 mt 2.3 6.2 3.2 6.2 3.2 6 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	380 nt 200 420 430 540 64 1000 74 nt 2800 75 120 68	nt 8.4 nt nt nt nt nt nt 4.8 6.3 nt	nt n	90 nt	nt n	58 nt	nt 110 nt nt nt nt nt nt nt nt nt 100 120 nt	nt <25 nt nt nt nt nt -25 c25 c25 nt	nt n	nt n	nt <100 nt nt nt nt nt nt ot 100 nt	nt n
BBH44 0.1-0.2 0.1-0.4 300408-102-KW Field Blind Replicate Sample of 300408-101-KW 0.1 May 2008 1.7 120 1.5 120 1.5 120 1.5 120 1.5 120 1.5 1.0 1.6 1.0	ABH280 ABH282 ABH284 ABH294 ABH295 ABH296 ALG202 AMW201 BBH402 BBH402 BBH405 BBH405 BBH407 SP4 BBH403	0.05-0.25 0.0-0.2 0-0.2 0-0.15 0-0.2 0-0.2 0-0.2 0-0.2 0-0.2 0.2-0.4 0.1-0.2 0.2-0.4 0.1-0.3 0.1-0.3 0.1-0.3 0.1-0.3 0.1-0.3 0.1-0.3 0.1-0.3 0.1-0.3	130/08.252.KW 130/08.296.KW 130/08.296.KW 159/08.296.KW 159/08.375.KW 159/08.375.KW 159/08.375.KW 159/08.375.KW 130/08.325.KW 130/08.325.KW 130/08.325.KW 120/08.325.KW	13 May 2008 13 May 2008 13 May 2008 13 May 2008 15 May 2008 15 May 2008 15 May 2008 15 May 2008 12 May 2008 12 May 2008 12 May 2008 12 May 2008 22 Apr 2008 28 Apr 2008 29 Apr 2008 29 Apr 2008 29 Apr 2008 30 Apr 2008 30 Apr 2008 30 Apr 2008	1.6 nt 5.1 2.8 8.3 4.5 2.2 2.9 2.4 0.8 0.6 nt nt 0.9 1.4 1.3 0.7 <<0.5	610 nt 530 2400 1500 3000 3000 17000 520 5100 440 nt 460 380 2550 680	<0.1 nt <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.	<0.5 mt 2.3 6.2 3.2 6.2 3.2 6 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	380 nt 200 420 430 540 64 1000 74 nt 2800 75 120 68	nt 8.4 nt nt nt nt nt nt 4.8 6.3 nt	nt n	90 nt	nt n	58 nt	nt 110 nt nt nt nt nt nt nt nt nt 100 120 nt	nt <25 nt nt nt nt nt -25 c25 c25 nt	nt n	nt n	nt <100 nt nt nt nt nt nt ot 100 nt	nt n
BBH445 0.1-0.4 0.10508-136-KW 0.1 May 2008 nt nt nt nt nt nt nt n	ABH280 ABH282 ABH284 ABH284 ABH294 ABH295 ABH296 ALG202 AMW201 BBH401 BBH402 BBH405 BBH405 BBH406 BBH411 BBH423 BBH427 SP4 Enter BBH432 BBH432 BBH432 BBH432 SP4 Enter	0.05-0.25 0.0-0.2 0-0.2 0-0.2 0-0.2 0-0.2 0-0.2 0-0.2 0-0.2 0-0.2 0.2-0.4 0.1-0.3 0.1-0.3 0.1-0.3 0.1-0.3 0.1-0.3 0.1-0.3 0.1-0.3 0.1-0.3 0.1-0.3 0.1-0.3 0.1-0.3 0.1-0.3	130/08.282.KW 130/08.296.KW 130/08.296.KW 159/08.296.KW 159/08.374.KW 159/08.374.KW 159/08.374.KW 159/08.375.KW 130/08.372.KW 130/08.372.KW 130/08.372.KW 130/08.372.KW 120/08.372.KW 120/08.372.KW 120/08.372.KW 120/08.372.KW 120/08.372.KW 120/08.372.KW 120/08.372.KW 120/08.372.KW 120/08.372.KW 120/08.374.KW	13 May 2008 13 May 2008 13 May 2008 13 May 2008 15 May 2008 12 May 2008 12 May 2008 12 May 2008 12 May 2008 22 May 2008 23 Apr 2008 24 Apr 2008 25 Apr 2008 26 Apr 2008 27 May 2008 28 Apr 2008 29 Apr 2008 29 Apr 2008 20 Apr 2008	1.6 nt 5.1 2.8 8.3 4.5 2.2 2.9 2.4 0.8 0.6 nt nt 0.9 1.4 1.3 0.7 < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <	610 nt 530 2400 1500 300 300 17000 520 440 nt 460 380 690 680	<0.1 nt <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.1	<0.5 nt 2.3 6.2 3.2 6.6 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 xt 4.2 <0.5 xt 4.2 <0.5 <0.5 <0.5 xt 4.2 <0.5 <0.5 <0.6 0.6	380 nt 200 420 430 540 64 1000 74 nt 12800 75 120 668	nt 8.4 nt	nt n	90 nt	nt n	58 nt	nt 110 nt	nt <255 nt n	nt n	nt n	nt <100 nt nt nt nt nt 100 nt 100 nt nt nt nt 100 nt 100 nt nt nt 100 nt 100 nt 100 nt 100 nt 100 nt nt nt 100 nt	nt n
BBH44 0.1-04 30008-137-KW Field Blind Replicate Sample of 30408-136-KW 10 May 2008 nt	ABH280 ABH282 ABH284 ABH284 ABH294 ABH295 ABH296 AL4202 BBH401 BBH402 BBH402 BBH402 BBH403 BBH403 BBH404 BBH403 BBH404 BBH403 BBH405 BBH406 BBH406 BBH411 BBH423 BBH423 BBH423 BBH429 SP4 Enter BBH430 BBH441 BBH442 BBH444	0.05-0.25 0.0-0.2 0-0.2 0-0.15 0-0.2 0-0.15 0-0.2 0-0.2 0-0.2 0.2-0.4 0.1-0.3 0.0-0.2 0.0-0.2 0.1-0.3 0.1-0.3 prise 0.1-0.3 cational 0-0.1 0.2-0.4 prise 0.1-0.4	13908-22-KW 13908-22-KW 13908-29-KW 13008-39-KW 13008-39-KW 15098-37-KW 15098-37-KW 15098-37-KW 15098-37-KW 15098-37-KW 12098-37-KW 12098-36-KW 12098-36-KW 12098-36-KW 12098-36-KW 12098-37-KW 12098-38-KW 12098-	13 May 2008 15 May 2008 12 May 2008 28 Apr 2008 29 Apr 2008 29 Apr 2008 29 Apr 2008 30 Apr 2008 29 Apr 2008 30 Apr 2008 30 Apr 2008 30 Apr 2008 31 May 2008 31 May 2008 32 May 2008 33 Apr 2008 34 May 2008 35 Apr 2008 36 Apr 2008 37 Apr 2008 38 Apr 2008 39 Apr 2008 30 Apr 2008	1.6 nt 5.1 2.8 8.3 4.5 2.2 2.9 0.8 0.6 nt nt 0.9 1.4 1.3 0.7 < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <	610 nt 530 2400 1500 3000 3000 3000 17000 520 5100 440 nt nt 460 380 250 690 680	<0.1 mt <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.5 mt 2.3 6.2 3.2 6.2 3.2 6 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 0.5 0.	380 nt 200 420 430 540 64 1000 1700 74 nt nt 2800 260 68	nt 8.4 nt	nt n	90 nt	nt n	58 nt nt nt nt nt nt nt nt 63 54 nt	nt 110 nt	nt <255 nt nt nt nt nt nt nt nt <255 nt nt nt nt nt nt nt <255 nt nt nt nt nt <255 nt nt nt nt <255 nt nt nt <255 nt nt nt <255 nt <255 nt nt nt -255 n	nt n	nt n	nt <100 nt nt nt nt nt nt 100 <100 nt nt nt nt nt nt 100 <100 nt nt nt nt nt 100 <100 nt nt nt nt 100 <100 nt 100 <100 nt nt nt nt nt nt nt 100 <100 nt nt nt nt nt nt 100 <100 nt nt nt nt nt 100 <100 nt nt nt nt nt nt 100 <100 nt nt nt nt nt 100 <100 nt nt nt nt nt 100 <100 nt nt nt nt 100 <100 nt nt nt nt 100 nt nt nt nt 100 nt nt nt nt 100 nt nt nt nt 100 nt nt nt nt 100 nt nt nt 100 nt nt nt nt 100 nt nt nt 100 nt nt nt 100 nt nt nt nt 100 nt nt nt 100 nt nt nt nt 100 nt nt nt nt 100 nt nt nt nt nt 100 nt nt nt nt nt 100 nt	nt n
SPA	ABH280 ABH284 ABH295 ABH295 ABH296 ALG202 AMW201 BBH401 BBH401 BBH406 BBH411 BBH423 BBH423 BBH425 SP4 Enter BBH430 BBH442 BBH442 BBH442 BBH442 BBH442 BBH442	0.05-0.25 0.0-0.2 0-0.15 0-0.2 0-0.15 0-0.2 0-0.2 0-0.2 0-0.2 0.2-0.4 0.1-0.3 0.0-0.2 0.2-0.4 0.1-0.3 0.0-0.2 0.2-0.4 0.1-0.3 0.0-0.2 0.2-0.4 0.1-0.3 0.0-0.2 0.2-0.4 0.1-0.3	13068-282-KW 13068-282-KW 13068-296-KW 13068-296-KW 15068-375-KW 15068-375-KW 15058-375-KW 15058-375-KW 15058-375-KW 15058-375-KW 12058-261-KW 12058-261-KW 12058-261-KW 28048-101-KW 28048-101-KW 28048-101-KW 28048-105-KW 29048-46-KW 29048-36-KW 30048-16-KW 30048-16-KW 30048-16-KW 30048-105-KW	13 May 2008 15 May 2008 12 May 2008 13 May 2008 14 May 2008 15 May 2008 16 May 2008 16 May 2008 17 May 2008 18 May 2008 19 May 2008 19 May 2008 10 May 2008	1.6 nt 5.1 2.8 8.3 4.5 2.2 2.9 2.4 0.8 0.6 nt nt 1.4 1.3 0.7 <-0.5	610 nt 530 2400 1500 3000 3000 17000 520 5100 440 nt nt 460 380 250 680 280	<0.1 nt <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.5 mt 2.3 6.2 3.2 6 <0.5 <0.5 <0.5 <0.5 mt mt 4.2 <0.5 <0.5 <0.5 <0.5 <0.5 1.5 <0.5 <0.5 1.9 1.5	380 nt 200 420 420 430 540 64 1000 1700 74 nt nt 68 68	nt 8.4 nt nt nt nt 4.8 nt	nt n	90 nt	nt n	58 mt nt	nt 110 nt nt nt 120 nt 120 nt 141 nt 143 39	nt <25 nt nt nt nt nt c25 nt nt nt nt c25 nt	nt n	nt n	nt <100 nt	nt n
BBH444 0.1-0.2 010508-146-KW 01 May 2008 4.5 1300 1 4.1 1700 nt	ABH280 ABH282 ABH288 ABH295 ABH296 ALG296 ALG296 ALG296 ALG296 ABH402 BBH402 BBH402 BBH402 BBH403 BBH411 BBH401 BBH411 BBH402 BBH427 SP4 Enter BBH430 BBH440 SP4 Enter BBH440	0.05-0.25 0.0-0.2 0-0.15 0-0.2 0-0.15 0-0.2 0-0.2 0-0.2 0-0.2 0.2-0.4 0.1-0.3 0.1-0.3 0.1-0.3 0.1-0.3 0.1-0.3 0.1-0.3 0.1-0.3 0.1-0.4 0.1-0.3 0.1-0.4 0.1-0.4	130/08.282.WW 130/08.296.WW 130/08.296.WW 159/08.376.WW 159/08.373.WW 159/08.373.WW 159/08.376.WW 139/08.322.WW 139/08.322.WW 139/08.322.WW 139/08.322.WW 120/08.322.WW 120/08.322.WW 120/08.322.WW 120/08.322.WW 120/08.326.WW	13 May 2008 15 May 2008 15 May 2008 15 May 2008 15 May 2008 13 May 2008 13 May 2008 12 May 2008 13 May 2008 14 May 2008 15 May 2008 15 May 2008 16 May 2008 17 May 2008 18 May 2008 19 Apr 2008 19 Apr 2008 10 May 2008	1.6 nt 5.1 2.8 8.3 4.5 2.2 2.9 2.4 0.8 0.6 nt nt 0.9 1.4 1.3 0.7	610 nt 530 2400 3000 3000 1500 520 5100 440 nt nt 16 460 380 690 680 2500 280	<pre> < 0.1 nt < 0.1 co.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 co.1 co.1</pre>	<0.5 nt 2.3 6.2 3.2 6.3 6.2 3.2 6. <0.5 <0.5 <0.5 <0.5 4.2 4.2 <0.5 <0.5 <0.5 1.5 <0.5 1.5 1.5 1.5 1.5 1.5	380 nt 200 420 420 430 540 64 1000 200 1700 74 nt nt 12800 75 120 260 68	nt 8.4 nt nt nt nt nt 4.8 6.3 nt	nt n	90 nt	nt n	58 nt st 63 54 nt nt nt nt nt nt nt 150 160	nt 110 nt nt nt nt 120 nt 120 nt	nt <25 case and nt	nt n	nt int int int int int int int int int i	nt <100 nt nt nt nt nt 100 nt nt nt nt 100 nt nt nt 100 c100 nt nt 100 c100 nt nt nt 100 c100 nt 100 c100 c100 c100 nt nt nt nt nt nt nt 100 c100 c100 c100 c100 c100 c100 c100	nt n
BBH4S8 0.1-0.4 1010508-123-KW Field Blind Replicate Sample of 010508-122-KW 0 1May 2008 < 0.5 240 < 0.1 < 0.5 27 nt	ABH280 ABH284 ABH295 ABH296 ALG202 AMW201 BBH401 BBH402 BBH405 BBH405 BBH405 BBH407 BBH407 BBH407 BBH408 ABH296 ABH296 ABH296 BBH411 BBH432 BBH442 BBH443 BBH443 BBH443	0.05-0.25 0.0-0.2 0-0.2 0-0.15 0-0.2 0-0.2 0-0.2 0-0.2 0-0.2 0.2-0.4 0.1-0.3 0.1-0.3 prise 0.1-0.3 prise 0.1-0.4 0.1-0.4 prise 0.1-0.4 0.1-0.4 0.1-0.4 0.1-0.4 0.1-0.4	130/08.282.WW 130/08.296.WW 130/08.296.WW 159/08.376.WW 159/08.373.WW 159/08.373.WW 159/08.376.WW 139/08.322.WW 139/08.322.WW 139/08.322.WW 139/08.322.WW 120/08.322.WW 120/08.322.WW 120/08.322.WW 120/08.322.WW 120/08.326.WW	13 May 2008 15 May 2008 15 May 2008 15 May 2008 15 May 2008 13 May 2008 13 May 2008 12 May 2008 13 May 2008 14 May 2008 15 May 2008 15 May 2008 16 May 2008 17 May 2008 18 May 2008 19 Apr 2008 19 Apr 2008 10 May 2008	1.6 nt 5.1 2.8 8.3 4.5 2.2 2.9 2.4 0.8 0.6 nt nt 0.9 1.4 1.3 0.7	610 nt 530 2400 3000 3000 1500 520 5100 440 nt nt 16 460 380 690 680 2500 280	<pre> < 0.1 nt < 0.1 co.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 co.1 co.1</pre>	<0.5 nt 2.3 6.2 3.2 6.3 6.2 3.2 6. <0.5 <0.5 <0.5 <0.5 4.2 4.2 <0.5 <0.5 <0.5 1.5 <0.5 <0.5 1.5 1.5 1.5 1.5 1.5	380 nt 200 420 420 430 540 64 1000 200 1700 74 nt nt 12800 75 120 260 68	nt 8.4 nt nt nt nt nt 4.8 6.3 nt	nt n	90 nt	nt n	58 nt st 63 54 nt nt nt nt nt nt nt 150 160	nt 110 nt nt nt nt 120 nt 120 nt	nt <25 case and nt	nt n	nt int int int int int int int int int i	nt <100 nt nt nt nt nt 100 nt nt nt nt 100 nt nt nt 100 c100 nt nt 100 c100 nt nt nt 100 c100 nt 100 c100 c100 c100 nt nt nt nt nt nt nt 100 c100 c100 c100 c100 c100 c100 c100	nt n
BBH458 0.1-0.4 010508-123-KW Field Blind Replicate Sample of 010508-122-KW 01 May 2008 < 0.5 220 < 0.1 < 0.5 43 nt	ABH280 ABH284 ABH288 ABH288 ABH295 ABH295 ABH295 ABH295 ALG202 AMW201 BBH402 BBH402 BBH406 BBH406 BBH406 BBH406 BBH406 BBH406 BBH407 SP4 Enter BBH432 BBH432 BBH432 BBH435 BBH435 BBH435 BBH445 BBH445 SP4 Enter BBH445	0.05-0.25 0.0-0.2 0-0.2 0-0.15 0-0.2 0-0.2 0-0.2 0-0.2 0-0.2 0-0.2 0.2-0.4 0.1-0.2 0.2-0.4 0.1-0.3 0.0-0.2 0.1-0.3 0.1-0.4 0.1-0.4 0.1-0.4 0.1-0.4 0.1-0.4	13068-28-3W 13968-29-3W 13968-29-3W 13968-29-3W 13968-29-3W 15968-31-3W 15968-31-3W 15968-31-3W 15968-31-3W 15968-31-3W 15968-31-3W 12068-31-3W	13 May 2008 15 May 2008 12 May 2008 13 May 2008 14 May 2008 15 May 2008 16 May 2008 16 May 2008 17 May 2008 18 May 2008 19 May 2008 19 May 2008 10 May 2008 11 May 2008 12 May 2008 13 May 2008 14 May 2008 15 May 2008 16 May 2008 17 May 2008 18 May 2008 18 May 2008 19 May 2008	1.6 nt 5.1 2.8 8.3 4.5 2.2 2.9 2.4 0.8 0.6 nt nt 0.9 1.4 1.3 0.7 <	610 nt 530 24400 1500 3000 3000 17000 520 5100 440 nt nt 460 380 250 680 830 1200 nt nt 1300	<0.1 nt <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.5 nt 2.3 6.2 6.2 6.2 6.0.5 <0.5 <0.5 <0.5 0.5 0.5 1.1 1.1 1.1 1.1 1.1	380 nt 200 420 420 430 540 64 1000 200 1700 74 nt nt 2800 68 70 100 1100 1100 1100 1100 1100 1100 1	nt 8.4 nt	nt n	90 nt	nt n	58 nt nt nt nt nt nt nt st	nt 110 nt nt nt 100 nt nt nt 143 39 33 35 nt nt 110 nt	nt <25 nt nt nt nt nt c25 <25 nt nt nt c25 <25 nt nt nt nt c25 <25 nt nt nt nt nt c25 <25 nt	Int i	nt n	nt <100 nt nt nt nt nt nt 100 nt	nt n
BBH450 0-0.15 010508-124-KW Split Field Duplicate Sample of 010508-122-KW 0 10 May 2008 3 450 <-0.1 1.8 210 nt	ABH280 ABH284 ABH284 ABH284 ABH284 ABH285 ABH295 ABH295 ABH295 ALG202 AMW201 BBH401 BBH402 BBH405 BBH405 BBH406 BBH411 BBH423 BBH423 BBH423 BBH422 BBH442 BBH445 BBH45 BBH445 BBH445 BBH445 BBH445 BBH445 BBH445 BBH445	0.05-0.25 0.0-0.2 0-0.2 0-0.2 0-0.15 0-0.2 0-0.2 0-0.2 0-0.2 0-0.2 0-0.2 0.2-0.4 0.1-0.2 0.2-0.4 0.1-0.3 0.1-0.3 0.1-0.3 0.1-0.3 0.1-0.3 0.1-0.3 0.1-0.3 0.1-0.4 0.1-0.2 0.4-0.5	13068-282-KW 13068-296-KW 13068-296-KW 13068-296-KW 15068-373-KW 15068-373-KW 15068-373-KW 15068-373-KW 13068-322-KW 13068-32-KW 13068-32-KW 13068-32-KW 13068-32-KW 13068-32-KW 28048-61-KW 28048-61-KW 28048-61-KW 28048-61-KW 28048-61-KW 28048-61-KW 39048-38-KW 39048-38-KW 300488-106-KW 300488-106-KW 010588-146-KW 010588-146-KW 010588-146-KW 010588-146-KW 010588-146-KW	13 May 2008 15 May 2008 15 May 2008 15 May 2008 15 May 2008 13 May 2008 13 May 2008 13 May 2008 12 May 2008 13 May 2008 14 May 2008 15 May 2008 16 May 2008 17 May 2008 18 Apr 2008 18 Apr 2008 19 Apr 2008 19 Apr 2008 10 May 2008	1.6 nt 1.6 nt 5.1 2.8 8.3 4.5 2.2 2.9 2.4 0.6 nt 1.3 0.7 <0.5 1.7 0.7 nt nt nt tt 4.5 nt	610 nt 530 24400 1550 3000 3000 3000 17000 520 5100 4440 nt nt 460 380 250 680 2500 280 nt nt nt 1300 nt	<pre>< 0.1 nt < 0.1 </pre> to the first section of the section	<0.5 nt 2.3 6.2 2.3 6.2 6.2 6.0 5.0 6.5 6.0 6.5 6.0 6.5 6.0 6.5 6.0 6.5 6.0 6.5 6.0 6.5 6.0 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6	380 nt 200 420 420 430 540 64 1000 200 1700 74 nt nt 2800 260 120 260 100 1100 1100 1100 1100 1	8.4 nt	nt n	90 nt	nt n	58 nt	nt 110 nt nt nt nt 100 nt nt nt nt 100 nt	nt <25 nt nt nt + 25 c25 c25 c25 c25 c25 c25 c25 c25 c25	INT	nt n	nt <100 nt	nt n
REI Recreational	ABH280 ABH282 ABH284 ABH288 ABH288 ABH295 ABH295 ABH295 ABH296 ALG302 AMW201 BBH401 BBH402 BBH402 BBH408 BBH408 BBH408 BBH408 BBH408 BBH408 BBH409 SP4 Enter BBH430 SP4 Enter BBH432 BBH445 SP4 Enter BBH442 BBH445 BBH444 BBH444 BBH444 BBH444 BBH444 BBH444 BBH4446 BBH444 BBH4446 BBH4446	0.05-0.25 0.0-0.2 0-0.2	13068-282-KW 13968-296-KW 13968-296-KW 13968-296-KW 15968-376-KW 15968-375-KW 15968-375-KW 15968-375-KW 15968-375-KW 12058-322-KW 12058-322-KW 12058-320-KW 12058-316-KW	13 May 2008 15 May 2008 12 May 2008 13 May 2008 14 May 2008 15 May 2008 16 May 2008 16 May 2008 17 May 2008 18 May 2008 19 May 2008 19 May 2008 10 May 2008	1.6 nt 1.5 1.1 2.8 8.3 4.5 2.2 2.9 2.4 0.6 nt nt nt 1.3 0.7 <0.5 1.7 nt nt nt 4.5 nt	610 nt 150 150 1500 3000 17000	<.0.1 m v.0.1 v.0.	<0.5 m 2.3 6.2 6.2 6.2 6.0 6.2 6.0 6.3 6.2 6.3 6.0 6.5 6.0 6.5 6.0 6.5 6.0 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6	380 at 20 20 20 20 20 20 20 20 20 20 20 20 20	8.4 nt nt nt nt 4.8 6.3 nt	nt n	90 nt	nt n	58 nt	nt 110 nt	nt <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25	Inf Inf	nt nt nt nt nt nt nt nt	nt <100 nt nt 100 100	nt n
	ABH280 ABH284 ABH284 ABH295 ABH294 ABH295 ABH296 ABH296 ABH296 ABH296 ABH296 ABH296 ABH296 ABH401 BBH401 BBH402 BBH405 BBH405 BBH405 BBH405 BBH406 BBH406 BBH406 BBH407 BBH407 BBH408 BBH408 BBH409 BBH440 BBH440 BBH440 BBH440 BBH440 BBH446 BBH448	0.604.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00	13068-28-3KW 13968-29-KW 13968-29-KW 13968-29-KW 15968-36-KW 15968-37-KW 15968-37-KW 15968-37-KW 15968-37-KW 15968-37-KW 15968-37-KW 15968-37-KW 15968-38-KW 12068-36-KW 12068-37-KW 12068-37-KW 12068-37-KW 12068-38-KW 12068-38-KW 12068-38-KW 12068-38-KW 12068-38-KW 12068-38-KW 12068-38-KW 12068-36-KW 12068	13 May 2008 15 May 2008 12 May 2008 13 May 2008 14 May 2008 15 May 2008 16 May 2008 17 May 2008 18 Apr 2008 19 Apr 2008 10 May 2008	1.6 nt 5.1 2.8 8.3 4.5 2.2 2.9 0.6 nt nt 0.9 1.4 1.3 0.7 4.5 1.7 0.7 4.5 1.8 1.7 0.5 4.5 1.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0	610 str. 1 str.	COLD COLD	<0.5 m	380 200 110 110 120 120 120 120 120 120 12	8.4 nt	nt n	90 nt	nt n	58 nt	est 110 est est 110 est	nt	Int Int	M M M M M M M M M M	### ### #### #### ####################	nt n
200 00 00 00 00 00 00 00 00 mm m m	ABUSA ABUSA ABUSA ABUSA ABUSA ABUSA ABUSA ABUSA ABUSA ABUSA ABUSA ABUSA ABUSA ABUSA ABUSA BBHAG BB	0.054.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	13068-28-3KW 13968-29-KW 13968-29-KW 13968-29-KW 15968-36-KW 15968-37-KW 15968-37-KW 15968-37-KW 15968-37-KW 15968-37-KW 15968-37-KW 15968-37-KW 15968-38-KW 12068-36-KW 12068-37-KW 12068-37-KW 12068-37-KW 12068-38-KW 12068-38-KW 12068-38-KW 12068-38-KW 12068-38-KW 12068-38-KW 12068-38-KW 12068-36-KW 12068	13 May 2008 15 May 2008 12 May 2008 13 May 2008 14 May 2008 15 May 2008 16 May 2008 17 May 2008 18 Apr 2008 19 Apr 2008 10 May 2008	1.6 nt 5.1 2.8 8.3 4.5 2.2 2.9 0.6 nt nt 0.9 1.4 1.3 0.7 4.5 1.7 0.7 4.5 1.8 1.7 0.5 4.5 1.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0	610 str. 1 str.	COLD COLD	<0.5 m	380 200 110 110 120 120 120 120 120 120 12	8.4 nt	nt n	90 nt	nt n	58 nt	est 110 est est 110 est	nt	Int Int	M M M M M M M M M M	### ### #### #### ####################	nt n

Table 19:	Soil Analy	vtical Results - VOC ¹																										
Location	Sample Depth (m)	Sample ID	Date Sampled	Styrene	Cumene (isopropylbenzene)	n-Propylbenzene	1,3,5-Trimethylbenzene	sec-butylbenzene	1,2,4-Trimethylbenzene	tert-Butylbenzene	p-isopropyltoluene	n-Butylbenzene	2,2-Dichloropropane	1,2-dichloropropane	cis-1,3-Dichloropropene	trans-1,3-Dichloropropene	1,2-Dibromoethane	Dichlorodifluoromethane	Chloromethane	Vinyl chloride	Bromomethane	Chloroethane	Trichlorofluoromethane	1,1-Dichloroethylene	trans-1,2-Dichloroethylene	1,1-Dichloroethane	cis-1,2-Dichloroethylene	1,1,1-Trichloroethane
			Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
SP4 Enter																												
ABH202	1.9-2.2	090508-202-KW	09 May 2008	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1
ABH210	0.1-0.2	060508-46-KW	06 May 2008	< 1	< 1	< 1	1.5	< 1	3.1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1
ABH2103	0.9-1	090508-197-KW	09 May 2008	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1
ABH2105	1.4-1.5 3.8-4	150508-333-KW 150508-600-KW	15 May 2008	< 1	1.5	5.5	7.8	< 1	43	< 1	< 1	1.9	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1
ABH2105 ABH2106	3.8-4 1.1-1.2	150508-600-KW 090508-205-KW	15 May 2008 09 May 2008	<1	< 1	<1	<1	<1	< 1	< 1	< 1	< 1	< 1	<1	<1	< 1	<1	< 10	< 10 < 10	< 10	< 10	< 10	< 10 < 10	<1	<1	<1	< 1	<1
ABH2106	1.1-1.2	150508-341-KW	15 May 2008	< 10		19	40	< 10	160	< 10	< 10	< 10	< 10	< 10		< 10	< 10	< 100	< 100	< 100	< 100	< 100	_	< 10	< 10	< 10	< 10	< 10
ABH2107 ABH2108	4.2-4.5	150508-341-KW 150508-348-KW	15 May 2008 15 May 2008	< 10	< 10	<1	40 < 1	< 10	160 < 1	< 10	< 10	< 10	< 10	< 10	< 10 < 1	< 10	< 10	< 100	< 100	< 100	< 100	< 100	< 100 < 10	< 10	< 10	< 10	< 10	< 10
ABH2108	0.35-0.345	080508-161-KW	08 May 2008	< 1	< 1	<1	< 1	<1	< 1	< 1	< 1	< 1	< 1	<1	< 1	<1	<1	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1
ABH299	0.1-0.2	090508-168-KW	09 May 2008	< 1	< 1	<1	< 1	< 1	< 1	< 1	<1	< 1	< 1	< 1	< 1	<1	<1	< 10	< 10	< 10	< 10	< 10	< 10	<1	< 1	< 1	<1	< 1
REI Recr		090500-100-KW	09 May 2008	\ 1	<u> </u>	<u> </u>	\ I	<u> </u>	< 1	\ 1	< 1	< 1	\ 1	<u> </u>	<u> </u>	<u> </u>	<u></u>	< 10	< 10	< 10	< 10	< 10	< 10	<u> </u>	<u> </u>	\ I	<u></u>	
BBH402	0.8-0.9	280408-07-KW	28 Apr 2008	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1
BBH438	1.9-2	290408-07-KW 290408-73-KW	30 Apr 2008	<1	< 1	<1	< 1	<1	< 1	< 1	<1	< 1	< 1	< 1	< 1	<1	<1	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	<1	<1
SP4 Enter		290408-73-K W	30 Apr 2006	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1
ABH226	0.1-0.2	060508-20-KW	06 May 2008	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1
ABH229	0.1-0.2	060508-14-KW	06 May 2008	< 1	< 1	<1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	<1	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	<1	< 1
ABH229	0.5-0.8	060508-15-KW Field Blind Replicate Sample of 060508-14-KW	06 May 2008	<1	<1	<1	<1	<1	< 1	<1	<1	< 1	<1	<1	<1	<1	<1	< 10	< 10	< 10	< 10	< 10	< 10	<1	<1	<1	<1	<1
ABH229	0.5-0.8	060508-16-KW Split Field Duplicate of 060508-14-KW	06 May 2008	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 5	< 5	< 5	< 5	< 5	< 5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
ABH231	0.6-0.7	080508-15-KW	08 May 2008	< 1	<1	<1	<1	< 1	< 1	< 1	< 1	< 1	< 1	<1	< 1	<1	<1	< 10	< 10	< 10	< 10	< 10	< 10	<1	< 1	< 1	< 1	< 1
ABH231	0.6-0.7	080508-153-KW Field Blind Replicate Sample of 080508-152-KW	08 May 2008	< 1	<1	<1	<1	<1	< 1	< 1	<1	< 1	<1	<1	< 1	<1	<1	< 10	< 10	< 10	< 10	< 10	< 10	<1	<1	<1	<1	<1
ABH240	0.8-1	080508-126-KW	08 May 2008	< 1	<1	<1	< 1	<1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	<1	<1	< 10	< 10	< 10	< 10	< 10	< 10	< 1	<1	<1	<1	<1
ABH249	1-1.1	080508-110-KW	08 May 2008	< 1	<1	<1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	<1	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	<1	< 1
ABH265	0-0.1	120508-228-KW	12 May 2008	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1
RE1 Recr	eational																											
ABH275	0.8-1.2	130508-286-KW	13 May 2008	< 1	<1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1
ABH275	0.8-1.2	130508-287-KW Field Blind Replicate Sample of 130508-286-KW	13 May 2008	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	<1	< 1
ABH275	0.8-1.2	130508-288-KW Split Field Duplicate of 130508-286-KW	13 May 2008	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 5	< 5	< 5	< 5	< 5	< 5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
ABH276	0.8-1	130508-283-KW	13 May 2008	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1
ABH288	0.7-0.8	150508-374-KW	15 May 2008	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1
AMW207	0.5-0.7	120508-219-KW	12 May 2008	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1
BBH409	1.9-2	290408-42-KW	29 Apr 2008	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 1	< 1	< 1
BBH429	2.4-2.5	010508-155-KW	01 May 2008	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	nt	< 1	< 1
BBH431	0.5-0.6	300408-85-KW	30 Apr 2008	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	nt	< 1	< 1
SP4 Enter	prise	·																										
BBH433	2.4-2.5	010508-159-KW	01 May 2008	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	nt	< 1	< 1
RE1 Recr	eational																											
BBH447	0.7-0.8	010508-145-KW	01 May 2008	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	nt	< 1	< 1
BBH450	0.4-0.5	010508-140-KW	01 May 2008	< 1	< 1	< 1	< 1	<1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	<1	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	nt	< 1	<1

Concentrations above this action level are shown in **bold** text.

<### Represents results below the laboratory Practical Quantitation Limit.</p>

nt = Not Tested
--- = Action Level not established

Table 19(continued	: Soil Analytical Results - VOC1																													
- 11.014 - 2.7															9															·	
Location	Sample Depth (m)	Sample ID	Date Sampled	1,1-Dichloropropene	Carbon tetrachloride	1,2-Dichloroethane	Trichloroethene	Dibromomethane	1,1,2-trichloroethane	1,3-dichloropropane	Tetrachloroethene	1,1,1,2-Tetrachloroethane	1,1,2,2-Tetrachloroethane	1,2,3-Trichloropropane	1,2-Dibromo-3-chloropropa	Hexach lorobutadiene	Bromocholoromethane	Chlorobenzene	Bromobenzene	o-Chlorotoluene	4-chlorotoluene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1,2-Dichlorobenzene	1,2,4-trichlorobenzene	1,2,3-trichlorobenzene	Chloroform	Bromodichloromethane	Chlorodibromomethane	Bromoform	Naphthalene
			Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
SP4 Enter	prise																														
ABH202	1.9-2.2	090508-202-KW	09 May 2008	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	nt
ABH210	0.1-0.2	060508-46-KW	06 May 2008	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	nt
ABH2103	0.9-1	090508-197-KW	09 May 2008	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	nt
ABH2105	1.4-1.5	150508-333-KW	15 May 2008	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	8.1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	nt
ABH2105	3.8-4	150508-600-KW	15 May 2008	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	nt
ABH2106	1.1-1.2	090508-205-KW	09 May 2008	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	nt
ABH2107	1-1.1	150508-341-KW	15 May 2008	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	nt
ABH2108	4.2-4.5	150508-348-KW	15 May 2008	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	nt
ABH212	0.35-0.345	080508-161-KW	08 May 2008	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	nt
ABH299	0.1-0.2	090508-168-KW	09 May 2008	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	nt
RE1 Recre	eational																														
BBH402	0.8-0.9	280408-07-KW	28 Apr 2008	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 0.1
BBH438	1.9-2	290408-73-KW	30 Apr 2008	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
SP4 Enter	prise																														
ABH226	0.1-0.2	060508-20-KW	06 May 2008	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	nt
ABH229	0.5-0.8	060508-14-KW	06 May 2008	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	nt
ABH229	0.5-0.8	060508-15-KW Field Blind Replicate Sample of 060508-14-KW	06 May 2008	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	nt
ABH229	0.5-0.8	060508-16-KW Split Field Duplicate of 060508-14-KW	06 May 2008	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	nt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	nt
ABH231	0.6-0.7	080508-152-KW	08 May 2008	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	nt
ABH231	0.6-0.7	080508-153-KW Field Blind Replicate Sample of 080508-152-KW	08 May 2008	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	nt
ABH240	0.8-1	080508-126-KW	08 May 2008	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	nt
ABH249	1-1.1	080508-110-KW	08 May 2008	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	nt
ABH265	0-0.1	120508-228-KW	12 May 2008	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	nt
RE1 Recr																															
ABH275	0.8-1.2	130508-286-KW	13 May 2008	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	nt
ABH275	0.8-1.2	130508-287-KW Field Blind Replicate Sample of 130508-286-KW	13 May 2008	< 1	< 1	< 1	< 1	< 1	< 1	<1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	<1	< 1	< 1	< 1	< 1	< 1	<1	< 1	< 1	< 1	<1	nt
ABH275	0.8-1.2	130508-288-KW Split Field Duplicate of 130508-286-KW	13 May 2008	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	nt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	nt
ABH276 ABH288	0.8-1	130508-283-KW 150508-374-KW	13 May 2008 15 May 2008	<1	< 1	< 1	<1	<1	< 1	<1	< 1	<1	< 1	< 1	< 1	<1	< 1	< 1	< 1	<1	< 1	< 1	<1	< 1	<1	<1	< 1	<1	< 1	<1	nt nt
ABH288 AMW207	0.7-0.8	150508-374-KW 120508-219-KW	15 May 2008 12 May 2008																												
BBH416	15-16	290408-35-KW	29 Apr 2008	<1	<1	< 1	<1	< 1	< 1	<1	<1	<1	< 1	< 1	< 1	<1	< 1	< 1	<1	<1	< 1	< 1	<1	< 1	<1	<1	<1	<1	<1	<1	nt < 1
BBH424	1.5-1.6	290408-35-KW 290408-55-KW	29 Apr 2008 29 Apr 2008	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
BBH424 BBH409	1.4-1.6	290408-35-KW 290408-42-KW	29 Apr 2008 29 Apr 2008	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
BBH429	2.4-2.5	010508-155-KW	01 May 2008	< 1	< 1	<1	<1	< 1	< 1	<1	< 1	<1	< 1	< 1	< 1	<1	< 1	< 1	<1	<1	< 1	< 1	<1	<1	<1	< 1	< 1	<1	< 1	<1	< 0.1
BBH431	0.5-0.6	300408-85-KW	30 Apr 2008	< 1	< 1	<1	<1	< 1	< 1	<1	< 1	<1	< 1	<1	< 1	<1	< 1	< 1	<1	<1	< 1	< 1	<1	<1	<1	<1	< 1	<1	< 1	<1	< 0.1
SP4 Enter		W.W.C0.000+000	30 Apr 2006	× 1	1 51	×1	× 1	, <u>, , , , , , , , , , , , , , , , , , </u>	_ <u> </u>	<u> </u>		_ <u> </u>	, <u>, , , , , , , , , , , , , , , , , , </u>	× 1	×1	, <u>, , , , , , , , , , , , , , , , , , </u>	1 1	1 1	<u> </u>	, ×1	\ 1	×1	, <u>, , , , , , , , , , , , , , , , , , </u>	1 51	, ×1	\ 1	× 1	, ×1	×1	_ <u> </u>	< 0.1
BBH433	2.4-2.5	010508-159-KW	01 May 2008	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	<1	< 0.1
RE1 Recr		010300-137-K#	01 may 2008	1	- 1	- 1	~ 1	~ 1	- 1	~1	1	~ 1	- 1		~1	~ 1	1	- 1	- 1	- 1	~1	- 1	~ 1	- 1	- 1	~ 1	- 1	~ 1	~ 1	1	~ 0.1
BBH447	0.7-0.8	010508-145-KW	01 May 2008	<1	< 1	< 1	< 1	< 1	<1	< 1	< 1	< 1	< 1	< 1	<1	< 1	< 1	< 1	< 1	<1	< 1	< 1	< 1	< 1	<1	<1	< 1	< 1	< 1	<1	< 1
BBH450	0.7-0.8	010508-143-KW 010508-140-KW	01 May 2008	<1	<1	<1	<1	<1	< 1	<1	<1	<1	< 1	<1	<1	<1	<1	< 1	<1	<1	<1	<1	<1	< 1	<1	<1	< 1	<1	<1	<1	< 0.1
DD11430	0.4-0.3	010506-140-KW	01 may 2008	< 1	< I	< I	< 1	< 1	< 1	< I	< 1	< I	< 1	< 1	< I	<.1	< 1	< 1	< I	< 1	< 1	< 1	< I	_ · I	< 1	< 1	< 1	< 1	< 1	< I	< 0.1

BBH450 0.4-0.5 010508
Concentrations above this action level are shown in **bold** text.
-t### Represents results below the laboratory Practical Quantitation Limit.
nt = Not Tested

-- = Action Level not established

Columbia		×
SP4 Enterprise ABH205 0.1-0.2 060508-49-KW 06 May 2008 < 0.1 < 0.1 nt < 0.1 < 0.1 < < ABH206 0.1-0.2 090508-208-KW 09 May 2008 < 0.1 < 0.1 nt < 0.1 < 0.1 < < < < ABH215 0-0.2 060508-36-KW 06 May 2008 < 0.1 < 0.1 nt < 0.1 < 0.1 < 0.1 < < < < < < < < ABH21 0.1-0.25 080508-158-KW 08 May 2008 < 0.1 < 0.1 nt < 0.1 < 0.1 < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <	2,4-D Triclopyr	2-(2,4,5- Trichlorophenox y) propionic acid 2,4,5-T
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	g/kg mg/kg	mg/kg mg/kg
ABH206 0.1-0.2 090508-208-KW 09 May 2008 < 0.1 < 0.1 nt < 0.1 < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 <		T I
ABH215 0-0.2 060508-36-KW 06 May 2008 < 0.1 < 0.1 nt < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	0.1 < 0.1	< 0.1 < 0.1
ABH221 0.1-0.25 080508-158-KW 08 May 2008 < 0.1 < 0.1 nt < 0.1 < 0.1 <		< 0.1 < 0.1 < 0.1 < 0.1
	0.1 < 0.1	< 0.1 < 0.1
	0.1 < 0.1	< 0.1 < 0.1
	0.1 < 0.1	< 0.1 < 0.1
	0.1 < 0.1	< 0.1 < 0.1
	0.04 < 0.04	< 0.04 < 0.04
	0.1 < 0.1	< 0.1 < 0.1
	0.1 < 0.1	< 0.1 < 0.1
	0.1 < 0.1	< 0.1 < 0.1
ABH242 0.5-0.7 080508-146-KW Field Blind Replicate Sample of 080508-145-KW 08 May 2008 < 0.1 < 0.1 nt < 0.1 < 0.1 < 0.1	0.1 < 0.1	< 0.1 < 0.1
ABH251 0-0.1 080508-116-KW 08 May 2008 < 0.1 < 0.1 nt < 0.1 < 0.1 <	0.1 < 0.1	< 0.1 < 0.1
ABH253 0-0.1 080508-133-KW 08 May 2008 < 0.1 < 0.1 nt < 0.1 < 0.1 <	0.1 < 0.1	< 0.1 < 0.1
RE1 Recreational		
ABH259 0-0.1 120508-248-KW 12 May 2008 < 0.1 < 0.1 nt < 0.1 < 0.1 <	0.1 < 0.1	< 0.1 < 0.1
SP4 Enterprise		
ABH261 0-0.2 120508-244-KW 12 May 2008 < 0.1 < 0.1 nt < 0.1 < 0.1 <	0.1 < 0.1	< 0.1 < 0.1
ABH264 0-0.1 120508-232-KW 12 May 2008 < 0.1 < 0.1 nt < 0.1 < 0.1 <	0.1 < 0.1	< 0.1 < 0.1
RE1 Recreational		
	0.1 < 0.1	< 0.1 < 0.1
	0.1 < 0.1	< 0.1 < 0.1
	0.1 < 0.1	< 0.1 < 0.1
	0.1 < 0.1	< 0.1 < 0.1
SP4 Enterprise		
	0.1 < 0.1	< 0.1 < 0.1
RE1 Recreational		1
	0.1 < 0.1	< 0.1 < 0.1
	0.1 < 0.1	< 0.1 < 0.1
	0.1 < 0.1 0.1 < 0.1	< 0.1 < 0.1 < 0.1 < 0.1
BBH454 0-0.1 010508-126-KW 01 May 2008 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0	0.1 < 0.1	< 0.1 < 0.1
	0.1	.01 .01
	0.1 < 0.1 0.1 < 0.1	< 0.1 < 0.1 < 0.1 < 0.1
DITES 0.1903 30-400 100-KW 30 Apr 2000 0.1 0.1 0.1 0.1 0.1 0.1 0.1 KR EI Recreational	0.1	< 0.1
	0.1 < 0.1	< 0.1 < 0.1
DDH932 U-0.1 U10306-100-KW U1 May 2008 V 0.1 V 0	0.1	< 0.1
	0.1 < 0.1	< 0.1 < 0.1
RE1 Recreational	0.1 < 0.1	< 0.1
	0.1 < 0.1	< 0.1 < 0.1
	0.1 < 0.1	< 0.1 < 0.1
	0.04 < 0.04	< 0.04 < 0.04
	0.1 < 0.1	< 0.1 < 0.1
SP4 Enterprise		
	0.1 < 0.1	< 0.1 < 0.1
REI Recreational		
	0.1 < 0.1	< 0.1 < 0.1

BBH455 0.1-0.2

Concentrations above this action level are shown in **bold** text.

<### Represents results below the laboratory Practical Quantitation Limit.</p>
nt = Not Tested
— = Action Level not established

			Table	21: Asbestos R	Results	
Location	Sample Depth	Sample Id	Date Sampled	Material Type	Sample Description	Asbestos ID in material
ABH283	0-0.2	150508-381-KW	15 May 2008	FILL	No asbestos detected	Respirable fibres not detected
ABH206	0.1-0.2	090508-208-KW	09 May 2008	FILL	No asbestos detected	Respirable fibres not detected
ABH207	0.2-0.4	090508-207-KW	09 May 2008	FILL	No asbestos detected	Respirable fibres not detected
ABH210	0.1-0.2	060508-46-KW	06 May 2008	FILL	No asbestos detected	Respirable fibres not detected
ABH212	0.35-0.45	080508-161-KW	08 May 2008	FILL	No asbestos detected	Respirable fibres not detected
ABH214	0-0.1	070508-70-KW	07 May 2008	FILL	No asbestos detected	Respirable fibres not detected
ABH217	0.0-0.2	060508-43-KW	06 May 2008	FILL	No asbestos detected	Respirable fibres not detected
ABH220	0.2-0.3	060508-04-KW	06 May 2008	FILL	No asbestos detected	Respirable fibres not detected
ABH221	0.1-0.25	080508-158-KW	08 May 2008	FILL	No asbestos detected	Respirable fibres not detected
ABH222	0-0.1	070508-76-KW	07 May 2008	FILL	No asbestos detected	Respirable fibres not detected
ABH225	0.0-0.2	060508-33-KW	06 May 2008	FILL	No asbestos detected	Respirable fibres not detected
ABH228	0.2-0.3	060508-10-KW	06 May 2008	FILL	No asbestos detected	Respirable fibres not detected
ABH231	0-0.3	080508-151-KW	08 May 2008	FILL	No asbestos detected	Respirable fibres not detected
ABH232	0-0.2	060508-52-KW	06 May 2008	FILL	No asbestos detected	Respirable fibres not detected
ABH236	0-0.1	080508-102-KW	08 May 2008	FILL	No asbestos detected	Respirable fibres not detected
ABH243	0-0.1	080508-141-KW	08 May 2008	FILL	No asbestos detected	Respirable fibres not detected
ABH246	0-0.2	070508-84-KW	07 May 2008	FILL	No asbestos detected	Respirable fibres not detected
ABH248	0-0.1	080508-105-KW	08 May 2008	FILL	No asbestos detected	Respirable fibres not detected
ABH251	0-0.1	080508-116-KW	08 May 2008	FILL	No asbestos detected	Respirable fibres not detected
ABH254	0-0.1	080508-136-KW	08 May 2008	FILL	No asbestos detected	Respirable fibres not detected
ABH257	0-0.2	120508-254-KW	12 May 2008	FILL	No asbestos detected	Respirable fibres not detected
ABH265	0-0.1	120508-228-KW	12 May 2008	FILL	No asbestos detected	Respirable fibres not detected
ABH271	0-0.2	130508-308-KW	13 May 2008	FILL	No asbestos detected	Respirable fibres not detected
ABH274	0.1-0.3	130508-289-KW	13 May 2008	FILL	No asbestos detected	Respirable fibres not detected
ABH276	0.05-0.25	130508-282-KW	13 May 2008	FILL	No asbestos detected	Respirable fibres not detected
ABH281	0-0.2	130508-302-KW	13 May 2008	FILL	No asbestos detected	Respirable fibres not detected
ABH286	0.1-0.3	150508-391-KW	15 May 2008	FILL	No asbestos detected	Respirable fibres not detected
ABH287	0-0.4	150508-378-KW	15 May 2008	FILL FILL	No asbestos detected	Respirable fibres not detected
ABH291 ABH293	0.1-0.5	150508-352-KW	15 May 2008	FILL	No asbestos detected	Respirable fibres not detected
ABH293 ABH294	0.4-0.5	130508-328-KW	13 May 2008 15 May 2008	FILL	No asbestos detected No asbestos detected	Respirable fibres not detected Respirable fibres not detected
ABH294 ABH296	0-0.2	150508-367-KW 120508-261-KW	13 May 2008 12 May 2008	FILL	No asbestos detected	Respirable fibres not detected
ABH296	2.6-2.8	120508-261-KW	12 May 2008	FILL	No asbestos detected	Respirable fibres not detected
ALG203	0-0.2	130508-317-KW	12 May 2008	FILL	No asbestos detected	Respirable fibres not detected
Area A1-A	Surface	130508-A1-KW	13 May 2008	MATERIAL	60x80x4mm fibre cement sheet fragm	*
Area A1-B	Surface	120508-A1-KW	12 May 2008	MATERIAL	200g fibre cement sheet fragments	Chrysotile asbestos detected.
riicu rii B	Burrace	120300 111 1111	12 May 2000	WINTERNE	200g Hore coment sheet ragments	Amosite asbestos detected.
						Crocidolite asbestos detected
Area A2	Surface	120508-A2-KW	12 May 2008	MATERIAL	15g fibre cement sheet fragments	Chrysotile asbestos detected
Area A3	Surface	120508-A3-KW	12 May 2008	MATERIAL	15g fibre cement sheet fragments	Chrysotile asbestos detected
BBH407	0.05-0.15	290408-43-KW	29 Apr 2008	FILL	No asbestos detected	Respirable fibres not detected
BBH408	0-0.2	290408-50-KW	29 Apr 2008	FILL	No asbestos detected	Respirable fibres not detected
BBH412	0-0.2	280408-21-KW	29 Apr 2008	FILL	No asbestos detected	Respirable fibres not detected
BBH415	0.1-0.3	300408-78-KW	30 Apr 2008	FILL	No asbestos detected	Respirable fibres not detected
BBH428	0.1-0.2	010508-162-KW	01 May 2008	FILL	No asbestos detected	Respirable fibres not detected
BBH430	0.1-0.3	300408-106-KW	30 Apr 2008	FILL	No asbestos detected	Respirable fibres not detected
BBH432	0.1-0.2	010508-160-KW	01 May 2008	FILL	No asbestos detected	Respirable fibres not detected
BBH435	0.1-0.3	300408-110-KW	19 Jun 2008	FILL	No asbestos detected	Respirable fibres not detected
BBH438	0.2-0.3	290408-72-KW	30 Apr 2008	FILL	No asbestos detected	Respirable fibres not detected
BBH439	0.1-0.2	010508-133-KW	01 May 2008	FILL	No asbestos detected	Respirable fibres not detected
BBH442	0.1-0.4	300408-101-KW	30 Apr 2008	FILL	No asbestos detected	Respirable fibres not detected
BBH446	0.1-0.2	010508-146-KW	01 May 2008	FILL	No asbestos detected	Respirable fibres not detected
BBH451	0.0-0.1	010508-A1-KW	01 May 2008	FILL	Fibre cement sheet	Chrysotile asbestos detected
BBH452	0.1-0.2	300408-96-KW	01 May 2008	FILL	No asbestos detected	Respirable fibres not detected
BBH453	0.2-0.3	300408-92-KW	01 May 2008	FILL	No asbestos detected	Respirable fibres not detected
BBH454	0-0.1	010508-126-KW	01 May 2008	FILL	No asbestos detected	Respirable fibres not detected
BBH455	0.1-0.2	010508-120-KW	01 May 2008	FILL	No asbestos detected	Respirable fibres not detected
BMW401	0.6-0.7	020508-A2-KW	02 May 2008	FILL	Fibre cement sheet	Chrysotile asbestos detected

^{- =} not collected

										Table 22: Soil a	nalytical results	- POCAS										
	ABH203(19-20) BAH209(1.7-19) BAH210(2.6-2.8) ABH214(1.8-20) ABH228(19-2.2) ABH220(2.8-2.8) BH231(1.6-1.8) ABH238(1.9-2.0) BH231(1.6-1.8) ABH238(1.9-2.0) ABH237(2.3-2.4) ABH242(1.6-1.7) ABH255(2.4-2.6) ABH258(1.6-1.7) ABH265(2.0-2.2) ABH269(2.1-2.2) ABH26													tonnes)	Actio	n Criteria (>1000	tonnes)					
Parameters	EQL	7-May-08	7-May-08	6-May-08	7-May-08	6-May-08	8-May-08	8-May-08	7-May-08	6-May-08	8-May-08	8-May-08	12-May-08	12-May-08	13-May-08	13-May-08	Sands to loamy	Sandy loams to	Medium to heavy	Sands to loamy	Sandy loams to	Medium to heavy
		Sand	Sand	Sand	Sand	Silty sand	Silty sand	Silty sand	Sand	Sand	Sand	Sand	Sand	Silty sand	Silty sand	Silty sand	sands	light clays	clays	sands	light clays	clays
Field ph (H ₂ O)	0.1	5.5	5.5	5.5	5.5	5.5	6	7	5.5	6	6	7	6	6	6.5	6.5						
Field ph (H ₂ O ₂)	0.1	1	1	1	5.5	0	5	8	2	0	5	0	3	2	1	0						
TAA (mol H+/tonne)	5	12	-	<5	-	12	-	-	-	-	-	5	-	-	-	-	-	-	-	-	-	-
TPA (mol H+/tonne)	5	130	-	5	-	165	-	-	-	-	-	213	-	-	-	-	18	36	62	18	18	18
S-KCl (%)	0.01	0.02	-	0.008	-	0.039	-	-	-	-	-	0.072	-	-	-	-	-	-	-	-	-	-
S-P (%)	0.01	0.33	-	0.053	-	0.48	-	-	-	-	-	0.58	-	-	-	-	-	-	-	-	-	-
S-POS (%)	0.01	0.31	-	0.045	-	0.44	-	-	-	-	-	0.51	-	-	-		0.03	0.06	0.1	0.03	0.03	0.03
TSA (mol H+/tonne)	5	118	-	<5.0	-	153	-	-	-	-	-	213	-	-	-		-	-	-	-	-	-

Note: Concentrations over action crite	ria are highlight	ed and shown in bold tes	ct.																			
		ABH(2.2-2.4)	ABH272(2.4-2.6)	ABH273(2.4-2.6)	ABH274(2.5-2.7)	ABH275(2.6-2.8)	ABH276(2.6-2.8)	ABH277(1.2-1.4)	ABH278(2.6-2.8)	ABH281(2.4-2.6)	ABH286(2.0-2.2)	ABH291(2.6-2.7)	ABH295(2.4-2.6)	ALG202(2.0-2.4)	ALG203(2.2-2.4)	ALG204(2.0-2.4)	Action	Criteria (1 - 1000	tonnes)	Action	n Criteria (>1000 t	tonnes)
Parameters	EQL	13-May-08	13-May-08	13-May-08	13-May-08	13-May-08	13-May-08	13-May-08	13-May-08	13-May-08	15-May-08	13-May-08	13-May-08	12-May-08	13-May-08	15-May-08	Sands to loamy	Sandy loams to	Medium to heavy	Sands to loamy	Sandy loams to	Medium to heavy
		Sand	Silty sand	Silty clay	Silty clay	Silty sand	Silty sand	Silty sand	Silty sand	Silty clay	Silty sand	Silty clay	Silty clay	Silty sand	Silty clay	Silty sand	sands	light clays	clays	sands	light clays	clays
Field ph (H ₂ O)	0.1	7	6	6.5	7	6.5	6.5	6	6.2	6	6.5	6.5	6.5	5	6.5	6.5						
Field ph (H ₂ O ₂)	0.1	6	3	0	1	0	0	4	0	3	3.5	6.5	6	4	6	6.5						
TAA (mol H+/tonne)	5	*	-	<5	<5	-	<5	-	<5	-	<5	-	-	-	-	-	-	-	-	-	-	-
TPA (mol H+/tonne)	5	-	-	505	338	-	418	-	240	-	463	-	-	-	-	-	18	36	62	18	18	18
S-KCl (%)	0.01	-	-	0.034	0.031	-	0.058	-	0.038	-	0.036	-	-	-	-	-	-	-	-	-	-	-
S-P (%)	0.01	-	-	1.1	0.81	-	1.2	-	0.68	-	0.72	-	-	-	-	-	-	-	-	-	-	-
S-POS (%)	0.01	-	-	1	0.78	-	1.1	-	0.65	-	0.69	-	-	-	-	-	0.03	0.06	0.1	0.03	0.03	0.03
TSA (mol H+/tonne)	5	-	-	505	338	-	418	-	240	-	463	-	-	-	-	-	18	36	62	18	18	18
Note: Concentrations over action crite	ria are highlighte	ed and shown in bold tes	ct.				-		-	-	-	-	-	-								

		BBH401(2.6-2.8)	BBH403(2.0-2.2)	BBH406(1.8-1.9)	BBH408(2.0-2.2)	BBH411(2.2-2.3)	BBH412(2.2-2.4)	BBH415(2.6-2.8)	BBH421(1.8-2.0)	BBH422(2.6-2.8)	BBH427(2.6-2.8)	BBH440(2.3-2.4)	BBH442(2.6-2.8)	BBH447(2.6-2.8)	BBH453(2.5-2.6)	BBH458(3.8-4.0)	Action	Criteria (1 - 1000	tonnes)	Action	n Criteria (>1000	tonnes)
		28-Apr-08	28-Apr-08	29-Apr-08	29-Apr-08	29-Apr-08	28-Apr-08	30-Apr-08	30-Apr-08	30-Apr-08	29-Apr-08	1-May-08	30-Apr-08	1-May-08	30-Apr-08	1-May-08	Sands to loamy	Sandy loams to	Medium to heavy	Sands to loamy	Sandy loams to	Medium to heavy
Parameters	EQL	Sand	Silty sand	Sand	Sand	Sand	Sand	Silty sand	Silty clay	Silty sand	Clayey silt	Silty clay	Silty clay	Silty clay	Silt	Silty sand	sands	light clays	clays	sands	light clays	clays
Field ph (H ₂ O)	0.1	7.5	6.5	6	6	6	7	6	6.5	6	7	6.5	6	6.5	5.5	6						
Field ph (H ₂ O ₂)	0.1	6.5	1	4.5	5	2	1	4.5	5	6	3	3	3.5	6.5	1.5	1						
TAA (mol H+/tonne)	5	-	<5	7.5	-	5	<5	-	-	-	<5	<5	-	-	<5	<5		-	-	-	-	-
TPA (mol H+/tonne)	5	-	333	108	-	<5	338	-	-		1010	253	-	-	195	1185	18	36	62	18	18	18
S-KCl (%)	0.01	-	0.047	0.016	-	0.009	0.039	-	-		0.13	0.024	-	-	0.043	0.13		-	-	-	-	-
S-P (%)	0.01	-	0.76	0.22	-	0.12	0.78	-	-	-	3.9	0.52	-	-	0.56	2.5	-	-	-	-	-	-
S-POS (%)	0.01	-	0.71	0.21	-	0.11	0.74	-	-	-	3.7	0.49	-	-	0.52	2.4	0.03	0.06	0.1	0.03	0.03	0.03
TSA (mol H+/tonne)	5	-	333	100	-	<5	335	-	-	-	1010	253	-	-	198	1188	18	36	62	18	18	18

Note: Concentrations over action criteria are highlighted and shown in **bold** text.

					Table 2	23: Groun	d Water Fi	ield Paran	neters and	Analytical	Results										
Location	Sample ID	Date Sampled	Standing Water Level	Temperature (field)	Redox (field)	Dissolved Oxygen (field)	pH (field)	Electrical Conductivity (field)	Chloride	Sulphate	Total Dissolved Solids	Resistivity	Salinity	Carbonate Alkalinity as	Bicarbonate Alkalinity as	Total Alkalinity	Calcium (II) Ion	Potassium (I) Ion	Sodium (Na)	Magnesium (II) Ion	Phenols
		Units	mBTOC	deg c	mV	mg/l	pH units	uS/cm	mg/L	mg/l	mg/l	ohm m	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
l L	290508-01-LJ	29 May 2008	1.59	20.1	-180	0.18	7.12	9640	3300	360	7500	nt	7	< 0.1	630	nt	320	63	2000	220	< 0.05
AMW203	AMW203	17 Feb 2017	1.48	25.5	-131.7	0.08	4.78	25134	10000	1500	nt	nt	nt	<5	370	370	300	230	7200	660	nt
	QAQC1	17 Feb 2017	1.48	25.5	-131.7	0.08	4.78	25134	9700	1400	nt	nt	nt	<5	370	370	310	240	7300	670	nt
	QAQC2	17 Feb 2017	1.48	25.5	-131.7	0.08	4.78	25134	9440	1110	nt	nt	nt	<1	323	323	437	205	5580	622	nt
ABH2105	290508-02-LJ	29 May 2008	1.59	19	-162	0.23	6.44	1071	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt
	ABH2105	17 Feb 2017	1.5	24.7	-110.2	0.14	5.02	1013	140	54	nt	nt	nt	<5	270	270	97	8.8	84	16	nt
ABH202	290508-03-LJ	29 May 2008	1.4	21.1	-5	0.25	6.83	1092	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt
	ABH202	17 Feb 2017	1.48	25.3	-113.3	0.16	6.57	1658	320	110	nt	nt	nt	<5	270	270	150	10	140	24	nt
AMW205	290508-04-LJ	29 May 2008	0.49	17.6	-246	0.17	7.04	4200	1300	410	3600	nt	3.3	< 0.1	540	nt	260	43	760	89	nt
7111711203	AMW205	17 Feb 2017	0.41	23.3	220.1	0.12	5.67	3791	880	410	2500	2.6	2500	<5	530	530	230	36	630	66	nt
l L	290508-05-LJ	29 May 2008	0.41	18.4	-69	0.16	6.22	1082	210	140	800	nt	<1	< 0.1	150	nt	81	19	120	24	nt
AMW201	290508-06-LJ Field blind replicate of 290508-05-LJ	29 May 2008	0.41	18.4	-69	0.16	6.22	1082	230	130	900	nt	<1	< 0.1	150	nt	78	19	120	24	nt
	290508-07-LJ Field split replicate of 290508-05-LJ	29 May 2008	0.41	18.4	-69	0.16	6.22	1082	234	129	726	nt	0.62	<1	153	153	76	20	122	24	nt
AMW202	300508-12-LJ	30 May 2008	0.67	18.9	2	0.22	6.33	8140	3300	390	8600	nt	6.4	< 0.1	110	nt	110	68	2100	230	nt
AMW204	290508-08-LJ	29 May 2008	0.72	18.6	-94	0.12	6.41	4150	1100	650	3600	nt	2.9	< 0.1	490	nt	230	47	620	110	nt
AMW207	300508-09-LJ	30 May 2008	1.5	18.1	-31	2.13	6.59	1832	8900	1300	16000	nt	15	< 0.1	470	nt	600	130	4600	450	nt
AMW206	300508-10-LJ	30 May 2008	0.85	18.7	-100	0.54	6.77	7810	2000	2300	8900	nt	6.2	< 0.1	810	nt	610	93	1600	330	nt
7 LIVI W 200	300508-11-LJ Field blind replicate of 300508-10-LJ	30 May 2008	0.67	18.9	2	0.22	6.33	8140	2100	2400	7600	nt	6.1	< 0.1	810	nt	610	92	1500	320	nt
ABH2110	300508-13-LJ	30 May 2008	1.69	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt
ABH2100	300508-14-LJ	30 May 2008	1.59	22.8	-40	0.21	6.25	7350	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt
ABITIZTOO	ABH2100	17 Feb 2017	1.64	25.3	-105.3	0.76	6.59	5263	1400	340	nt	nt	nt	<5	360	360	97	33	960	42	nt
BBH304	180608-06-LJ	18 Jun 2008	0.43	18	-211	-0.23	7.05	6440	1400	1400	5100	1.6	4100	< 0.1	590	nt	680	60	1000	110	nt
BMW401	170608-01-LJ	17 Jun 2008	3.96	21.1	85	-0.16	6.3	944	27	110	660	10	610	< 0.1	420	nt	160	10	38	22	nt
Divivion	BMW401	17 Feb 2017	4.14	22.5	-150.2	0.3	6.54	804	30	3	nt	nt	nt	<5	460	460	110	12	36	14	nt
BMW402	170608-05-LJ	17 Jun 2008	2.13	19.3	-167	-0.25	6.77	2780	330	880	2100	3.6	1800	< 0.1	560	nt	370	23	220	71	nt
BMW403	170608-02-LJ	17 Jun 2008	3.48	20.5	-93	0.01	6.77	2460	500	<5	1400	4	1600	< 0.1	620	nt	130	25	320	3	nt
DIVI W 403	BMW403	17 Feb 2017	3.5	22.4	-185.2	0.35	6.28	1721	320	17	920	6	1100	<5	450	450	82	23	250	24	nt
	170608-03-LJ	17 Jun 2008	2.38	19.7	-299	-0.33	6.83	15800	5900	830	11000	<1	10000	< 0.1	280	nt	170	130	3500	30	nt
BMW404	170608-04-LJ Field Blind Replicate of170608-03-LJ	17 Jun 2008	2.38	19.7	-299	-0.33	6.83	15800	6140	696	11000	62	9350	nt	nt	272	163	130	3160	336	nt
L [BMW404	17 Feb 2017	2.24	22.4	-313.9	0.14	6.92	14142	5300	350	nt	nt	nt	<5	320	320	230	120	3500	300	nt
Limit of Repo	rting		0.01	0.1	1	0.01	0.01	0.1	0.1	1	10	1	1	0.1	1	1	1	1	1	1	0.05
NEPM (2013)	Groundwater Investigation Levels (GILs) - Marine Waters	·	-	-		-				-		-	-	-	-	-		-	-	-	400

nt = not analysed

-- = Action Level not established

 $BR = blind \ replicate$

SPD = split duplicate

Table 24: Groundwater Analytical Results - Dissolved metals												
Location	Sample ID	Date Sampled	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc		
		Units	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l		
	290508-01-LJ-	29 May 2008	9.5	0.2	<1	3.9	<1	< 0.5	5.9	<1		
AMW203	AMW203	17 Feb 2017	32	< 0.1	<1	<1	<1	< 0.05	<1	<1		
Alvi w 203	QAQC1 Field blind replicate of AMW203	17 Feb 2017	32	< 0.1	<1	<1	<1	< 0.05	<1	<1		
[QAQC2 Field split replicate of AMW204	17 Feb 2017	22	< 0.1	<1	<1	<1	< 0.1	<1	<5		
ABH2105	290508-02-LJ	29 May 2008	nt	nt	nt	nt	<1	nt	nt	nt		
ABH2103	ABH2105	17 Feb 2017	4	< 0.1	<1	<1	<1	< 0.05	<1	5		
ADIIOO	290508-03-LJ	29 May 2008	nt	nt	nt	nt	<1	nt	nt	nt		
ABH202	ABH202	17 Feb 2017	9	< 0.1	6	1	<1	< 0.05	83	14		
AMW205	290508-04-LJ	29 May 2008	5.6	< 0.1	2.7	2.1	<1	< 0.5	2.6	1.2		
AMW 205	AMW205	17 Feb 2017	4	< 0.1	1	<1	<1	< 0.05	2	<1		
	290508-05-LJ	29 May 2008	11	< 0.1	<1	<1	<1	< 0.5	1.1	<1		
AMW201	290508-06-LJ Field blind replicate of 290508-05-LJ	29 May 2008	11	< 0.1	1.1	<1	<1	< 0.5	1	<1		
l [290508-07-LJ Field split replicate of 290508-05-LJ	29 May 2008	10	< 0.1	< 0.1	< 0.1	< 0.1	< 0.01	< 0.1	< 0.5		
AMW202	300508-12-LJ	30 May 2008	4.9	0.1	1.6	<1	<1	< 0.5	<1	<1		
AMW204	290508-08-LJ	29 May 2008	6.1	0.3	5.3	<1	<1	< 0.5	4.4	5.9		
AMW207	300508-09-LJ	30 May 2008	14	0.2	11	<1	<1	< 0.5	64	82		
4.3 (TV120.6	300508-10-LJ	30 May 2008	5.7	0.2	1.5	<1	<1	< 0.5	11	5.9		
AMW206	300508-11-LJ Field blind replicate of 300508-10-LJ	30 May 2008	5.5	0.1	1.5	<1	<1	< 0.5	11	5.7		
ABH2110	300508-13-LJ	30 May 2008	nt	nt	nt	nt	nt	nt	nt	nt		
4 D112100	300508-14-LJ	30 May 2008	nt	nt	nt	nt	<1	nt	nt	nt		
ABH2100	ABH2100	17 Feb 2017	14	0.4	4	3	7	< 0.05	17	8		
BBH304	180608-06-LJ	18 Jun 2008	4.9	< 0.1	2.5	2.1	<1	< 0.5	1.7	1.5		
D) (111104	170608-01-LJ	17 Jun 2008	2.2	< 0.1	<1	1.8	<1	< 0.5	<1	6.3		
BMW401	BMW401	17 Feb 2017	14	< 0.1	<1	3	<1	< 0.05	<1	4		
BMW402	170608-05-LJ	17 Jun 2008	5.6	< 0.1	<1	<1	<1	< 0.5	1.7	3.1		
	170608-02-LJ	17 Jun 2008	4.9	< 0.1	2	<1	<1	< 0.5	3.1	<1		
BMW403	BMW403	17 Feb 2017	3	< 0.1	<1	1	<1	< 0.05	1	1		
	170608-03-LJ	17 Jun 2008	1.6	0.2	23	6.6	<1	< 0.5	2.5	4.1		
BMW404	170608-04-LJ Field Blind Replicate of170608-03-LJ	17 Jun 2008	<1	< 0.01	24	2	4	<1	6	< 0.1		
	BMW404	17 Feb 2017	8	< 0.1	3	<1	<1	< 0.05	1	1		
Limit of Rep	orting	1	0.1	1	1	1	0.1	1	5			
	B) Groundwater Investigation Levels (GILs) - Marine Waters	-	0.7	-	1.3	4.4	0.1	7	8			

Note 1: ANZG 2018 Marine 95% (Concentrations above this action level are shown in **bold** text.)

BR = blind replicate

nt = Not Tested

^{-- =} Action Level not established

			Table 25: Groundwater Analytical Results - TPH and BTEX															
Location	Sample ID	Date Sampled	ТРН С6 - С9	TPH C6 - C10	TPH C6 - C10 less BTEX (F1)	TPH C10 - C14	TPH C15 - C28	TPH C29 - C36	TRH >C10 - C16	TRH >C10 - C16 less Naphthalene (F2)	TRH >C16 - C34	TRH >C34 · C40	Benzene	Toluene	Ethylbenzene	meta- & para-Xylene	ortho-Xylene	Napthalene
		Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	290508-01-LJ	29 May 2008	<10	nt	nt	< 50	<100	<100	nt	nt	nt	nt	<1	<1	<1	<2	<1	nt
AMW203	AMW203	17 Feb 2017	<10	<10	<10	< 50	<100	<100	< 50	< 50	<100	<100	<1	<1	<1	<2	<1	<1
711111203	QAQC1 Field blind replicate of AMW203	17 Feb 2017	<10	<10	<10	< 50	<100	<100	< 50	< 50	<100	<100	<1	<1	<1	<2	<1	<1
	QAQC2 Field split replicate of AMW204	17 Feb 2017	<20	<20	<20	<50	<100	<50	<100	<100	<100	<100	<1	<2	<2	<2	<2	<5
ABH2105	290508-02-LJ	29 May 2008	650	nt	nt	550	<100	<100	nt	nt	nt	nt	190	70	60	150	30	nt
110112103	ABH2105	17 Feb 2017	260	260	54	< 50	<100	<100	< 50	< 50	<100	<100	200	2	<1	<2	<1	<1
ABH202	290508-03-LJ	29 May 2008	72	nt	nt	< 50	<100	<100	nt	nt	nt	nt	3.8	<1	1	18	8	nt
11011202	ABH202	17 Feb 2017	<10	<10	<10	<50	<100	<100	<50	< 50	<100	<100	<1	<1	<1	<2	<1	<1
AMW205	290508-04-LJ	29 May 2008	<10	nt	nt	< 50	<100	<100	nt	nt	nt	nt	<1	<1	<1	<2	<1	nt
	AMW205	17 Feb 2017	<10	<10	<10	< 50	<100	<100	< 50	< 50	<100	<100	<1	<1	<1	<2	<1	<1
	290508-05-LJ	29 May 2008	<10	nt	nt	< 50	<100	<100	nt	nt	nt	nt	<1	<1	<1	<2	<1	nt
AMW201	290508-06-LJ Field blind replicate of 290508-05-LJ	29 May 2008	<10	nt	nt	< 50	<100	<100	nt	nt	nt	nt	<1	<1	<1	<2	<1	nt
	290508-07-LJ Field split replicate of 290508-05-LJ	29 May 2008	<20	nt	nt	< 50	<100	< 50	nt	nt	nt	nt	<1	<5	<2	<2	<2	nt
AMW204	290508-08-LJ	29 May 2008	<10	nt	nt	< 50	<100	<100	nt	nt	nt	nt	<1	<1	<1	<2	<1	nt
AMW207	300508-09-LJ	30 May 2008	<10	nt	nt	< 50	<100	<100	nt	nt	nt	nt	<1	<1	<1	<2	<1	nt
AMW206	300508-10-LJ	30 May 2008	<10	nt	nt	< 50	<100	<100	nt	nt	nt	nt	<1	<1	<1	<2	<1	nt
	300508-11-LJ Field blind replicate of 300508-10-LJ	30 May 2008	<10	nt	nt	< 50	<100	<100	nt	nt	nt	nt	<1	<1	<1	<2	<1	nt
AMW202	300508-12-LJ	30 May 2008	<10	nt	nt	< 50	<100	<100	nt	nt	nt	nt	<1	<1	<1	<2	<1	nt
ABH2110	300508-13-LJ	30 May 2008	<10	nt	nt	nt	nt	nt	nt	nt	nt	nt	<1	<1	<1	<2	<1	nt
ABH2100	300508-14-LJ	30 May 2008	<10	nt	nt	nt	nt	nt	nt	nt	nt	nt	<1	<1	<1	<2	<1	nt
	ABH2100	17 Feb 2017	<10	<10	<10	< 50	<100	<100	< 50	< 50	<100	<100	<1	<1	<1	<2	<1	<1
BBH304	180608-06-LJ	18 Jun 2008	<10	nt	nt	< 50	<100	<100	nt	nt	nt	nt	<1	<1	<1	<2	<1	nt
BMW401	170608-01-LJ	17 Jun 2008	<10	nt	nt	< 50	<100	<100	nt	nt	nt	nt	<1	<1	<1	<2	<1	nt
	BMW401	17 Feb 2017	<10	<10	<10	< 50	<100	<100	< 50	< 50	<100	<100	<1	<1	<1	<2	<1	<1
BMW402	170608-05-LJ	17 Jun 2008	<10	nt	nt	< 50	<100	<100	nt	nt	nt	nt	<1	<1	<1	<2	<1	nt
BMW403	170608-02-LJ	17 Jun 2008	<10	nt	nt	<50	<100	<100	nt	nt	nt	nt	<1	<1	<1	<2	<1	nt
	BMW403	17 Feb 2017	<10	<10	<10	<50	<100	<100	<50	< 50	<100	<100	<1	<1	<1	<2	<1	<1
	170608-03-LJ	17 Jun 2008	<10	nt	nt	<50	<100	<100	nt	nt	nt	nt	<1	1.5	<1	<2	<1	nt
BMW404	170608-04-LJ Field Blind Replicate of170608-03-LJ	17 Jun 2008	<20	nt	nt	<50	<100	<100	nt	nt	nt	nt	<1	<5	<2	<2	<2	nt
	BMW404	17 Feb 2017	<10	<10	<10	<50	<100	<100	<50	<50	<100	<100	<1	<1	<1	<2	<1	<1
Limit of Reporting			10	10	10	50	100	100	50	50	100	100	1	1	1	1	1	1
NEPM (2013) Groundwater Investigation Levels (GILs) - Marine Waters			-	-	-	-	-	-	-	-		-	500	-	-	-	-	50
NEPM (2013)	Health Screening Levels (HSLs) - HSL C - Sand, 2m-<4m.			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
NEPM (2013)) Health Screening Levels (HSLs) - HSL D - Sand, 2m-<4m.	-	-	600	-	-	-	-	-		-	500	-	-	-	-	-	

Concentrations above this action level are shown in **bold** text

nt = Not Tested

-- = Action Level not established

BR = blind replicate

Location Sample ID Date Sampled Sample			Ta	able 26 : Groundwater Analytical Results - Polycyclic Aromatic Hydrocarbons														
AMW203 AMW204 AMW205 AMW205 AMW205 AMW205 AMW205 AMW205 AMW205 AMW206 AMW206 AMW206 AMW207 AMW208	Location	Sample ID			7	ν		_	-	<u></u>	Ь	ğ	ರೆ	ğ	Ř	E	Dibenz	Benzo(g,h,i)perylene
AMW203		200700 01 1 1			ŭ				- U	- U					U	Ü		ug/l
AMW205 QAQCI Field blind replicate of AMW203 17 Feb 2017 <1 <1 <1 <1 <1 <1 <1	-																	<1
ABH2105 CAQC2 Field split replicate of AMW204 17 Feb 2017 <1 <1 <1 <1 <1 <1 <1	AMW203					1												<1
ABH2105 ABH2106 ABH2106 ABH2107 ABH2107 ABH2107 ABH2108 ABH2108 ABH2108 ABH2108 ABH2109 ABH	-																	<1 <1
ABH2105 ABH2106 ABH2105 ABH2106 ABH2105 ABH2106 ABH2105 ABH2106 ABH210		1																
ABH202 29 May 2008 nt	ABH2105																	nt <1
ABH202																		
AMW205	ABH202																· ·	nt <1
AMW205			1			-												<1
AMW201 290508-05-LJ 29 May 2008 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	AMW205																	<1
AMW201 290508-06-LJ Field blind replicate of 290508-05-LJ 29 May 2008 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	AMW201																	<1
290508-07-LJ Field split replicate of 290508-05-LJ 29 May 2008 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1																		<1
AMW202 300508-12-LJ 30 May 2008 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1		1																<1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	AMW202																	<1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						-												<1
$\frac{1}{300508-10-\text{LJ}} = \frac{30\text{May}2008}{300508-10-\text{LJ}} = \frac{30\text{May}2008}{30\text{May}2008} = \frac{1}{30\text{May}2008} = \frac{1}{30\text{May}$																		<1
AMW206 300508-11-LJ Field blind replicate of 300508-10-LJ 30 May 2008 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1						1												<1
ABH2110 300508-13-LJ 30 May 2008 nt	AMW206																	<1
ABH2100 300508-14-LJ 30 May 2008 nt	ABH2110	1				-												nt
LABH2100			·															nt
	ABH2100	ABH2100		<1		<1	<1		<1	<1	<1	<1	<1	<2	<1	<1	<1	<1
BBH304 180608-06-LJ 18 Jun 2008 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	BBH304	180608-06-LJ	18 Jun 2008	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1
170608-01-LJ 17 Jun 2008 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	BMW401	170608-01-LJ	17 Jun 2008	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1
BMW401		BMW401		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1
BMW402 170608-05-LJ 17 Jun 2008 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	BMW402	170608-05-LJ	17 Jun 2008	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1
170608-02-LJ 17 Jun 2008 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	DMW402	170608-02-LJ	17 Jun 2008	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1
BMW403 17 Feb 2017 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	BMW403	BMW403	17 Feb 2017	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1
170608-03-LJ 17 Jun 2008 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	BMW404	170608-03-LJ	17 Jun 2008	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1
BMW404 170608-04-LJ Field Blind Replicate of 170608-03-LJ 17 Jun 2008 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1		170608-04-LJ Field Blind Replicate of 170608-03-LJ	17 Jun 2008	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1
BMW404 17 Feb 2017 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1		BMW404	17 Feb 2017	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1
Limit of Reporting 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Limit of Reporting			1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
NEPM (2013) Groundwater Investigation Levels (GILs) - Marine Waters 50	NEPM (2013) Groundwater Investigation Levels (GILs) - Marine Waters		50	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Concentrations above this action level are shown in **bold** text

BR = blind replicate

nt = Not Tested

^{-- =} Action Level not established

Table 27: Ground Water Analytical Results - Nutrients									
Location	Sample ID	Date Sampled	Ammonia as N	Total Nitrogen	Total Phosphorous				
		Units	mg/L	mg/L	mg/L				
	290508-01-LJ	29 May 2008	4.1	5	0.87				
A MANA 202	AMW203	17 Feb 2017	1.1	1.4	nt				
AMW203 —	QAQC1 Field blind replicate of AMW203	17 Feb 2017	1.1	1.3	nt				
	QAQC2 Field split replicate of AMW204	17 Feb 2017	0.96	1.5	0.62				
ABH2105	290508-02-LJ	29 May 2008	nt	nt	nt				
ABH2103	ABH2105	17 Feb 2017	3	4.1	nt				
ABH202	290508-03-LJ	29 May 2008	nt	nt	nt				
АБП202	ABH202	17 Feb 2017	0.73	1.8	nt				
AMW205	290508-04-LJ	29 May 2008	2.4	5.1	0.81				
AIVI W 203	AMW205	17 Feb 2017	1	2.2	nt				
	290508-05-LJ	29 May 2008	2	3.4	1.3				
AMW201	290508-06-LJ Field blind replicate of 290508-05-LJ	29 May 2008	2.1	3.4	1.1				
	290508-07-LJ Field split replicate of 290508-05-LJ	29 May 2008	0.971	2.7	2.7				
AMW202	300508-12-LJ	30 May 2008	1.9	2.7	< 0.05				
AMW204	290508-08-LJ	29 May 2008	7.2	6	0.28				
AMW207	300508-09-LJ	30 May 2008	5.1	7.8	0.24				
AMW206	300508-10-LJ	30 May 2008	3.1	7	1.1				
AMW206	300508-11-LJ Field blind replicate of 300508-10-LJ	30 May 2008	3.1	6.9	1.3				
ABH2110	300508-13-LJ	30 May 2008	nt	nt	nt				
ABH2100	300508-14-LJ	30 May 2008	nt	nt	nt				
AB112100	ABH2100	17 Feb 2017	0.29	1.2	nt				
BBH304	180608-06-LJ	18 Jun 2008	2.9	5.3	0.63				
BMW401	170608-01-LJ	17 Jun 2008	< 0.1	9.5	0.06				
DIVI VV 401	BMW401	17 Feb 2017	0.92	1.2	nt				
BMW402	170608-05-LJ	17 Jun 2008	3	4.3	0.18				
BMW403	170608-02-LJ	17 Jun 2008	14	21	0.19				
DIVI 11 403	BMW403	17 Feb 2017	8	9.2	nt				
	170608-03-LJ	17 Jun 2008	4.4	5.6	1				
BMW404	170608-04-LJ Field Blind Replicate of170608-03-LJ	17 Jun 2008	4.69	7	0.76				
	BMW404	17 Feb 2017	1.7	2.8	nt				
Limit of Report	ing		0.01	0.01	0.01				
NEPM (2013) (Groundwater Investigation Levels (GILs) - Marine Waters		0.91	-	-				

Concentrations above this action level are shown in **bold** text

BR: Blind replicate

SPD: Split duplicate

nt = Not Tested

^{-- =} Action Level not established

														ter Analytical																
-		Location	1	A	MW203		All	MW205	<u> </u>	AMW201		AMW204	AMW207	AMW206		AMW202	ABH202	ABH2110	ABI	12100	ABH2105	BBH304	BMV	V401	BMW402	BMW	V403		BMW404 170608-04-LJ	
		Sample II	290508-01-L	AMW203	blind replicate	QAQC2 Field split replicate of AMW204	290508-04-L	J AMW205	290508-05-LJ	290508-06-LJ Field blind replicate of 290508-05-LJ	Field split replicate of 290508-05-L1	290508-08-LJ	300508-09-LJ	300508-10-LJ	Field blind replicate of	300508-12-LJ	ABH202	300508-13-LJ	300508-14-LJ	ABH2100	ABH2105	180608-06-1-1	170608-01-I I	BMW401	170608-05-LT	170608-02-I I	RMW403	170608-03-I I	Field Blind Replicate of170608-03-LJ	BMW404
		Date Sample	29 May 2008	17 Feb 201	7 17 Feb 2017	17 Feb 2017	29 May 2008	18 17 Feb 2017	29 May 2008			8 29 May 2008	30 May 2008	30 May 2008	30 May 2008	30 May 2008	17 Feb 2017	30 May 2008	30 May 2008	17 Feb 2017	17 Feb 2017	18 Jun 2008	17 Jun 2008	17 Feb 2017	17 Jun 2008	17 Jun 2008	17 Feb 2017	17 Jun 2008	17 Jun 2008	17 Feb 2017
		Groundwater																												
Purameter	LOR	Investigation Levels (GH.s) - Marine Waters Units																												
Dichlorodifluoromethane	50	- ue/	<10	<10	<10	<50	<10	<10	<10	<10	<50	<10	<10	<10	<10	<10	<10	nt	nf	<10	<10	<10	<10	<10	<10	<10	<10	<10	<50	<10
Chloromethane	50	- ug/l	<10	<10	<10	<50	<10	<10	<10	<10	<50	<10	<10	<10	<10	<10	<10	nt	nt	<10	<10	<10	<10	<10	<10	<10	<10	<10	<50	<10
Vinyl Chloride	50	- ug/l	<10	<10	<10	<50	<10	<10	<10	<10	<50	<10	<10	<10	<10	<10	<10	nt	nt	<10	<10	<10	<10	<10	<10	<10	<10	<10	<50	<10
Bromomethane	50	- ug/l	<10	<10	<10	<50	<10	<10	<10	<10	<50	<10	<10	<10	<10	<10	<10	nt	nt	<10	<10	<10	<10	<10	<10	<10	<10	<10	<50	<10
Chloroethane	50	- ug/l	<10	<10	<10	<50	<10	<10	<10	<10	<50	<10	<10	<10	<10	<10	<10	nt	nt	<10	<10	<10	<10	<10	<10	<10	<10	<10	<50	<10
Trichlorofluoromethane	50	- ug/l	<10	<10	<10	<50	<10	<10	<10	<10	<50	<10	<10	<10	<10	<10	<10	nt	nt	<10	<10	<10	<10	<10	<10	<10	<10	<10	<50	<10
1,1-Dichloroethene Trans-1.2-dichloroethene	50	- ug/l	<1	<1	<1	ර	<1	<1	<1	<1	ئ ئ	<1	<1	<1	<1	<1	<1	nt	nt	<1	<1	<1	<1	<1	<1	<1	<1	d	- d	<1
Trans-1,2-dichloroethene 1,1-dichloroethane	50	- ug/l	<1	<1 <1	<1 <1		<1	<1 <1	<1	<1	- 0	- cl	<1	<1	<1		<1 <1	nt nt	nt	<1 <1	<1 <1	<1	<1	<1 <1	<1	d	<1 <1		- 0	<1 <1
Cis. 1.2 dichlomethene	50	- ug/l	<1	<1	<1	- 6	<1	<1	- ci	<1		<1	<1	<1	<1	<1	<1	nt nt	nt nt	<1	<1	<1	<1	<1	<1	<1	<1	<1		<1
Bromochloromethane	5	- ug/l	<1	<1	<1	- 3	<1	<1	<1	<1	- 3	<1	<1	<1	<1	<1	<1	nt	nt	<1	<1	<1	<1	<1	<1	<1	<1	<1	- 3	<1
Chloroform	50	- ug/l	<1	<1	<1	<5	<1	<1	<1	<1	- 3	<1	<1	<1	<1	d	<1	nt	nt	<1	<1	<1	<1	<1	<1	<1	<1	<1	- 5	<1
2,2-dichloropropane	5	- ug/l	<1	<1	<1	<5	<1	<1	<1	<1	nt	<1	<1	<1	<1	<1	<1	nt	nt	<1	<1	<1	<1	<1	<1	<1	<1	<1	-5	<1
1,2-dichloroethane	5	- ug/l	<1	<1	<1	්	<1	<1	<1	<1	ತ	<1	<1	<1	-d	<1	<1	nt	nt	<1	<1	<1	<1	<1	<1	<1	<1	<1	্ত	<1
1,1,1-trichloroethane	5	- ug/l	<1	<1	<1	্ত	<1	<1	<1	<1	්	<1	<1	<1	<1	<1	<1	nt	nt	<1	<1	<1	<1	<1	<1	<1	<1	<1	-5	<1
1,1-dichloropropene	5	- ug/l	<1	<1	<1	nt	<1	<1	<1	<1	- 5	<1	<1	<1	<1	<1	<1	nt	nt	<1	<1	<1	<1	<1	<1	<1	<1	<1	- 5	<1
Cyclohexane	5	- ug/l	nt <1	<1	<1	nt c5	nt	<1	nt <1	nt	nt	nt	nt	nt	nt <1	nt <1	<1	nt	nt	<1	5	nt	nt	<1	nt	nt	<1	nt	nt c5	<1
Carbon tetrachloride Benzene	5	- ug/l 500 ug/l	<1 nt	<1 <1	<1 <1		<1	<1 <1	<1	<1	<5 nt	<1	<1 nt	<1	<1 nt	<1 nt	<1 <1	nt nt	nt nt	<1 <1	<1 200	<1	<1	<1	<1	<1	<1 <1	<1		<1 <1
Dibromomethane	5	- ug/l	- nt -<1	<1	<1	- 6	- nt - <1	<1	- nt - <1	nt <1	- nt - <5	<1	- nt -<1	- nt -<1	nt <1	nt <1	<1	nt nt	nt nt	<1	200 <1	<1	<1	<1	<1	<1	<1	<1	- 0	<1
1,2-dichloropropane	1	- ug/l	<1	<1	<1		<1	<1	<1	<1		<1	<1		<1	<1	<1	nt	nt	<1	<1	<1		<1	<1	<1	<1	<1	- 5	<1
Trichloroethene	5	- ug/l	<1	<1	<1	<5	<1	<1	<1	<1	- 3	<1	<1	<1	<1	<1	<1	nt	nt	<1	<1	<1	<1	<1	<1	<1	<1	<1	- 5	<1
Bromodichloromethane	5	- ug/l	<1	<1	<1	<5	<1	<1	<1	<1	್	<1	<1	<1	<1	<1	<1	nt	nt	<1	<1	<1	<1	<1	<1	<1	<1	<1	- 5	<1
trans-1,3-dichloropropene	5	- ug/l	<1	<1	<1	nt	<1	<1	<1	<1	nt	<1	<1	<1	<1	<1	<1	nt	nt	<1	<1	<1	<1	<1	<1	<1	<1	<1	<5	<1
cis-1,3-dichloropropene	5	- ug/l	<1	<1	<1	nt	<1	<1	<1	<1	nt	<1	<1	<1	<1	<1	<1	nt	nt	<1	<1	<1	<1	<1	<1	<1	<1	<1	<5	<1
1,1,2-trichloroethane	5	1900 ug/l	<1	<1	<1	nt	<1	<1	<1	<1	-5	<1	<1	<1	<1	<1	<1	nt	nt	<1	<1	<1	<1	<1	<1	<1	<1	<1	- 5	<1
Toluene 1.3-dichloropropane	50	180 ug/l	nt	<1 <1	<1 <1	<2	nt <1	<1	nt <1	nt <1	nt <5	nt <1	nt <1	nt <1	nt <1	nt <1	<1	nt nt	nt nt	<1 <1	2 <1	<1	<1	<1	<1	d 	<1	1.5	- 3	<1
1,3-dicnioropropane Dibromochloromethane	1	- ug/l	<1	<1	<1	- 6	<1	<1 <1	<1	- ci		<1	<1	d d	- ci	ci ci	<1 <1	nt	nt	<1	<1	<1	<1	<1	<1	<1	<1 <1	<1		<1 <1
1,2-dibromoethane	5	- ug/l		<1	<1	10	<1	<1	<1	<1	nt	<1	<1	<1	<1	<1	<1	nt	nt	<1	<1	<1	<1	<1	<1	<1	<1	<1	- 5	<1
Tetrachloroethene	5	- ug/l	<1	<1	<1	<5	<1	<1	<1	<1	<5	<1	<1	<1	<1	<1	<1	nt	nt	<1	<1	<1	<1	<1	<1	<1	<1	<1	- 5	<1
1,1,1,2-tetrachloroethane	5	- ug/l	<1	<1	<1	<5	<1	<1	<1	<1	- 5	<1	<1	<1	<1	<1	<1	nt	nt	<1	<1	<1	<1	<1	<1	<1	<1	<1	<5	<1
Chlorobenzene	5	- ug/l	<1	<1	<1	<5	<1	<1	<1	<1	- 3	<1	<1	<1	<1	<1	<1	nt	nt	<1	<1	<1	<1	<1	<1	<1	<1	<1	<5	<1
Ethylbenzene	5	5 ug/l	nt	<1	<1	<2	nt	<1	nt	nt	nt	nt	nt	nt	nt	nt	<1	nt	nt	<1	<1	<1	<1	<1	<1	<1	<1	<1	්	<1
Bromoform	50	- ug/l	<1	<1	<1	- 5	<1	<1	<1	<1	- 5	<1	<1	<1	<1	<1	<1	nt	nt	<1	<1	<1	<1	<1	<1	<1	<1	<1	-5	<1
m+p-xylene	5	380 ug/l	nt	<2	<2	<2	nt	<2	nt	nt	nt	nt	nt	nt	nt	nt	<2	nt	nt	<2	<2	<2	<2	<2	<2	<2	<2	<2	- 6	<2
Styrene 1.1.2.2.tetrachlomethane	5	- ug/l	<1	<1	<1		<1	<1	<1	<1	nt c5	<1	<1	d	<1	<1	<1 <1	nt nt	nt nt	<1	<1	<1	<1	<1 <1	<1	<1	<1	<1	- 3	<1
1,1,2,2-tetrachloroethane o-xylene	2	- ug/l 350 ug/l	<1 nt	<1 <1	<1 <1	<2	<1 nt	<1	<1	<1 nt	ot nt	<1	<1 nt	<1 nt	<1 nt	<1 nt	<1	nt nt	nt nt	<1	<1	<1	<1 <1	<1	<1	<1	<1 <1	<1	- 3	<1 <1
1,2,3-trichloropropane*	50	- ug/l	<1	<1	<1	- 6	- III	<1	<1	<1	<5	<1	<1	<1	- M	<1	<1	nt	nt	<1	<1	<1	<1	<1	<1	<1	<1	<1	- 3	<1
Isopropylbenzene	5	- ug/l	<1	<1	<1	- 3	<1	<1	<1	<1	nt	<1	<1	d	d	d	<1	nt	nt	<1	3	<1	<1	<1	<1	<1	<1	<1	- 3	<1
Bromobenzene	5	- ug/l	<1	<1	<1	- 6	<1	<1	<1	<1	- 3	<1	<1	<1	<i.< td=""><td><1</td><td><1</td><td>nt</td><td>nt</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><5</td><td><1</td></i.<>	<1	<1	nt	nt	<1	<1	<1	<1	<1	<1	<1	<1	<1	<5	<1
n-propyl benzene	5	- ug/l	<1	<1	<1	<5	<1	<1	<1	<1	nt	<1	<1	<1	<1	<1	<1	nt	nt	<1	3	<1	<1	<1	<1	<1	<1	<1	্ত	<1
2-chlorotoluene	5	- ug/l	<1	<1	<1	<5	<1	<1	<1	<1	- 5	<1	<1	<1	<1	<1	<1	nt	nt	<1	<1	<1	<1	<1	<1	<1	<1	<1	- 5	<1
4-chlorotoluene	5	- ug/l	<1	<1	<1	<5	<1	<1	<1	<1	<5	<1	<1	<1	<1	<1	<1	nt	nt	<1	<1	<1	<1	<1	<1	<1	<1	<1	<5	<1
1,3,5-trimethyl benzene	2	- ug/l	<1	<1	<1	<5	<1	<1	<1	<1	nt	<1	<1	<1	<1	<1	<1	nt	nt	<1	<1	<1	<1	<1	<1	<1	<1	<1	্ত	<1
Tert-butyl benzene	5	- ug/l	<1	<1	<1	- 3	<1	<1	<1	<1	nt	<1	<1	<1	<1	<1	<1	nt	nt	<1	<1	<1	<1	<1	<1	d 	<1	<1	- 3	<1
1,2,4-trimethyl benzene	5	- ug/l	<1	<1	<1		<1	<1	<1	<1	nt of	<1	<1	<1	<1	<1	<1 <1	nt	nt nt	<1	<1	<1	<1	<1	<1	<1	<1	<1		<1 <1
Sec-butyl benzene	2	- ug/l	<1	<1	<1	- 0	<1	<1	<1	<1	nt o	<1	<1	<1	<1	ci cl	<1	nt	nt nt	<1	<1	<1	<1	<1	<1	<1	<1	<1	- 0	<1
Sec-butyi benzene 1.4-dichlorobenzene	5	- ugi	<1	<1	<1	- 0	<1	<1	<1	<1	- nt 5	<1	<1	<1	<1	<1	<1	nt	nt nt	<1	<1	<1	<1	<1	<1	<1	<1	<1	- 6	<1
4-isopropyl toluene	5	- ug/l	<1	<1	<1	nt	<1	<1	<1	<1	nt	<1	<1	d	-d	d	<1	nt	nt	<1	<1	<1	<1	<1	<1	<1	<1	<1	- 3	<1
1,2-dichlorobenzene	5	- ug/l	<1	<1	<1	- 6	<1	<1	<1	<1	- 3	<1	<1	<1	<1	<1	<1	nt	nt	<1	<1	<1	<1	<1	<1	<1	<1	<1	- 5	<1
n-butyl benzene	5	- ug/l	<1	<1	<1	- 5	<1	<1	<1	<1	nt	<1	<1	<1	<1	<1	<1	nt	nt	<1	<1	<1	<1	<1	<1	<1	<1	<1	<5	<1
1,2-dibromo-3-chloropropane	5	- ug/l	<1	<1	<1	- 6	<1	<1	<1	<1	- 3	<1	<1	<1	<1	<1	<1	nt	nt	<1	<1	<1	<1	<1	<1	<1	<1	<1	<5	<1
1,2,4-trichlorobenzene	5	20 ug/l	<1	<1	<1	್	<1	<1	<1	<1	್	<1	<1	<1	<1	<1	<1	nt	nt	<1	<1	<1	<1	<1	<1	<1	<1	<1	- 5	<1
Hexachlorobutadiene	5	- ug/l	<1	<1	<1	<5	<1	<1	<1	<1	<5	<1	<1	<1	<1	<1	<1	nt	nt	<1	<1	<1	<1	<1	<1	<1	<1	<1	<5	<1
1,2,3-trichlorobenzene	- 5	l'gu -	<1	<1	<1	<.5	<1	<1	<1	<1	<5	<1	<1	<1		<1	<1	nt	nt	<1	<1	<1	<1	<1	<1	<1	<1	<1	<5	<1

Table 29: Groundwater Analytical Results - OCP																						
Location	Sample ID	Date Sampled	нсв	alpha-BHC	датта-ВНС	beta-BHC	Heptachlor	delta-BHC	Aldrin	Heptachlor Epoxide	gamma-Chlordane	alpha-Chlordane	Endosulfan I	pp-DDE	Dieldrin	Endrin	QQQ-dd	Endosulfan II	DDT	Endrin Aldehyde	Endosulfan Sulphate	Methoxychlor
		Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
	290508-01-LJ	29 May 2008	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
AMW203	AMW203	17 Feb 2017	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	QAQC1 Field blind replicate of AMW203	17 Feb 2017	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	QAQC2 Field split replicate of AMW204	17 Feb 2017	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	nt	nt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
ABH2105	290508-02-LJ	29 May 2008	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt
110112103	ABH2105	17 Feb 2017	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
ABH202	290508-03-LJ	29 May 2008	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt
ADTIZOZ	ABH202	17 Feb 2017	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
AMW205	290508-04-LJ	29 May 2008	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
7111111203	AMW205	17 Feb 2017	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	290508-05-LJ	29 May 2008	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
AMW201	290508-06-LJ Field blind replicate of 290508-05-LJ	29 May 2008	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	290508-07-LJ Field split replicate of 290508-05-LJ	29 May 2008	nt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<2	< 0.5	< 0.5	<2
AMW202	300508-12-LJ	30 May 2008	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
AMW204	290508-08-LJ	29 May 2008	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
AMW207	300508-09-LJ	30 May 2008	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
4.3. MY 20.0.6	300508-10-LJ	30 May 2008	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
AMW206	300508-11-LJ Field blind replicate of 300508-10-LJ	30 May 2008	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
ABH2110	300508-13-LJ	30 May 2008	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt
4 DYY21 00	300508-14-LJ	30 May 2008	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt
ABH2100	ABH2100	17 Feb 2017	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
BBH304	180608-06-LJ	18 Jun 2008	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	170608-01-LJ	17 Jun 2008	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
BMW401	BMW401	17 Feb 2017	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
BMW402	170608-05-LJ	17 Jun 2008	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
D) 07/402	170608-02-LJ	17 Jun 2008	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
BMW403	BMW403	17 Feb 2017	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	170608-03-LJ	17 Jun 2008	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
BMW404	170608-04-LJ Field Blind Replicate of170608-03-LJ	17 Jun 2008	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<2	< 0.5	<2
	BMW404	17 Feb 2017	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Limit of Repo	orting		0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
										-												
	PM (2013) Groundwater Investigation Levels (GILs) - Manne Waters 0.005 0.004																					

Concentrations above this action level are shown in **bold** text

<### Represents results below the laboratory Practical Quantitation Limit.</p>

nt = Not Tested

-- = Action Level not established

 $BR = blind \ replicate$

	Table 30: Groundwater Analytical Results - OPP													
Location	Sample ID	Date Sampled	Azinphos-methyl (Guthion)	Bromophos ethyl	Chlorpyriphos	Chlorpyriphos-methyl	Diazinon	Dichlorovos	Dimethoate	Ethion	Fenitrothion	Malathion	Parathion	Ronnel
	200500 01 11	Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
	290508-01-LJ	29 May 2008	0.0	<0.2	<0.2	<0.2	<0.2	nt	<0.2	<0.2	<0.2	nt	nt	<0.2
AMW203	AMW203	17 Feb 2017	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
	QAQC1 Field blind replicate of AMW203	17 Feb 2017 17 Feb 2017	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
	QAQC2 Field split replicate of AMW204 290508-02-LJ													
ABH2105	290508-02-LJ ABH2105	29 May 2008 17 Feb 2017	nt <0.2	nt <0.2	nt <0.2	nt <0.2	nt <0.2	nt <0.2	nt <0.2	nt <0.2	nt <0.2	nt <0.2	nt <0.2	nt <0.2
	ABH2105 290508-03-LJ													
ABH202	290508-03-LJ ABH202	29 May 2008 17 Feb 2017	nt <0.2	nt <0.2	nt <0.2	nt <0.2	nt <0.2	nt <0.2	nt <0.2	nt <0.2	nt <0.2	nt <0.2	nt <0.2	nt <0.2
-	290508-04-LJ	29 May 2008	<0.2 nt	<0.2	<0.2	<0.2	<0.2	<0.2 nt	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
AMW205	290508-04-LJ AMW205	29 May 2008 17 Feb 2017	nt <0.2	<0.2	<0.2	<0.2	<0.2	nt <0.2	<0.2	<0.2	<0.2	nt <0.2	nt <0.2	<0.2
	290508-05-LJ	29 May 2008	nt	<0.2	<0.2	<0.2	<0.2	nt	<0.2	<0.2	<0.2	nt	nt	<0.2
AMW/201	290508-06-LJ Field blind replicate of 290508-05-LJ	29 May 2008	nt	<0.2	<0.2	<0.2	<0.2	nt	<0.2	<0.2	<0.2	nt	nt	<0.2
AMW201	290508-07-LJ Field split replicate of 290508-05-LJ	29 May 2008	nt	<0.5	<0.5	<0.5	<0.5	nt	<0.5	<0.5	nt	nt	nt	nt
AMW204	290508-08-LJ	29 May 2008	nt	<0.2	<0.2	<0.2	<0.2	nt	<0.2	<0.2	<0.2	nt	nt	<0.2
AMW207	300508-09-LJ	30 May 2008	nt	<0.2	<0.2	<0.2	<0.2	nt	<0.2	<0.2	<0.2	nt	nt	<0.2
	300508-10-LJ	30 May 2008	nt	<0.2	<0.2	<0.2	<0.2	nt	<0.2	<0.2	<0.2	nt	nt	<0.2
AMW206	300508-11-LJ Field blind replicate of 300508-10-LJ	30 May 2008	nt	<0.2	<0.2	<0.2	<0.2	nt	<0.2	<0.2	<0.2	nt	nt	<0.2
AMW202	300508-12-LJ	30 May 2008	nt	<0.2	<0.2	<0.2	<0.2	nt	<0.2	<0.2	<0.2	nt	nt	<0.2
ABH2110	300508-12-LJ	30 May 2008	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt
	300508-14-LJ	30 May 2008	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt
ABH2100	ABH2100	17 Feb 2017	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
BBH304	180608-06-LJ	18 Jun 2008	nt	<0.2	<0.2	<0.2	<0.2	nt	<0.2	<0.2	<0.2	nt	nt	<0.2
	170608-01-LJ	17 Jun 2008	nt	<0.2	<0.2	<0.2	<0.2	nt	<0.2	< 0.2	<0.2	nt	nt	<0.2
BMW401	BMW401	17 Feb 2017	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
BMW402	170608-05-LJ	17 Jun 2008	nt	<0.2	<0.2	<0.2	<0.2	nt	<0.2	<0.2	<0.2	nt	nt	<0.2
	170608-02-LJ	17 Jun 2008	nt	<0.2	<0.2	<0.2	<0.2	nt	<0.2	<0.2	<0.2	nt	nt	<0.2
BMW403	BMW403	17 Feb 2017	< 0.2	< 0.2	<0.2	< 0.2	<0.2	<0.2	< 0.2	<0.2	< 0.2	< 0.2	< 0.2	< 0.2
	170608-03-LJ	17 Jun 2008	nt	< 0.2	< 0.2	< 0.2	< 0.2	nt	< 0.2	< 0.2	< 0.2	nt	nt	< 0.2
BMW404	170608-04-LJ Field Blind Replicate of170608-03-LJ	17 Jun 2008	nt	<0.5	<0.5	<0.5	<0.5	nt	<0.5	<0.5	<0.5	nt	nt	nt
	BMW404	17 Feb 2017	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Limit of Rep	orting	1	-	0.2	0.2	0.2	0.2	-	0.2	0.2	0.2	-	-	0.2
	Groundwater Investigation Levels (GILs) - Marine Waters			-	0.009	-		-	-	-		-	-	

NEPM (2013) Groundwater Investigation Levels (GILs) - Mi Concentrations above this action level are shown in **bold** text <### Represents results below the laboratory Practical Quantitation Limit. nt = Not Tested — = Action Level not established BR = blind replicate

	Table 31: Groundwater Analytical Results - PCB										
Location	Sample ID	Date Sampled	Arochlor 1016	Arochlor 1221	Arochlor 1232	Arochlor 1242	Arochlor 1248	Arochlor 1254	Arochlor 1260	Total PCB	
		Units	ug/L	ug/L							
	290508-01-LJ	29 May 2008	<2	nt	<2	<2	<2	<2	<2	<2	
AMW203	AMW203	17 Feb 2017	<2	<2	<2	<2	<2	<2	<2	<2	
AIVI W 203	QAQC1 Field blind replicate of AMW203	17 Feb 2017	<2	<2	<2	<2	<2	<2	<2	<2	
	QAQC2 Field split replicate of AMW204	17 Feb 2017	nt	nt							
ABH2105	290508-02-LJ	29 May 2008	nt	nt							
ABH2103	ABH2105	17 Feb 2017	<2	<2	<2	<2	<2	<2	<2	<2	
ABH202	290508-03-LJ	29 May 2008	nt	nt							
ABH202	ABH202	17 Feb 2017	<2	<2	<2	<2	<2	<2	<2	<2	
AMW205	290508-04-LJ	29 May 2008	<20	nt	<20	<20	<20	<20	<20	<20	
AIVI W 203	AMW205	17 Feb 2017	<2	<2	<2	<2	<2	<2	<2	<2	
AMW201	290508-05-LJ	29 May 2008	<2	nt	<2	<2	<2	<2	<2	<2	
AMW201	290508-06-LJ Field blind replicate of 290508-05-LJ	29 May 2008	<2	nt	<2	<2	<2	<2	<2	<2	
AMW201	290508-07-LJ Field split replicate of 290508-05-LJ	29 May 2008	nt	nt							
AMW204	290508-08-LJ	29 May 2008	<2	nt	<2	<2	<2	<2	<2	<2	
AMW207	300508-09-LJ	30 May 2008	<2	nt	<2	<2	<2	<2	<2	<2	
AMW206	300508-10-LJ	30 May 2008	<2	nt	<2	<2	<2	<2	<2	<2	
AMW206	300508-11-LJ Field blind replicate of 300508-10-LJ	30 May 2008	<2	nt	<2	<2	<2	<2	<2	<2	
AMW202	300508-12-LJ	30 May 2008	<2	nt	<2	<2	<2	<2	<2	<2	
ABH2110	300508-13-LJ	30 May 2008	nt	nt							
ABH2100	300508-14-LJ	30 May 2008	nt	nt							
ABH2100	ABH2100	17 Feb 2017	<2	<2	<2	<2	<2	<2	<2	<2	
BBH304	180608-06-LJ	18 Jun 2008	<2	nt	<2	<2	<2	<2	<2	<2	
BMW401	170608-01-LJ	17 Jun 2008	<2	nt	<2	<2	<2	<2	<2	<2	
BM W 401	BMW401	17 Feb 2017	<2	<2	<2	<2	<2	<2	<2	<2	
BMW402	170608-05-LJ	17 Jun 2008	<2	nt	<2	<2	<2	<2	<2	<2	
BMW403	170608-02-LJ	17 Jun 2008	<2	nt	<2	<2	<2	<2	<2	<2	
DIVI W 403	BMW403	17 Feb 2017	<2	<2	<2	<2	<2	<2	<2	<2	
	170608-03-LJ	17 Jun 2008	<2	nt	<2	<2	<2	<2	<2	<2	
BMW404	170608-04-LJ Field Blind Replicate of170608-03-LJ	17 Jun 2008		nt	-	-	-	-	-	nt	
	BMW404	17 Feb 2017	<2	<2	<2	<2	<2	<2	<2	<2	
Limit of Rep	porting		2	2	2	2	2	2	2	1	
NEPM (201	3) Groundwater Investigation Levels (GILs) - Marine Wa	-	-	-	-	-	-	-	-		

Concentrations above this action level are shown in **bold** text

<### Represents results below the laboratory Practical Quantitation Limit.

nt = Not Tested

^{-- =} Action Level not established

BR = blind replicate

	Table 32: Sub-surface Gas Monitoring Results																
		Initial well			Initial	well concent	rations					Well cond	entrations f	ollowing purging			
	Ambient	pressure above		Flow Rate	CH ₄	CO_2	O_2	Maximum	Recovery	Total	Time	CH ₄	CO_2	O_2			
Well ID	reading (ppm)	atmospheric (kPa)	Initial vent	L/hr	(%)	(%)	(%)	vacuum on well (psi)	time (min)	volume purged (L)	vented (Minutes)	(%)	(%)	(%)			
ALG201	0	0	Nil	0	0.3	8.4	14.9	Unable to purge as groundwater was sucked into the vacuum tank during monitoring									
ALG202	0	0	Nil	0	0.2	2.6	18.4	-20	2	40	ı	0.2	0.2	20.8			
ALG203	0	0	Nil	0	0.1	0.3	20.0	-20	1	40	-	0.2	0.2	20.8			
ALG204	0	0	Nil	0	0.2	10.2	4.0	Unable to pu	urge as grour	dwater was s	sucked into th	ne vacuum ta	nk during mo	onitoring			
ALG205	0	0	Nil	0	0.2	3.5	14.3	-20	1	40	-	0.2	3.7	13.6			
ALG206	0	0	Nil	0	0.1	0.9	18.6	Unable to pu	urge as grour	dwater was s	sucked into th	ne vacuum ta	nk during mo	onitoring			
BLG401	0	0	Nil	0	0.1	2.7	18.6	-20	1	50	ı	0.1	11.9	6.1			
BLG402	0	0	Nil	0	0.2	0.4	20.3	-20	1	50	-	0.2	0.2	20.8			
BLG403	0	0	Nil	0	0.2	1.5	19.7	-20	1	40	1	0.1	1.4	19.4			
BLG404	0	0	Nil	0	0.1	1.2	19.4	-20	1	40	-	0.1	1.2	19.5			

BOLD Represents detection levels above the NSW EPA (2016) detection limit of 1.0% v/v in subsurface gas monitoring wells

Appendix 1 Sampling Analysis and Quality Plan

CES Document Reference: CES130608-BP-AR

SAMPLING, ANALYSIS AND QUALITY PLAN:

ENVIRONMENTAL SITE ASSESSMENT, AREA A – PROPOSED BUSINESS AND TECHNOLOGY PARK, COOKS COVE DEVELOPMENT SITE PREPARED FOR BOYD COOK COVE.

REPORT ID: CES050706-BCC-01-F

Written by: Y. Carden

Field Scientists: N/A

Reviewed by: M. Petrozzi

Authorised by: Client:

Dr. Michael Petrozzi

Boyd Cook Cove

Suite 305, 35 Lime Street

Date:

Sydney NSW 2000

28 June 2006

Telephone: 02 8585 4888 • **Fax**: 02 9550 9566 • 1/111 Moore St • Leichhardt, NSW 2040 • Australia © Consulting Earth Scientists ALL RIGHTS RESERVED UNAUTHORISED REPRODUCTION OR COPYING STRICTLY PROHIBITED

SAMPLING, ANALYSIS AND QUALITY PLAN: ENVIRONMENTAL SITE ASSESSMENT, AREA A - PROPOSED BUSINESS AND TECHNOLOGY PARK, COOKS COVE DEVELOPMENT SITE. PREPARED FOR BOYD COOK COVE.

Report ID: CES050706-BCC-01-F

TABLE OF CONTENTS

1	Intro	duction	6
2	Objec	ctive and Scope of Work	8
3	Data	Quality Objectives	10
4	Site I	nformation	14
	4.1	Site Identification	14
	4.2	Site Zoning and Land Use	14
	4.3	Topography	14
	4.4	Geology	15
	4.5	Hydrogeology	15
	4.5.	1 Regional Hydrogeology	15
	4.5.		15
	4.6	Acid Sulfate Soil Risk	16
5	Site I	History	17
	5.1	Historical Aerial Photographs	17
	5.1.	1 1930 (DLWC)	17
	5.1.	2 1943 (DMR)	17
	5.1.	3 1951 (DLWC)	18
	5.1.	4 1961 (DLWC)	18
	5.1.	5 1970 (DLWC)	19
	5.1.	6 1978 (DLWC)	19
	5.1.	7 1986 (DLWC)	19
	5.1.	8 1999 (DLWC)	19
6	Site (Condition and Surrounding Environment	21
	6.1	Current Owner, Occupier And Operations	21

	6.2	Site Description	21
	6.3	Tanks and Associated Services	21
	6.4	Surrounding Land-use	21
	6.5	Summary of Previous Investigations	22
	6.5.1	Cooks Cove Development Site	22
	6.5.2	2 Area A: Cooks Cove Development Site	24
	6.5.3	B Data Quality Review of Previous Investigations	24
7	Conce	eptual Model of Potential Contamination	26
	7.1	Potential Sources of Contamination and Associated COPc	26
	7.1.1	Market Gardens	26
	7.1.2	2 Reclaimed Land	26
	7.1.3	B Landfill Activities	26
	7.1.4	4 Golf Course	27
	7.1.5	Presence of Unlined Landfills on Adjacent Blocks	27
	7.1.6	Summary of Chemicals of Potential Concern	27
	7.2	Characteristics of Chemicals of Potential Concern	28
	7.2.1	Metals and Metalloids	28
	7.2.2	2 Nutrients	28
	7.2.3	Total Petroleum Hydrocarbons (TPHs) and BTEX Compounds	28
	7.2.4	Polycyclic Aromatic Hydrocarbons (PAHs)	29
	7.2.5	Organochlorine Pesticides (OCPs) and Organophosphate Pesticides (OPPs)	29
	7.2.6	Volatile Organic Compounds (VOCs)	29
	7.2.7	Phenoxyacetic Acid Herbicides	30
	7.2.8	3 Phenols	30
	7.2.9	Asbestos Containing Materials (ACMs)	30
	7.3	Site Conditions	30
	7.4	Approach of Investigation	31
3	Propo	sed Soil, Groundwater and Gas Investigation	32
	8.1	Soil	32
	8.1.1	Sampling Pattern, Location and Number of Sampling Points	32
	8.1.2	2 Sampling Depths	32
	8.1.3	Method of Sample Collection	33
	8.1.4	Decontamination Procedures.	35
	8.1.5	Method of Sample Storage and Handling	35

0.4.5	~	
8.1.6	Sample Logging	36
8.1.7	QA/QC Documentation	36
8.2 G1	roundwater	37
8.2.1	Location and Number of Sampling Points	37
8.2.2	Well Construction	37
8.2.3	Well Development and Sample Collection	38
8.2.4	Decontamination Procedures	38
8.2.5	Sample Containers	39
8.2.6	Method of Sample Collection, Storage and Handling	39
8.2.7	Documentation	39
8.3 La	andfill Gas	40
8.3.1	Location and Number of Sampling Points	40
8.3.2	Well Construction	40
8.3.3	Well Development and Gas Monitoring	41
9 Proposed	d Analytical Plan	43
9.1 Cł	noice of Analytes	43
9.1.1	Soil	43
9.1.2	Groundwater	43
9.1.3	Landfill Gas	44
9.2 La	aboratory	45
9.3 Aı	nalytical Methods	45
9.3.1	Soil	45
9.3.2	Groundwater	45
9.3.3	Landfill Gas	45
10 Proposed	d Site Assessment Criteria	46
10.1 Sc	oil	46
10.1.1	Aesthetics	46
10.1.2	Ecologically Based Investigation Levels	46
10.1.3	Health-Based Soil Investigation Levels	47
10.1.4	Asbestos in Soil	47
10.1.5	Acid Sulfate Soils	47
10.2 Gı	roundwater	48
10.3 La	andfill Gas	49
11 Proposed	d Quality Control Plan	50

11.1 Fie	ld QA/QC Programme	50
11.1.1	Environmental Samples	50
11.1.2	Blind Replicate Samples	50
11.1.3	Split Samples	51
11.1.4	Rinsate (Equipment) Samples	51
11.1.5	Trip Blanks	52
11.1.6	Laboratory Prepared Trip Spikes	52
11.2 Lab	ooratory QA/QC Programme	52
11.2.1	Laboratory Duplicate Samples	52
11.2.2	Laboratory Control Samples	53
11.2.3	Surrogates	53
11.2.4	Matrix Spike	53
11.2.5	Method Blanks	53
11.3 Dat	ta Quality Objectives (DQO) and Acceptance Criteria	53
12 Reporting		55
13 Reference	es	56

LIST OF TABLES

- Table 1: Proposed sample locations
- Table 2: Proposed analytical program
- Table 3: Containers, preservation requirements and holding times Soil
- Table 4: Containers, preservation requirements and holding times Groundwater
- Table 5: Analytical parameters, PQLs and methods Soil
- Table 6: Analytical parameters, PQLs and methods Groundwater.
- Table 7: Site assessment criteria Soils
- Table 8: Site assessment criteria Acid sulfate soils
- Table 9: Summary of site assessment criteria Groundwater
- Table 10: Frequency of field QA/QC sampling
- Table 11: QA/QC data acceptance criteria

LIST OF FIGURES

- Figure 1: Site location
- Figure 2: Site plan of larger development site
- Figure 3: Site plan showing proposed sample locations

LIST OF APPENDICES

Appendix 1: Sample Field Data Sheets

SAMPLING, ANALYSIS AND QUALITY PLAN: ENVIRONMENTAL SITE ASSESSMENT, AREA A - PROPOSED BUSINESS AND TECHNOLOGY PARK, COOKS COVE DEVELOPMENT SITE. PREPARED FOR BOYD COOK COVE.

Report ID: CES050706-BCC-01-F

1 INTRODUCTION

Consulting Earth Scientists (CES) was commissioned by Boyd Cook Cove (BCC) to provide environmental consulting services associated with the investigation phase of the Cooks Cove Development (CCD) site, located to the south of Sydney International Airport in southern Sydney (Figure 1). The total development area consists of an approximately 100 Ha parcel of land that is bound by Marsh Street to the north, the Cooks River and Muddy Creek to the east, Bestic Street to the south and West Botany Street and residential properties to the west.

The Cooks Cove Development involves the partial relocation of Kogarah Golf Course to accommodate the development of a Business and Technology Park in the northern portion of the CCD site. Land in the southern portion of the CCD site was previously used by Rockdale Council for landfilling activities and is currently used as public open space by a variety of recreational and sporting users.

Due to the large area of the CCD site it has been divided into five areas (Areas A to E) based upon future land use and physical features (figure 2). These areas are:

- Area A (Proposed business and technology park): The northern portion of the CCD site located between the East-West Link to the south and Northern Pocket Park to the north (~21 ha);
- Area B: The golf course area between the East-West Link to the north and the SWSOOS to the south (~9.5 ha);
- Area C: The playing fields located between the SWSOOS to the north and the Spring Creek Channel to the south. These fields are located on a former putrescible waste landfill (~33 ha);
- Area D: The areas adjacent to the St George Soccer Stadium between the Spring Creek Channel to the north and Bestic Park to the south. These areas are located on a former waste landfill (~13 ha); and

■ Area E: The area occupied by Firmstone Gardens located between Area C and West Botany Street (~1 ha). Information sources suggest that this area was also subject to landfilling.

This document refers to Area A, the northernmost portion of the CCD site, here within referred to as 'the site' or 'Area A' (Figure 2). Area A covers an area of approximately 21 Ha and is currently occupied by the northern portion of Kogarah Golf Club. It is proposed that this portion of the CCD site will undergo a change of land use to commercial and industrial as part of the development of the business and technology park.

This document outlines the proposed Sampling, Analysis and Quality Plan (SAQP) for the conduct of an Environmental Site Assessment (ESA) on Area A. The ESA will include the investigation of soil and groundwater conditions at the site in order to assess its suitability for the proposed commercial and industrial land use.

2 OBJECTIVE AND SCOPE OF WORK

The objectives of the investigation are to:

- Address existing information gaps on soil and groundwater conditions across the site;
- Undertake a preliminary Acid Sulfate Soil (ASS) Assessment of the site;
- Undertake a preliminary Salinity Assessment of the site; and
- Assess whether the site is suitable for the proposed commercial and industrial land use.

To achieve this objective, CES propose to undertake the following scope of works for Area A:

- Preparation of Sampling, Analysis and Quality Plan (SAQP);
- Drill sampling locations in a grid pattern across Area A so that statistical analysis can be used (if required) to assess whether the site is suitable for the proposed commercial/industrial use without any or major remediation works and to be able to assess the size of contamination hotspots (approximately 53 m in diameter) which may be encountered during the investigation. A total of 108 sample locations (which equates to a sample density of 5 sample points per hectare or a sampling grid of approximately 45 m) are proposed for the investigation;
- This sample density is less than the minimum sampling points required for site characterisation outlined in the NSW EPA (1996) *Sampling Design Guidelines*. A reduced sampling density has been proposed considering that the area will be developed for a less sensitive land use (*ie.* from open space to commercial/industrial) and that historical filling is likely to have occurred in one single episode;
- Six (6) of the boreholes will be converted into groundwater monitoring wells and six (6) into shallow subsurface gas monitoring wells;
- Soil/fill samples will be analysed for metals and metalloids (As, Cd, Cr, Cu, Ni, Pb, Zn and Hg), Total Petroleum Hydrocarbons (TPH) the monocyclic aromatic hydrocarbons of Benzene, Toluene, Ethylbenzene and total Xylenes (BTEX), Polycyclic Aromatic Hydrocarbons (PAHs), Organochlorine Pesticides (OCPs), Organophosphate Pesticides (OPPs), Volatile Organic Compounds (VOCs), Phenoxyacetic Acid Herbicides (PAAHs), nutrients (ammonia, total kjeldahl nitrogen, nitrate, nitrite and total phosphorus), phenols and potential Asbestos Containing Materials (ACMs). In addition, pieces of potential ACMs will be analysed as appropriate;

- Soil samples collected as part of the ASS assessment will be field screened, with select samples analysed for the Suspension Peroxide Oxidation Combined Acidity and Sulfate (SPOCAS) analysis;
- Soil samples collected as part of the salinity assessment will be analysed for pH, electrical conductivity, salinity, resistivity, texture, soluble sulfate and chloride;
- Wells will be installed using Geoprobe prepacked screens, which will be developed prior to sampling. Groundwater sampling will be undertaken using low-flow methods with minimum drawdown;
- Groundwater samples will be analysed for field parameters (depth to water table, temperature, pH, electrical conductivity, dissolved oxygen and redox potential) dissolved metals and metalloids, major ions, nutrients, TPH, BTEX, PAHs, OCPs, OPPs, VOCs, PAAHs and phenols;
- As part of the salinity assessment, groundwater samples will also be analysed for pH, electrical conductivity, salinity, total dissolved solids, resistivity, saturation index, alkalinity, ammonia, sulfate and chloride;
- Gas wells will be monitored to assess concentrations of methane, carbon dioxide, oxygen and combustible gasses as well as formation gas pressures and gas flow rates; and
- The results of the environmental assessment works for Area A will be prepared into a report which will outline the results of the former investigations along with the results of the current investigation. A conclusion will be made as to whether Area A is suitable for the proposed use or recommend any further investigations or remediation which may be required in order to render the area suitable for the proposed use.

3 DATA QUALITY OBJECTIVES

Step 1 - State the Problem

The problem is that the limited investigations undertaken on the site to date do not provide sufficient information to adequately characterise soil and groundwater quality. Further, there has been no assessment of whether the site has been impacted by landfill gas migrating from the landfills located to the south of the site.

Step 2 - Identify the Decision Statement

The aim of this step is to identify what questions this program will attempt to resolve and to discuss what actions may result.

The primary question that this programme will attempt to resolve is:

• What is the extent of soil, groundwater and landfill gas contamination on the site, if any, as a result of previous land uses on both this and adjacent sites?

It is expected that by resolving this question, it will be possible to develop more focussed remediation options for the site.

Step 3 - Identify inputs to the decision

The following data are required to resolve the decision question(s):

- The key contaminants of concern as identified from the findings from previous consultant investigations and more recently by CES;
- The installation of 108 boreholes across the site, with six boreholes converted to groundwater monitoring wells and six boreholes converted to gas monitoring wells;
- Collection of soil samples at regular depth intervals in each borehole;
- Collection of groundwater samples from each of the groundwater monitoring wells following development and purging in accordance with appropriate methods;
- Standing water levels to be recorded in each monitoring well prior to sampling;
- Monitoring of landfill gas characteristics in each of the sub-surface gas monitoring wells;
- Analysis of both soil and groundwater sample for the contaminants of concern and other analytes which will assist in developing remediation techniques;

- Comparison of the results with relevant site assessment criteria (ie. NEPM, (1998); ANZECC (2000) water quality guidelines and EPA NSW (1994) Guidelines for Assessing Service Station Site threshold concentrations for "Waters - Protection of Aquatic Ecosystems"); and
- Obtain survey data, including the position and relative heights, for each of the monitoring wells. When combined with the water level data and analytical results this will enable a determination of the spatial and vertical extent of the contaminant plumes and direction of groundwater flow.

Step 4 - Define the boundaries of the study

The site has been referred to as Area A of the Cooks Cove Development site. It is bound by Marsh Street to the north and west, the Cooks River to the east. There is currently no obvious southern boundary, although it will be defined prior to undertaking the field component of this investigation. The area is generally referred to as the Development Zone and consists of developable land with an area of approximately 21 Ha. The legal description of the developable land is Part of Lots 10 and 11 in Deposited Plan (DP) 570900, while the roadway allocation is Part of Lot 14 DP 213314. It is located within the Local Government Area (LGA) of Rockdale, Parish of St George, County of Cumberland.

A site survey plan including the site and individual allotment boundaries, building locations and other relevant detail is provided as Figure 3.

It is anticipated that the vertical extent of the study will be the top approximately 10 m, with this depth considered sufficient to provide an assessment of natural soil as well as intercept the shallow groundwater zone.

Step 5 - Develop a decision rule

The purpose of this step is to define the parameters of interest, specify the action levels and combine the outputs of the previous DQO steps into an "if...then..." decision rule that defines the conditions that would cause the decision maker to choose alternative actions.

The parameters of interest (or contaminants of concern) in the soil for this investigation are metals and metalloids, TPH, BTEX, PAHs, OCPs, OPPs, VOCs, PAAHs, phenols, nutrients and asbestos. For the groundwater investigation, the contaminants of concern are metals and metalloids, nutrients, TPH, BTEX, PAHs, OCPs, OPPs, VOCs, PAAHs and phenols. In addition to soil and groundwater, landfill gas is also a contaminant of concern.

The action level which will be used to decide if the parameter represents an unacceptable risk for the proposed commercial and industrial land-use are provided as Investigation Criteria in Section 10 of this document.

The types of data quality required during the fieldwork component of the investigation and for the laboratory analyses are specified in Sections 10.1 and 10.2 respectively. The acceptable limits for this data are defined in Table 1.

Based on these data quality types and limits the following decision rules will apply:

- Impacted soil will be identified by concentrations exceeding the assessment criteria;
- Impacted groundwater will be identified by concentrations exceeding the assessment criteria;
- The presence of elevated concentrations of landfill gas will be identified by concentrations exceeding the assessment criteria;
- If contaminants of concern are detected in the trip blanks, then potential cross contamination may have occurred during sample transport. To assess whether this is the case, CES will check the trip blank results with the laboratory and compare the results with other blanks provide by the same laboratory. It is possible that detections in trip blanks may reflect background concentrations in laboratory-supplied water or analytical error. If it is concluded that decontamination procedures were inadequate CES will assess the severity of the cross contamination and subsequent impacts on the ability to resolve the decision question. Possible actions may include the raising of working detection limits or the collection of replacement data.
- If RPDs for blind replicates or split samples are outside the acceptable limits, then there may be errors in laboratory analysis process. When assessing duplicate pairs with elevated RPDs, CES will check the results with the laboratory(ies) and examine the nature of the sample being assessed, since heterogeneous samples can often provide high RPDs. If it is believed that irreversible errors have occurred during the laboratory process then additional investigation will be required to resolve the decision question.
- If any of the laboratory data quality tests do not meet the acceptable limits, the laboratory will be requested to retest samples or provide justification for the results.

Step 6 - Specify acceptable limits on decision errors

There are two types of errors:

- a) Deciding that the site is acceptable for commercial and industrial land use when it actually is not (Type I error). The consequence of this error may be unacceptable ecological or health risk for future users of the site.
- b) Deciding that the site is unacceptable for commercial and industrial land use when it is acceptable (Type II error). The consequence of this error is that the client will pay for further investigation / remediation that is not necessary.

The more severe consequence is with decision error (a) since the risk of jeopardising human health outweighs the consequences of paying more for remediation.

It will not be possible to conduct statistical hypothesis tests as the proposed sampling programme consists of the collection of one round of samples only. Unlike soils, it is not generally appropriate to compare guideline levels with Upper Confidence Limits (UCLs) for the mean of measured concentrations. The level of impact on groundwater and from landfill gas will need to be assessed at each monitoring well.

Step 7 - Optimising the Design for Obtaining Data

The purpose of this step is to identify a resource-effective data collection design for generating data that are expected to satisfy the DQOs.

The resource effective data collection design that is expected to satisfy the DQOs is described in detail in Section 10. To ensure the design satisfies the DQOs a comprehensive Quality Assurance and Quality Control plan will be implemented as described in Section 10.

4 SITE INFORMATION

4.1 SITE IDENTIFICATION

The site is referred to as Area A of the Cooks Cove Development site, Cooks Cove, NSW. It is located in the northern portion of the CCD site and covers an approximate area of 21 Ha. The area is generally referred to as the Development Zone. The legal description of the developable land is Part of Lots 10 and 11 in Deposited Plan (DP) 570900, while the roadway allocation is Part of Lot 14 DP 213314. It is located within the Local Government Area (LGA) of Rockdale, Parish of St George, County of Cumberland.

A plan showing the site layout is presented in Figure 3. A registered survey plan showing the boundaries of each Lot and DP will be provided in the report.

4.2 SITE ZONING AND LAND USE

The overall site is currently zoned for open space/recreational land use and is currently occupied by the Kogarah Golf Club for its golf course. It is proposed to rezone the site to commercial and industrial land use as part of the development.

4.3 TOPOGRAPHY

The Botany Bay 1:25000 Topographic map (9130-3-S) indicates that the site elevation ranges from 0 to 10 m above Australian Height Datum (AHD). The site topography has been significantly modified through the placement of fill material over the original swamp and delta. An undulating surface has been created to form the golf course including several small lakes as shown on Figure 3.

The site generally drains in an easterly direction towards the Cooks River, although localised flow paths occur across the golf course, including an un-named intermittent stream draining the golf course shown on the 1:25000 Topographic Map. In addition, the central portion of the golf course drains internally towards a series of lakes.

4.4 GEOLOGY

The Sydney 1:100 000 Geological Series map indicates that the site is underlain by silty to peaty quartz sand, silt and clay. Ferruginous and humic cementation occurs in places with common shell layers also reported. This material is most likely of alluvial origin, deposited as sub-aerial and sub-aqueous components of the Cooks River delta. This deposit has been reworked significantly last century as part of river diversion and training works. These works would have involved significant dredging operations.

An outcrop of Hawkesbury Sandstone is also shown in the location of the existing Kogarah Golf Club House. The Sydney 1: 100 000 Soil Landscape Sheet 9130 indicates that the site is underlain by anthropogenic fill material.

4.5 HYDROGEOLOGY

4.5.1 Regional Hydrogeology

The groundwater at this site is expected to lie within a shallow unconfined aquifer, although localised layers of low permeability (*eg.* clay, peat and layers of localised iron-cemented sand) may act as local confining layers. Groundwater at the site is expected to flow in an easterly direction towards the Cooks River.

The Cooks River, Muddy Creek and the Spring Street Canal are tidal in the study area. It is expected that saline or brackish intrusion in the form of a Ghyben-Herzberg lens occurs around the periphery of the site. Diurnal fluctuations in groundwater levels in the peripheral areas are also expected to occur in response to tidal cycles.

4.5.2 Local Hydrogeology

CES (2001) undertook a search of the groundwater database at the DLWC (now DIPNR). A total of 66 registered groundwater wells were identified within a 2 km radius of the centre of the Cooks Cove Development site. Work summaries are presented in Appendix 1. Twenty five wells are registered for "General Use" with a further seventeen registered for "Domestic Use". Wells for general use were registered between 1950 and 1969 while wells for domestic use were registered between 1991 and 2000. It is proposed that general and domestic wells refer to use by private persons for non-potable use. The different classes are attributed to a change in well classification methods by the DLWC.

Three wells are registered for recreational or irrigation use. All of these wells are registered to local sporting facilities, including the Kogarah Golf Club (installed in 1966). Twenty one of the wells are registered for environmental monitoring or testing. Sixteen of these wells are registered in association with the M5 East Motorway.

The only well registered in Area A of the CCD site is GW027664 which is registered to Kogarah Golf Club for irrigation purposes. It is located in the north western corner of the golf course and was drilled to a depth of 6 m, which was equal to the depth of bedrock.

Inspection of DLWC work summaries reveals reported well yields of up to 3.0 L s⁻¹, with most yields of the order of 0.5 L s⁻¹. The salinity of wells installed is reported as "good". These data indicate that the study area is surrounded and underlain by relatively permeable strata. Low ("good") salinity of water extracted from the wells indicates that saline or brackish intrusion is likely to be limited to peripheral areas adjacent to the Cooks River and tidal reaches of tributaries thereof.

4.6 ACID SULFATE SOIL RISK

The Botany Bay Acid Sulfate Soil Risk Map (2nd Ed, 1997) produced by the DLWC indicates that the site is located in an area of "high probability of occurrence of acid sulfate soil materials. The environment of deposition has been suitable for the formation of acid sulfate soil materials. Acid sulfate soils materials are widespread or sporadic and may be buried by alluvium or windblown sediments". If present the depth is expected to be between 1 and 3 m below the ground surface.

Although extensive filling has occurred across the site, the fill material is most likely to consist of sediments dredged from the Cooks River. Therefore, this material, although technically fill, has the potential to be acid sulfate in nature.

5 SITE HISTORY

5.1 HISTORICAL AERIAL PHOTOGRAPHS

Historical aerial photographs from the Department of Land and Water Conservation were examined. Aerial surveys have typically been conducted every 8-10 years with the earliest photographs being taken in 1930. The following photographs were examined for this report: 1930; 1951; 1961; 1970; 1978; 1986 and 1999. In addition, the 1943 aerial photograph acquired by the Department of Main Roads (DMR), now the Roads and Traffic Authority (RTA), was also examined. The findings of air photo investigations are as presented below.

5.1.1 1930 (DLWC)

Cooks River is more torturous than at present day and does not adjoin the north-eastern section of the site as it does today. Muddy Creek and lower Cooks River are very thin and appear to be small tributaries off the main river only. The Cooks River outlet to Botany Bay is further north than presently located.

The study area has been subdivided. The northern half of the area presently occupied by Kogarah Golf Club, appears to be comprised of paddocks (possibly market gardens). The house in the north north eastern part of the site presently utilised as the clubhouse has been built and may be surrounded by a few smaller buildings and a number of large trees. The southern half of the present day golf course and area to the south have been subdivided and appear sandy with some scrubby vegetation.

The water main easement running across the Cooks River from the western to the eastern banks is present. Although property to the northwest of the site adjoining the river appears to be comprised of sand it does seem to have been landscaped. River bank is in the present day location. Neighbouring areas to the west and northwest are predominantly paddocks although some industrial buildings are present. Land southwest of the site has been urbanised. East of the site across the lower Cooks River and Muddy Creek, the land is comprised of large subdivided blocks of dunes with some grass. White sand dunes occur on the northeastern side of the Cooks River.

5.1.2 1943 (DMR)

The 1943 aerial photograph indicates that the Cooks River is still fairly torturous in comparison to the aligned state of the present day. The golf club is present on the site, with what appears to

be the present day club house in position. The site is generally covered in vegetation with some patches of sandy areas and some sealed sections around the clubhouse.

Market Gardens are present to the south of the site, residential property to the west, open space to the north and the Kingsford Smith International Airport to the east.

5.1.3 1951 (DLWC)

The shape of Cooks River has been altered extensively with the lower parts of the river now bounding the property. Muddy Creek has been considerably widened and channelised. Spring Street canal has been constructed, as has the present day channel opening of the Cooks River into Botany Bay. Dredges and sand stockpiles in the photo indicate that these works were still in progress at the time.

The entire area of the present day Kogarah Golf Club appears to have reverted back to grass-and scrub-covered sand dunes, with the southern half being sandier.

There is a continued build up of industry in the neighbouring area to the northwest and airport developments on the eastern side of the river are continuing.

5.1.4 1961 (DLWC)

The Cooks River has been reshaped and repositioned since the 1951 photograph. The northeastern side of the property now bounds the river. In addition Muddy Creek has been significantly narrowed.

The northern part of the site is now occupied by the golf course and is close to the present day layout. Numerous vehicles were noted around the golf club.

To the north of the site, land on the rivers edge has been landscaped and some small buildings erected. Additional factories and houses have been built on properties to the northwest of the site and numerous trucks and smaller vehicles are visible around these buildings. Airport runways and aircraft hangers have been completed on the eastern bank of the Cooks River and are in operation with numerous planes visible in this area.

5.1.5 1970 (DLWC)

Additional alterations to the Cooks River have been performed since the 1961 photograph with the river essentially as in its present day form. Further industrial development has occurred to the northwest of the site as well as superficial changes to other buildings in this area.

The construction of the airport overpass at the northeastern end of Marsh Street has commenced. Numerous construction site sheds are visible in on the northeastern corner of the Kogarah Golf Club. The golf course area is essentially the same as in the 1961 photograph although looking a little more grassy and with the addition of numerous small ponds.

5.1.6 1978 (DLWC)

The Kogarah Golf Club has been further landscaped with areas having been built up and additional ponds put in place. The western-most section of this area, previously occupied by market gardens is now included as part of the golf course.

To the north of the site demolition and construction of industrial buildings have occurred. The main span of the Marsh Street airport overpass has been constructed. Remaining neighbouring property appear essentially the same.

5.1.7 1986 (DLWC)

The site in general has not undergone many changes since the 1978 photograph.

To the northwest of the site across Marsh Road, tennis courts have been built, as has the Airport Hilton in the place of the demolition area noted in the last photo. In addition superficial changes have been made to other buildings in this area. A central section to the Marsh Street overpass to the airport has been constructed.

5.1.8 1999 (DLWC)

On the Kogarah Golf Course a large maintenance shed has been constructed on the northern most part of the property next to Marsh Street. In addition a small building has been built in the middle of the golf course.

On neighbouring properties to the north small-scale construction and demolition works have been carried out. Houses on the corner of Marsh and West Botany Streets have been demolished. Directly north of the site across the river, some construction works or redevelopment activities

are being carried out. The central section of the Marsh Street overpass to the airport has been completed.

A summary of the aerial photographs indicates that the site was part of the Cooks River floodplain prior to its reclamation and development. The golf course has been required to move over time in concert with reclamation activities of former mangrove areas. Therefore, although the golf course has been present in the area since circa 1930, it has not always been in its existing location.

The following potentially contaminating activities have been carried out on the site:

- Introduction of contaminants in fill material. The most probable source of fill material is dredged spoil from the Cooks River and its delta; and
- Chemical inputs associated with the golf course such as fertilisers and pesticides.

In addition, the site is located to the immediate north of a number of former municipal landfill sites. These former landfills are located on Areas C and D of the Cooks Cove Development Site, both located to the south of Area A. It is understood that neither leachate nor gas management systems were constructed on these landfills and as such the potential exists for either leachate or landfill gas to have migrated onto Area A.

6 SITE CONDITION AND SURROUNDING ENVIRONMENT

Descriptions of site and background information are presented in the Phase 1 Environmental Site Assessment (ESA) undertaken by CES (2001) on the entire CCD site. It is not intended to fully replicate this information herein. However, a summary is provided below.

6.1 CURRENT OWNER, OCCUPIER AND OPERATIONS

Area A of the Cooks Cove Development Site is currently on land owned by Kogarah Golf Club Limited, with a section along Marsh Street on the western boundary owned by The Municipality of the Council of Rockdale. The entirety of Area A is currently occupied by Kogarah Golf Club for their golf course, with the section owned by Rockdale Council under lease to the Kogarah Golf Club.

6.2 SITE DESCRIPTION

The following description of the site is based upon a recent site inspection and information provided in previous reports.

Current access to the site is from Marsh Street via an underpass that crosses beneath the bridge that traverses the Cooks River. A car park, Club House and maintenance facilities are located at the northern end of the site. The remainder of the site consists of features typical of a golf course such as greens, fairways, sand bunkers and surface water bodies.

With the exception of the car park and access roads, the majority of the site is unsealed.

6.3 TANKS AND ASSOCIATED SERVICES

It is understood that one Underground Storage Tank (UST) is present in the north western corner of the site. It is located adjacent to the workshop and is used to fuel the various items of plant operated by the course curators.

6.4 SURROUNDING LAND-USE

Without gaining access, the properties immediately surrounding the site are as follows.

- North Marsh Street forms the northern boundary of the site. To the north of Marsh Street are the Hilton Hotel and St George Rowing Club;
- *South* To the south of Area A is Area B of the CCD site. Area B is the southern portion of the Kogarah Golf Course;
- *East* The Cooks River forms the eastern boundary of the site. To the east of the Cooks River is the International Terminal of Kingsford Smith Airport; and
- West Marsh Street also forms the western boundary of the site. Residential properties are located on the western side of Marsh Street.

6.5 SUMMARY OF PREVIOUS INVESTIGATIONS

6.5.1 Cooks Cove Development Site

The following environmental and geotechnical investigation reports have been prepared for the entire Cooks Cove Development Site.

- Consulting Earth Scientists (April 2001). "Site Contamination Issues Paper: Cooks Cove Development Site. Prepared for Trafalgar Properties Pty Ltd and Page Kirkland Management Pty Ltd";
- Keighran Geotechnics (August 2001). "Preliminary Site Investigation, Cook Cove Industrial Development, Kogarah Golf Club, Arncliffe";
- Consulting Earth Scientists (August 2001). "Phase 1 Environmental Site Assessment: Cooks Cove Development Site. Prepared for Trafalgar Properties Pty Ltd and Page Kirkland Management Pty Ltd";
- Consulting Earth Scientists (September 2001). "Report on Wetland Sampling Conducted 26 August 2001";
- Consulting Earth Scientists (October 2001). "Report on Well Installation and Groundwater Sampling Programme: Cooks River Development Site. Prepared for Trafalgar Properties Pty Ltd and Page Kirkland Management Pty Ltd"; and
- Golder Associates (January 2002). "Contamination Investigation and Conceptual Remediation Approach for Cooks River Development, Arncliffe".

The main conclusions drawn from these reports with respect to contamination and other environmental constraints associated with the proposed development are outlined below:

• The CCD site has been subjected to extensive filling. The type and depth of filling varies across the CCD site;

- The subsurface conditions underlying Areas A and B generally consist of fill sands to depths of 0.2 to 0.8 metres below ground level (mBGL) underlying alluvial sands and clays. Sandstone bedrock was encountered at depth ranging from 0.9 mBGL near the clubhouse in Area A to 10.5 mBGL in the flatter sections of Areas A and B;
- Contaminating activities currently and historically known to have occurred on the CCD site include landfilling, reclamation works adjacent to adjoining water bodies, disposal of dredged material and canal sediments; use as a night sullage depot, market gardens and activities/operations associated with the maintenance of the golf course and playing fields;
- The former Unhealthy Building and notice registry (repealed by the *Contaminated Land Management Act*) managed by the NSW EPA noted the presence of "garbage and industrial waste disposal areas " across the CCD site";
- The CCD site adjoins several environmentally sensitive receptors including wetlands, surface water bodies and residential premises;
- No leachate controls have been constructed within any of the areas subjected to landfilling;
- Contamination typically associated with the landfilling of waste materials (putrescible and uncontrolled landfilling) has been detected in soils and groundwater beneath the site and in adjoining wetlands areas and surface water bodies;
- Landfill gas (containing methane) has been detected at concentrations above the Lower Explosive Limit (LEL) beneath the CCD site (Areas B, C and D) and at the CCD site boundaries. Buildings, tunnels and services present beneath and adjacent to the site could potentially be impacted by the migration of landfill gas from the CCD site;
- Virtually the entire CCD site is thought to be underlain by Potential Acid Sulfate Soils (PASS). Acid Sulfate Soils (ASS) could also be present within the stockpile of material generated during the construction of the M5 Tunnel located adjacent to the eastern boundary of Area C; and
- The capping material identified within Areas C and D during the investigations was highly variable and would be unlikely to comply with NSW EPA guidelines for the closure of landfills. Inconsideration of the heterogenous nature of the capping material encountered, it is likely that the capping works were uncontrolled and it is possible that other contamination above the respective guidelines are present in other areas not investigated. In most areas, the capping encountered does not contain engineered materials (ie. compacted clay) and therefore would not be adequate in reducing the infiltration of surface water from rainfall events and periodic irrigation which could in turn increase the generation of leachate from the buried waste materials.

6.5.2 Area A: Cooks Cove Development Site

From the information review, Area A has been subjected to a number of potentially contaminating activities including agricultural activities (entire area), reclamation of land using dredged sediments (eastern boundary), miscellaneous filling (entire area) and activities/operations associated with the maintenance of the golf course. It appears that Area A has not been subjected to the waste landfilling activities undertaken within other areas of the CCD site. It is possible that the southern portion of Area B has been subjected to, and/or affected by, the landfilling activities known to have occurred on the adjoining Area C. A summary of the reports relevant to the soil and groundwater quality at the site is provided below.

6.5.2.1 CES (August, 2001)

CES (August 2001) prepared a Phase 1 Environmental Site Assessment (ESA) for the CCD site on behalf of Trafalgar Properties, the developer at the time. The Phase 1 ESA consisted of a desktop review of site history and land use as well as a limited investigation programme.

The main findings of the assessment relevant to Area A were as follows:

- Site stratigraphy consisted of sand and clay fill deposited over natural alluvium or Hawkesbury Sandstone Bedrock fill material;
- No contaminant concentrations in samples collected from Area A exceeded the adopted commercial and industrial land use assessment criteria; and
- Alluvium underlying fill material at the site was classified as Potential Acid Sulfate Soil.

6.5.3 Data Quality Review of Previous Investigations

6.5.3.1 CES (August, 2001)

Although the formal seven step Data Quality Objectives (DQOs) were not prepared prior to undertaking the investigation, the CES (August, 2001) investigation met the majority of the critical components of the DQO approach. This included:

- The objectives and scope of the investigation were stated;
- The appropriate type of samples were collected for the purposes of the investigation;
- Appropriate site investigation criteria were adopted for the proposed future land-use;
- Chain of Custody documentation was used to track all samples during transport to the laboratory;
- Samples were appropriately preserved and maintained during transport to the laboratory;

- Samples were analysed within the recommended holding times by a NATA accredited laboratory using NATA accredited methodologies;
- Detection limits for the chemicals of potential concern were appropriate for the site investigation criteria;
- Field duplicates, rinsate blanks, trip blanks and trip spikes were collected during the investigation; and
- The laboratory QA/QC included analysis of laboratory duplicates, matrix spikes, surrogates, laboratory control samples and laboratory blanks.

The above QA/QC programme is generally acceptable for the purposes of the investigation. The only major QA/QC component not undertaken or addressed was the collection of split sample(s) for inter-laboratory analysis.

7 CONCEPTUAL MODEL OF POTENTIAL CONTAMINATION

The conceptual model of potential contamination has been developed to provide an understanding of the critical parameters required to understand the contamination status of the site. Its purpose is to develop a hypothesis on the contamination of the site which can be tested through a programme of soil, groundwater and landfill gas testing.

The model has been developed from a review of background information, historical documents and a detailed site inspection. It includes potential sources of contamination and their associated Contaminants of Potential Concern (CoPC), characteristics of the CoPC, site conditions and a summary of the approach of the investigation.

7.1 POTENTIAL SOURCES OF CONTAMINATION AND ASSOCIATED COPC

A review of background information, historical documents and a detailed site inspection indicate that the following potential sources of contamination are present at the site or its immediate surrounds.

7.1.1 Market Gardens

Prior to 1978 the western part of the site was used for market gardens, which may have included the addition of fertilisers and pest control agents to the soil.

The CoPCs include metals and metalloids, nutrients, OCPs, OPPs and PAAHs.

7.1.2 Reclaimed Land

The Cooks River has been extensively altered over the past century. River training works may have utilised dredged sediments or imported fill material. Therefore, an investigation is required in order to assess the type of material used in the reclamation.

The CoPC includes metals and metalloids, nutrients, TPH, BTEX, PAHs, VOCs, phenols and ACMs.

7.1.3 Landfill Activities

Although the site was not an official landfill, anecdotal evidence form members of the Kogarah Golf Club indicate that waste material has been exposed during on-site excavations.

The CoPC includes metals and metalloids, nutrients, TPH, BTEX, PAHs, OCPs, OPPs, PAAHs, VOCs, phenols, ACMs and landfill gas.

7.1.4 Golf Course

The sites historical and current use as a golf course may have resulted in the application of fertilisers and pest control agents.

The CoPCs include metals and metalloids, nutrients, OCPs, OPPs and PAAHs.

7.1.5 Presence of Unlined Landfills on Adjacent Blocks

The presence of an unlined landfill on Area C of the CCD site indicate that leachate-impacted groundwater or landfill gas has the potential to migrate onto the site.

The CoPC includes metals and metalloids, nutrients, TPH, BTEX, PAHs, OCPs, OPPs, PAAHs, VOCs, phenols and landfill gas.

7.1.6 Summary of Chemicals of Potential Concern

Based on the above, the following CoPC have been identified for the entire site:

- Metals and metalloids;
- Nutrients, including ammonia, nitrate, nitrite, total kjeldahl nitrogen and total phosphorus;
- Total Petroleum Hydrocarbons (TPH), monocyclic aromatic hydrocarbons (BTEX);
- Polycyclic Aromatic Hydrocarbons (PAHs);
- Organochlorine Pesticides (OCPs);
- Organophosphate Pesticides (OPPs);
- Volatile Organic Compounds (VOCs);
- Phenols;
- Phenoxyacetic Acid Herbicides; and
- Asbestos Containing Materials (ACMs).

7.2 CHARACTERISTICS OF CHEMICALS OF POTENTIAL CONCERN

7.2.1 Metals and Metalloids

The metals and metalloids analytical suite generally consists of arsenic, cadmium, chromium, copper, lead, nickel, zinc and mercury. They all tend to bind strongly to soil particles and with the exception of zinc will dissolve in water. Both mercury and zinc accumulate in animal tissue while the others will not. The mobility of all metals increases with increasing acidity.

Additional considerations include detecting for the presence for hexavalent chromium and methyl mercury where land use indicates that this is prudent. These two forms of the metals have a much greater toxicity than that analysed for in a standard metals and metalloids analysis.

7.2.2 Nutrients

Nitrogen and phosphorus species are the main nutrients of concern, with ammonia the most likely to be present as a result of the former landfill activities both on the site and on adjacent sites.

The concentrations of the nitrogen species will vary depending on site conditions, especially the oxidative environment. For example, ammonia is a main indicator of landfill leachate which is a low oxygen or reducing environment. Nitrate is highly mobile in water and will rarely adsorb to particular matter.

Phosphorus is readily adsorbed to soil particles and as such is often not detected in groundwater.

7.2.3 Total Petroleum Hydrocarbons (TPHs) and BTEX Compounds

TPH and BTEX compounds are mostly associated with petroleum products. TPHs are divided into the C_6 - C_9 , C_{10} - C_{14} , C_{15} - C_{28} and C_{29} - C_{36} fractions based upon the number of carbon atoms within the compound. The C_6 - C_9 fraction is considered to be the volatile fraction, with volatility and density decreasing with increasing number of carbon atoms. As a result, the C_6 - C_9 fraction is generally the most mobile and will be present within the upper component of the aquifer, whereas the C_{29} - C_{36} fraction is the leats mobile and will tend to accumulate at the bottom of an aquifer or on top of less permeable layers within the aquifer.

The BTEX compounds are volatile and less dense than water and as such will behave in a similar fashion to the TPH C_6 - C_9 fraction.

7.2.4 Polycyclic Aromatic Hydrocarbons (PAHs)

PAHs are essentially a byproduct of incomplete combustion, either by natural or anthropogenic sources. Common sources are coal, soot, charcoal and bitumen. The PAH analytical suite consists of the 16 USEPA priority PAHs which are listed in order of decreasing volatility, with naphthalene being the most volatile. There are hundreds of PAHs in existence.

PAHs are very stable and persistent in the environment as well as being carcinogenic. Most PAHs adsorb strongly to soil particles, although some are capable of migrating into groundwater. They do not dissolve easily in water and are most likely to be associated with particulate matter.

7.2.5 Organochlorine Pesticides (OCPs) and Organophosphate Pesticides (OPPs)

OCPs are chlorine-based pesticides which are now generally banned from use in most parts of the world due to their environmental impact and bioaccumulative potential within fatty tissue. They are generally rapidly broken down by sunlight within about two days and adsorb strongly to soil. Only minor concentrations of OCPs would be expected to be detected in groundwater as they do not dissolve easily.

The OPPs are phosphate-based pesticides used widely in agricultural activities. They tend to dissolve easily in water and are degraded rapidly in the environment into harmless breakdown products. They do not tend to accumulate within animal or plant foods.

7.2.6 Volatile Organic Compounds (VOCs)

The VOCs in question have a density greater than 1 and thus are termed Dense Non-Aqueous Phase Liquids (DNAPLs). Due to their greater density they are expected to accumulate at the bottom of the aquifer or in areas of lower permeability. Thus it becomes important to understand the location and extent of low permeability layers (*ie.* peat) across the site.

The VOCs present are degraded under reducing conditions such as those found in groundwater across the site. Therefore, it is expected that breakdown products of the original contaminants will be present. Of interest will be whether any VOCs detected on the site are the original solvent products or the products of the reductive dehalogenation breakdown process such as chloroethane.

VOCs are generally not adsorbed onto the soil matrix so it is unlikely that they will be present within soil samples.

7.2.7 Phenoxyacetic Acid Herbicides

The Phenoxyacetic Acid Herbicide group is mostly used in agriculture and horticulture for their selective action against broad-leaved weeds. It includes herbicides such as 2,4-D (Agent Orange), Dicamba and MCPA.

They will degrade in soil through microbial action and will adsorb to soils with higher organic content. Residence time in soils is generally short-lived and in the order of weeks to months. Leaching into groundwater may occur in coarse sandy environments although the residence time is generally similar to that of soils.

7.2.8 Phenols

Phenols are produced during a number of industrial processes (*eg* coke processing, wood and iron/steel industry), in cigarette smoke and in smoked food products. Phenols have an objectionable smell and taste so human exposure is often limited by these early warning symptoms.

Phenols are highly mobile in soil and are not likely to persist in the environment or bioaccumulate.

7.2.9 Asbestos Containing Materials (ACMs)

ACMs are man-made fibres that consist of asbestos. They include fibro sheeting, fire retardants and lagging of piping and other features.

Any degradation will result in the release of microscopic fibres which can be harmful to human health and potentially result in lung diseases. ACMs can be detected either as fibres within a soil sample or by submitting larger pieces of material to the laboratory for analysis.

7.3 SITE CONDITIONS

Based on the results of previous investigations of the larger redevelopment site and knowledge of regional geology and hydrogeology, the following is understood about the site conditions likely to be encountered during the investigation:

• The CES (2001) investigation indicated that the general stratigraphy of the golf course consisted of sand and clay fill material underlain by natural alluvium of Hawkesbury Sandstone bedrock. Bedrock was encountered in BH108 at a depth of 1.5 m, although

- this borehole was located onto a bedrock outcrop. Depth to bedrock would be expected to extend to 20-30 m across the site; and
- Groundwater conditions were not assessed during the CES (2001) investigation. However, it is expected that groundwater would flow to the east and discharge into the Cooks River. Further, groundwater along the eastern portion of the site would be expected to be influenced by tidal variations in the Cooks River.

The site conditions described above indicate that any contamination on the site could easily migrate both vertically downwards and horizontally as there is little evidence of the presence of impervious or low permeability layers. Further, as the site has surface water receptors along it's eastern boundary, any horizontal migration would be likely to migrate off-site and into the Cooks River.

7.4 APPROACH OF INVESTIGATION

The investigation outlined in the remainder of this SAQP is designed to provide a delineation of the lateral and vertical extent of impacted soil and groundwater across the site, as well as provide an assessment of whether landfill gas is being generated.

As the major source of potential contamination is considered to be the adjacent landfilling activities, the investigation will focus on assessing whether the adjacent landfill has impacted on local soil and groundwater conditions. Boreholes will be drilled across the site with soil and groundwater samples analysed for the COPCs. The analytical suite selected will also include any additional COPCs identified in Section 7.1 of this document.

8 PROPOSED SOIL, GROUNDWATER AND GAS INVESTIGATION

8.1 **SOIL**

The following proposed soil sampling programme has been designed on the basis of a review of the site history.

8.1.1 Sampling Pattern, Location and Number of Sampling Points

A triangular or herringbone systematic (or grid) pattern will be used to locate boreholes across the site.

Summaries of the proposed sample locations and analytical programmes for soil and groundwater are provided in Tables 1, 2 and 3 respectively. The proposed sampling locations are shown on the attached site plan (Figure 3), with the exact locations to be determined during the sampling programme. Not all of the 108 sampling locations are shown in Figure 3. Five sampling locations have been reserved for targeted sampling of areas not adequately covered by the proposed grid and any potential contaminant sources that may be identified during the drilling programme.

A total of 108 sampling locations, which equates to a sample density of 5 sample points per hectare or a sampling grid of approximately 45 m, are proposed for the investigation. This is less than the minimum sampling points required for site characterisation as outlined in NSW EPA *Sampling Design Guidelines* (NSW EPA, 1995). A reduced sampling density has been proposed considering that the area will be developed for a less sensitive land use (*ie.* from open space to commercial and industrial) and that historical filling is likely to have occurred in a single episode. This provides a circular hotspot with a diameter of approximately 53 m that can be detected with 95 % confidence (Procedure F, NSW EPA, 1995). The exact depths of samples will be determined in the field based on FID readings and any adverse aesthetics indicating the presence of contamination (*eg.* odour or discoloured soil).

8.1.2 Sampling Depths

8.1.2.1 Boreholes

Boreholes will be extended to at least one metre into natural soil or drill rig refusal as this depth is expected to be the lower limit of the inferred vertical migration zone of contaminants associated with fill material.

In accordance with NEPC (1999) *Data Collection, Sample Design and Reporting*, samples will be collected from the near surface between 0-150 mm unless there is evidence of a thin superficial layer of impacted material. At greater depths, samples will be collected at 0.5-1.0 m intervals or at changes in fill or soil type and so that soil is also collected at depths where the presence of contamination is indicated (*eg*. based on unusual odour, colour, substances, liquids etc).

8.1.3 Method of Sample Collection

Care will be taken to ensure that representative samples are obtained and that the integrity is maintained, particularly when dealing with potentially volatile and semi-volatile components.

Samples will be collected in accordance with documented CES procedures by experienced staff. Samples will be collected using a track mounted rig with direct push tubes.

The soil will be transferred from the sample liners to the laboratory-supplied glass sample jar or resealable plastic bag using a new pair of disposable gloves for each sample. Samples will be stored in the manner outlined in Section 8.1.5.

Where there is sufficient sample volume, part of the sample will be placed in a re-sealable polyethylene bag for measurement of volatile soil gases using the closed headspace Photo Ionisation Detector (PID) or Flame Ionisation Detector (FID) method. The procedure for soil screening using a PID/FID is summarised as follows:

- 1. A corresponding sample to that selected for possible laboratory analysis is placed into a "snap-lock" or re-sealable plastic bag until half filled, then sealed;
- 2. The bag is then hand warmed (or left in sunlight) for ten minutes with occasional agitation to maximise the release of volatile compounds into the bag;
- 3. Calibrate the PID/FID instrument;
- 4. Measure background VOC concentrations in ambient air prior to each reading in order to account for sensor drift. Record on a field data sheet along with date, location details, depth and method (HS for headspace method);
- 5. Use the point of the PID/FID or a knife to punch a small hole in the top the plastic bag. Place the tip of the PID/FID in the bag and monitor the readout and note the maximum and minimum concentration during the recording period;
- 6. Make entries in field data sheets:

- 7. Repeat process outlined above for each sample (ie, background reading followed by sample reading);
- 8. Check instrument calibration against span gas at the conclusion of monitoring. A check should be undertaken after every 20 samples if more than 20 samples are to be tested. Calibration checks are to be recorded on field data sheets; and
- 9. Check that samples with high concentrations of volatile compounds in headspace gases have been included for laboratory analysis.

The PID/FID is a non-specific detector, as such, the instrument provides a measure of concentrations of total combustible and ionisable compounds reported as equivalents of a calibration span gas. Therefore, the data are used to compare concentrations of volatile compounds between samples without an understanding of the specific compounds present. PIDs/FIDs are generally calibrated using zero (ambient) air and methane/isobutylene span gases.

FIDs are capable of detecting a wide range of organic compounds from C_1 upwards including a number of chlorinated solvents. For this reason, samples of organic-rich sediments sampled from anoxic environments may display elevated concentrations of combustible gases. This is due to the ability of the FID to detect compounds such as methane.

Volatile concentrations detected by PIDs/FIDs are dependent on a number of factors including:

- The concentration and type of volatile compound present in the soil sample;
- Soil texture and compaction largely influence the potential for volatiles to be released from samples;
- Time since sample collection; and
- Temperature. This strongly affects the level of volatilisation of volatile compounds from soil and fill samples. In fact, temperature changes may result in differences of up to one order of magnitude in levels of volatiles detected using PIDs/FIDs. Consequently, field screening for volatiles should be undertaken at the same time for all samples in order to produce representative results. Generally, it is recommended that samples be stored on ice and returned to base. Screening should be carried out after allowing samples to equilibrate to ambient air temperatures.

As the site consists largely of dredged sediments, soil samples collected as part of the ASS assessment will be sampled from both above and below the water table. Samples will be placed

in a resealable plastic bag and frozen prior to transport to the laboratory. Field testing for PASS will be undertaken by the laboratory.

8.1.4 Decontamination Procedures.

The following decontamination procedures will be adopted for drilling and sampling equipment.

8.1.4.1 Boreholes

The boreholes will be established using a track mounted rig using a direct push tube sampling method. In order to minimise potential cross-contamination of the boreholes, all drilling equipment will be thoroughly cleaned between sampling points (set-ups) using a steam cleaner or pressure washer. Initially using Decon 90 and finally rinsed with clean water. Samples taken using the track mounted rig and the direct push tube sampling method do not require decontamination as dedicated liners are used to collect samples.

8.1.4.2 Sampling Equipment

Sampling equipment, such as trowels, will be washed between sampling locations using Decon 90 initially followed by adequate rinsing with clean water. To check the adequacy of the decontamination protocol, rinsate samples will be collected for analysis.

8.1.4.3 Sample Containers

The soil sample jars (Table 3) will comprise glass with a Teflon lined lid and be supplied by either the primary or secondary laboratory. The jars will be completely filled with soil, labelled with the job number, date, unique sampling point identification and initials of CES staff.

Resealable plastic bags will be used for the collection of samples for the ASS assessment.

8.1.5 Method of Sample Storage and Handling

The soil jars, once filled with sample, will immediately be placed in an esky / cool box in which ice has been added to keep the samples below a temperature of approximately 4°C. At the end of each day the samples in the cool box will be transported to the CES Sydney office where more ice will be added until delivery to the laboratory (within one day).

Samples collected for the ASS assessment will be frozen prior to transport to the laboratory.

8.1.6 Sample Logging

A borehole log will be completed during drilling by a qualified environmental engineer/scientist. The log records the following data:

- Sample number and depth;
- Soil classification, colour, consistency or density, odour and moisture content;
- Depth of boring / excavation;
- Auger / bucket refusal;
- Method of drilling / excavation;
- The depth of first encountered free water; and
- Presence or absence of odour and potential asbestos containing materials.

A copy of a blank borehole log is provided in Appendix 1.

All samples, including QA samples, will be transported to the primary and check laboratories under Chain-of Custody procedures and maintained in an ice-filled cooler. The COC will detail the following information:

- Site identification;
- The sampler;
- Nature of the sample;
- Collection time and date;
- Analyses to be performed;
- Sample preservation method;
- Departure time from site; and
- Dispatch courier(s).

8.1.7 QA/QC Documentation

While on site, the supervising engineer/scientist will be required to fill out a copy of CES 'sample register', which documents:

- Time of sample collection;
- Weather:
- Unique sample identification number; and
- Sample location and depth.

All samples will be classified in the field based on soil/fill characteristics and obvious signs of contamination such as discolouration or odour will be noted on the borehole log.

All samples, including QA samples, will be transported to the primary and check laboratories under Chain-of Custody procedures and maintained in an ice-filled cooler. The COC will detail the following information:

- Site identification;
- The sampler;
- Nature of the sample;
- Collection time and date;
- Analyses to be performed;
- Sample preservation method;
- Departure time from site; and
- Dispatch courier(s)

8.2 GROUNDWATER

8.2.1 Location and Number of Sampling Points

Six groundwater-monitoring wells will be installed across the site in order to ensure adequate site coverage. The proposed location of the groundwater monitoring wells is provided in Figure 3.

8.2.2 Well Construction

The groundwater investigation will comprise the installation of six shallow groundwater monitoring wells at various locations across the site using a Geoprobe 6620DT drill rig. Groundwater wells are to be constructed using factory-decontaminated, 40 mm internal diameter Schedule 40 PVC machine slotted pre-packed screen sections, 1 mm sand pack, bentonite seal, steel monument set in concrete block at the surface. The use of pre-packed wells allows a gravel pack to be reliably installed around screens in collapsing formations.

Well construction will consist of the following:

- Probe rods fitted with an expendable drive point are driven to the desired depth ensuring approximately 0.5 m of screen is installed above the water table to allow sampling of LNAPLs and free-phase product;
- The well assembly (with end cap) is then lowered into the probe rod string with threaded PVC riser pipe. Once the well assembly is lowered to the bottom of the probe rod string, the probe rods are retracted to a point (approximately 1 metre) above the screen;

- In natural sands, where natural formation collapse (occurring during the initial probe rod retraction) occurs, using pre-pack screens negates the need to add sand. However CES propose to place additional fine-grade (1mm) sand through the rod annulus effectively placing sand from the base of the well to approximately one metre above the screen;
- Granular bentonite is to then be installed in the annulus above the sand pack to form a well seal;
- A PVC cap (screw, push-in or push-on) is to be installed on each well; and
- The well will be finished at the surface by the installation of a flush mounted steel gatic cover set in concrete.

8.2.3 Well Development and Sample Collection

Fieldwork will be undertaken in accordance with documented CES procedures by experienced staff. Depending on the volumes of water present, wells will be developed with a foot valve and using a Waterra Power Pack PP1 Pump. Following development of the wells, they will then be allowed to recharge before purging and sampling. The purging process will be undertaken using a low-flow method with drawdown control to limit drawdown to less than 0.05m. This will be done using either a peristaltic pump with inlet tubing set in the middle of the well screen or a bladder pump.

A calibrated water quality meter placed within a flow cell will be used during the purging process to assess chemical equilibrium by measuring pH, redox potential (Eh), electrical conductivity, dissolved oxygen and temperature. The parameters will be considered stable and at equilibrium when two consecutive readings (during the removal of each well volume) are within $\pm 10\%$. The water quality meter will be calibrated at the beginning and end of each sampling day by trained CES staff. Calibration standards are kept in the CES office and are appropriate for the water quality meter used.

8.2.4 Decontamination Procedures

The pumps used to re-develop each well will be decontaminated in between sample locations by washing in a solution of phosphate-free detergent followed by rinsing with distilled water. The peristaltic pump will not require decontamination since CES propose to use dedicated tubing for each well. Bladders will be disposable and used only once.

8.2.5 Sample Containers

Laboratory supplied sample containers will be used to contain the groundwater samples (Table 4). Sample containers will be filled in order of volatility, with the most volatile substances collected first. Care will be taken to minimise disturbance of the sample to avoid aeration by minimising the distance between the outlet tubing and the container, tilting the container so that discharge flows gently down the inner walls, and ensuring containers have no airspace, are capped tightly and placed in an ice cooler immediately.

8.2.6 Method of Sample Collection, Storage and Handling

All sample containers will be labelled with the sample number, project number, date obtained and site name. This information will be repeated on the Chain-of-Custody (COC) record form.

Sample containers will be filled in order of the most volatile substances. Care will be taken to minimise disturbance of the sample to avoid aeration by minimising the distance between the outlet tubing and the container and tilting the container so that discharge flows gently down the inner walls.

Once filled, the caps will be checked to ensure that they are secure (and that there are no air bubbles/head space) then placed within an esky / cool box in which a cooling medium has been added to keep the samples below a temperature of approximately 4°C. At the end of each sampling day the samples in the cool box will be transported to the CES office where ice will be added until delivered to the laboratory (within one day). Custody seals will be placed on the esky / cool box for delivery to the laboratory.

8.2.7 Documentation

While on site, the supervising engineer/scientist will be required to fill out a copy of CES "Groundwater Sampling Field Data Sheet" and "Sample Register', which document:

- Time of sample collection;
- Weather;
- Unique sample identification number;
- Sample location and depth;
- Static Water Level;
- Water quality screening results (DO, Temperature, Redox potential, pH and conductivity);
- Presence or absence of odour (nature and intensity);

- Colour of the water;
- Presence or absence of sediment in the well; and
- Well condition and purging volumes.

Copies of these forms are provided in Appendix 1.

All samples, including QA samples, will be transported to the primary and check laboratories under Chain-of Custody procedures and maintained in an ice-filled cooler. The COC will detail the following information:

- Site identification;
- The sampler;
- Nature of the sample;
- Collection time and date;
- Analyses to be performed;
- Sample preservation method;
- Departure time from site; and
- Dispatch couriers.

8.3 LANDFILL GAS

8.3.1 Location and Number of Sampling Points

Six sub-surface gas monitoring wells will be installed across the sites southern boundary to assess whether landfill gas may be migrating onto the site. The proposed location of the sub-surface gas monitoring wells is provided in Figure 3.

8.3.2 Well Construction

Wells will be constructed in accordance with the following specifications:

- Well casing will be Class 18, PVC with 25 to 50 mm internal diameter. Matching male and female threads fitted with O-ring seals were machined onto each length of screen;
- Well screens will be factory slotted and match the specifications as outlined above for casing;
- Wells will be installed to approximately one metre into the unconfined aquifer and be screened to approximately one metre from the surface;

- The annulus around well screens will be filled with washed, graded river gravel (filter pack);
- A bentonite seal will be installed above the filter pack;
- Push-on or threaded caps will be fitted to the base of each well;
- Caps with vapour monitoring ports shall be fitted to each of the sub-surface gas monitoring wells. The fittings will ensure that an "air tight" seal is maintained on the well between sampling events; and
- The wells will be finished using either galvanised steel monuments set in a concrete base or gatic covers concreted at ground level.

8.3.3 Well Development and Gas Monitoring

Depending on the volumes of water present, wells will be developed with a foot valve and using a Waterra Power Pack PP1 Pump.

Monitoring will be undertaken in accordance with procedures developed by CES based on techniques for soil-gas studies and landfill surface gas surveys. These procedures are currently used by CES on a number of landfill sites in the Sydney metropolitan region. An outline of subsurface gas monitoring methods is provided below. The procedure for monitoring landfill gas wells involves the following stages:

- Initial measurements and observations;
- Purge well by the application of vacuum; and
- Gas measurements in well.

The following initial measurements and observations will be made upon arrival at each gas well:

- 1. Measure concentrations of combustible gases in the ambient air using a calibrated Flame Ionisation Detector (FID) or landfill gas analyser;
- 2. Inspect the well for damage;
- 3. Estimate the air volume in the gas monitoring well;
- 4. Measure formation pressure (gas pressure in well before venting) using a pressure gauge;
- 5. Vent gas while taking care not to breathe in the emissions. Note the response of the well to venting (*eg*, no response; brief initial pulse (typically 1-2 s), long pulse (>5 s) or continuous gas emission); and
- 6. Measure initial concentrations in the well. Use a gas sampling bag if the well discharges gas continuously when vented to atmospheric pressure.

The procedure for purging gas wells is summarised as follows:

- 1. Generate a vacuum in a pressure vessel fitted with compressor motor;
- 2. Open the vacuum to the well while noting the initial vacuum applied;
- 3. Measure recovery time, defined as the time required for the well to return to atmospheric pressure after vacuum has been applied;
- 4. Measure gas concentrations in the well upon return to atmospheric pressure; and
- 5. Repeat purging and measurement cycle until concentrations stabilise to within +/-10% or three well volumes have been purged.

It should be noted that recovery times of greater than 10 minutes should be considered to be suspect as the effect of sample train leakages is increased with long recovery times. If recovery times of greater than 10 minutes occur, the operator should conclude that the formation has a low permeability to gas, record the final vacuum (small gauge) and take no further action.

In addition to the monitoring discussed above, samples of landfill gas will be collected for analysis of Volatile Organic Compounds (VOCs). Samples will be collected by drawing a volume of air under pressure through activated carbon tubes. Samples will only be collected from wells that equilibrate to atmospheric pressure during the purging process. The tubes of activated carbon will then be submitted to the laboratory for VOC analysis. The tubes will be placed within eskies/coolers and transported to the laboratory within twenty four hours of collection.

9 PROPOSED ANALYTICAL PLAN

9.1 CHOICE OF ANALYTES

9.1.1 Soil

The analytes selected for soil testing have been determined based on our knowledge of past landuse and the results of previous investigations and will comprise:

- Metals and metalloids (arsenic, cadmium, chromium, copper, nickel, lead, mercury and zinc);
- Total Petroleum Hydrocarbons (TPH);
- Monocyclic Aromatic Hydrocarbons of Benzene, Toluene, Ethylbenzene and total Xylenes (BTEX);
- Polycyclic Aromatic Hydrocarbons (PAHs);
- Organochlorine Pesticides (OCPs);
- Polychlorinated Biphenyls (PCBs);
- Potential Asbestos Containing Materials (ACMs), as required;
- SPOCAS; and
- Salinity indicators such as pH, electrical conductivity, salinity, resistivity, texture, soluble sulfate and chloride.

9.1.2 Groundwater

9.1.2.1 Field Parameters

Standard field measurements will be taken during purging of the wells, to ascertain when equilibrium is reached, prior to the collection of each groundwater sample. Measurements to be taken will be:

- Dissolved oxygen;
- Electrical conductivity;
- Temperature;
- Redox potential; and

■ pH.

Field measurements will be taken using a calibrated water quality meter. Calibration will be checked by measuring known standard solutions at the end of each day.

9.1.2.2 Laboratory Testing

The analytes selected for testing have been determined based on the results of previous investigations and with a view to future remediation. CES propose to analyse groundwater for:

- Dissolved metals and metalloids (arsenic, cadmium, chromium, copper, nickel, lead, zinc and mercury);
- Major anions (chloride, sulfate and alkalinity) and cations (sodium, potassium, calcium and magnesium).
- Nutrients ammonia, nitrogen and phosphorous;
- Total Petroleum Hydrocarbon (TPH);
- Monocyclic Aromatic Hydrocarbons of Benzene, Toluene, Ethylbenzene and total Xylenes (BTEX);
- Polycyclic Aromatic Hydrocarbons (PAHs); and
- Salinity indicators such as salinity, total dissolved solids, corrosion potential (resistivity and saturation index), alkalinity, ammonia, sulfate and chloride.

9.1.3 Landfill Gas

The parameters selected for monitoring have been determined based on CES experience with sub-surface landfill gas monitoring of putrescible landfills in the Sydney metropolitan area. CES propose to monitor sub-surface gas wells for:

- Methane, carbon dioxide and oxygen concentrations;
- Formation pressures; and
- Flow rates.

Methane, carbon dioxide and oxygen concentrations will be measured using a Landfill Gas Analyser (LGA) which will be calibrated at the beginning and end of each work day using manufacturer supplied calibration gases.

Landfill gas will also be analysed for VOCs as part of the human health risk assessment.

9.2 LABORATORY

CES propose to use either Australian Laboratory Services (ALS) Pty Ltd or Labmark Pty Ltd (Labmark) as the primary and secondary 'check' laboratories for the soil and groundwater investigations. Both laboratories are NATA accredited for the above analyses. Bio-Track Pty Ltd will be used for the ASS assessment.

9.3 ANALYTICAL METHODS

9.3.1 Soil

Soil samples will be analysed in accordance with ANZECC (1996) Guidelines for the Laboratory Analysis of Contaminated Soils using USEPA and APHA approved analytical methods as described in Table 5. The laboratory Practical Quantitation Limits (PQLs) are also summarised in Table 5.

The SPOCAS analysis will be undertaken utilising the procedure outlined in the ASSMAC (1998) manual.

9.3.2 Groundwater

The water samples will be analysed using analytical methods based on US EPA and APHA methods as described in Table 6. The corresponding laboratory PQLs are also provided in Table 6.

9.3.3 Landfill Gas

The gas samples will be analysed using analytical methods based on US National Institute of Occupational Health and Safety (NIOSH) methods 1003, 1300, 1301, 1500 and 1501. The laboratory PQL is $1 \mu g$ tube⁻¹.

10 PROPOSED SITE ASSESSMENT CRITERIA

10.1 SOIL

When determining the significance of any contaminants detected in the soil, it is important to define site assessment criteria. For recreational open space land use this should include aesthetics (including soil colour and odour), ecological and potential human health issues. That is, the site assessment criteria should be set at a level that provides confidence that contaminant concentrations below the criteria will not adversely impact the environment, human health or be aesthetically adverse.

10.1.1 Aesthetics

Aesthetics relates to the generation of odours from the site and any discolouration of the soil as a result of contamination. Aesthetic issues will continually be addressed during the investigation and reported on the borehole logs.

10.1.2 Ecologically Based Investigation Levels

Potential ecological impacts have to be assessed for soils to be retained on site, which are not underneath buildings or slabs. To address potential ecological impacts of these soils, CES will compare the analytical testing results against the lower of the health based investigation levels a set of Ecological based Investigation Levels (EILs) that provides confidence that contaminant concentrations below these levels will not adversely impact specific flora proposed for the site.

Specific flora proposed for the site is not known therefore CES propose to adopt the interim urban Ecological Investigation Levels (EILs) as published in NEPC (1999), which are equivalent to the provisional Phytotoxicity-based Investigation Levels (PBIL) published in NSW EPA (1998). With respect to hydrocarbons, CES will adopt the ecologically based threshold concentrations as published in NSW EPA (1994) Guidelines for Assessing Service Station Sites.

The EILs are generally based on threshold levels for phytotoxicity or other impact to flora. As such, they are framed to protect the most sensitive environmental receptor. Both the NEPC EILs and the NSW EPA PBIL are provisional and only intended as a screening guide. Furthermore, the published levels specifically relate to sandy loams with a pH of between 6 and 8. If the proposed exposed soil does not fit this description, then field observations in conjunction with results of CEC, pH, clay content and organic content testing will be relied upon rather than the EILs.

A summary of the adopted EIL criteria is provided in Table 7.

10.1.3 Health-Based Soil Investigation Levels

To address potential health impacts at the site, CES will compare the analytical testing results against a set of Health Based Soil Investigation Levels (HIL) appropriate for the proposed landuse. That is, the HIL will be set at a level that provides confidence that contaminant concentrations below the HIL will not adversely affect human health.

It is understood that Area A will be redeveloped for commercial and industrial land use, while open space land use will be present around the perimeter of the site. Therefore, CES has adopted the following HIL criteria:

- NEPC (1999) Health Based Investigation Levels (HIL) recommended for exposure setting 'F' which includes commercial and industrial land use;
- NEPC (1999) Health Based Investigation Levels (HIL) recommended for exposure setting 'E' which includes recreational open space land use; and
- With respect to hydrocarbons (TPH and BTEX), the NSW EPA (1994) Threshold Levels.

For contaminants with no relevant Australian guidelines, CES will examine guideline levels from overseas which are appropriate for the future intended land-use (*eg*. USEPA Region 9 Preliminary Remediation Goals).

A summary of the soil assessment criteria is provided in Table 7.

10.1.4 Asbestos in Soil

The current EPA policy is that sites should not contain any Asbestos Containing Material (ACM) or asbestos fibres at the surface. For this project, CES propose that there must be no visible ACM and each soil sample collected must not contain any respirable asbestos fibres above the lower detection limit of the analytical method used by Australian Safer Environment and Technology Pty Ltd (ie 0.1 grams per kilogram).

10.1.5 Acid Sulfate Soils

ASSMAC (1998) criteria were selected to identify the presence of Acid Sulfate Soils on the site. These guidelines provide a series of trigger levels or action criteria, above which an ASS management plan should be prepared and development consent obtained prior to excavation

works (Table 8). The trigger levels are based on the percentage of oxidisable sulfur (or equivalent TPA, TAA) for broad categories of soil types. For projects that disturb more than 1000 tonnes of soil with $\geq 0.03\%$ oxidisable sulfur or equivalent existing acidity, a detailed management plan and development consent will be required (Ahern *et al.*, 1998).

10.2 GROUNDWATER

Assessment criteria for groundwater will be derived from the ANZECC (2000) water quality guidelines.

Trigger values for marine water will be adopted for this study rather than freshwater guidelines, on the basis that the ultimate receiving system for groundwater at the site is the estuarine section of the Cooks River and ultimately Botany Bay.

The ANZECC (2000) water quality guidelines specify four sets of trigger values corresponding with different levels of protection for ecosystem conditions. Trigger values, derived using the statistical distribution method, relate to the protection of 99%, 95%, 90% and 80% of species in an aquatic ecosystem. Three "categories of ecosystem conditions" are developed in the guidelines. The guidelines advocate that the level of protection afforded to a particular ecosystem should be determined following consideration of site conditions in consultation with key stakeholders. The guidelines recommend that, in most cases, the 95% protection trigger values should be applied to "slightly to moderately disturbed" ecosystems. Consequently, the 95% protection trigger values have been adopted, following discussions with the Auditor. However, the ANZECC (2000) guidelines require that for chemicals which are bioaccumulative, such as mercury, that the 99 % protection trigger values be adopted. Therefore, the 99 % protection trigger value will be adopted for mercury.

In the absence of appropriate marine water levels, the 95% trigger values for freshwater will be utilised for o-xylenes. Additionally, ANZECC (2000) Low Reliability and Environmental Concern Levels (ECLs) will be utilised for TPH C₆-C₄₀. In the absence of any appropriate site assessment criteria for the remaining analytes detected, the EPA NSW (1994) *Guidelines for Assessing Service Station Site* threshold concentrations for "Waters – Protection of Aquatic Ecosystems" will be adopted for toluene, ethylbenzene and total xylenes. Assessment criteria for relevant parameters are summarised in Table 9.

10.3 LANDFILL GAS

EPA NSW (1996) specifies that a detection of methane above 1.25% v/v in sub-surface gas monitoring wells will require notification to EPA and an increase in the frequency of monitoring. This criterion will be adopted for the purposes of this investigation.

11 PROPOSED QUALITY CONTROL PLAN

Fieldwork will be undertaken by experienced staff in accordance with documented CES procedures as outlined in Section 7. Field and laboratory QA/QC requirements compliant with National Environmental Protection Council (1999) requirements are outlined below.

11.1 FIELD QA/QC PROGRAMME

Field QA/QC for this project consists of blind replicates, split samples, rinsate samples, trip spikes and trip blanks. A description of each of these samples and their proposed frequency of testing is provided below.

Rinsate samples are unlikely to be included in this investigation as the Geoprobe 6620DT drill rig utilises location specific core liners for the collection of soil samples. In addition, groundwater sampling will be undertaken using site specific tubing and equipment. However, a description of their collection and purpose has been provided below in the event that different sampling equipment becomes required.

11.1.1 Environmental Samples

Environmental samples or field samples are the representative samples of, groundwater or soil (in this case groundwater and soil) collected for analysis to determine aspects of their chemical composition.

11.1.2 Blind Replicate Samples

Blind replicate samples are provided by the collection of two environmental samples from the same location or successively from the same monitoring bore. These samples are preserved, stored, transported, prepared and analysed in an identical manner. As a minimum, the results of analyses on the blind replicate sample pair are assessed by calculating the Relative Percentage Differences (RPDs) between the results. The RPD is calculated as the difference between the results divided by their mean value and expressed as a percentage. If the RPD exceeds the value adopted for any analytes, additional investigation will be required, or justification provided for not conducting additional investigation.

One blind replicate will be collected for every ten environmental samples or one for each batch larger than five samples (Table 10). This equates to two blind replicates samples for this investigation.

11.1.3 Split Samples

Split samples provide a check on the analytical proficiency of the laboratories. Split samples are collected from the same location or successively from the same monitoring bore. Split samples must be taken from the same location as the blind replicate, thus becoming a triplicate sample. However, split samples are not taken as often as blind replicates. Split samples will generally be collected at a rate of one split sample for every 20 environmental samples or 5% of samples. For small batches split samples are collected subject to project requirements (Table 10). This equates to one split sample for this investigation

Spilt samples (triplicates) are preserved, stored, transported, prepared and analysed in an identical manner to environmental samples.

11.1.4 Rinsate (Equipment) Samples

Rinsate (equipment) blanks consist of pre-preserved bottles filled with laboratory-prepared water that has been passed over decontaminated field equipment. Rinsate blanks are prepared on site, labelled with a unique CES sample identification number and transported to the principle laboratory for analysis as regular environmental samples. The purpose of the rinsate blank is to assess the efficiency of decontamination procedures.

For inorganic compounds and semi-volatile organic compounds (SVOCs), rinsate water must consist of milli-Q water (distilled tap water passed through a resin de-ioniser). This water is unsuitable for the analysis of volatile organic compounds (VOC) due to the inclusion of volatiles in the milli-Q water. Only purged water is to be used for volatiles (VOC) rinsate blanks. This water is produced at the laboratory by purging spring water that has not been adulterated by VOCs as with tap water. Purged water is unsuitable for the production of rinsate samples for inorganics due to the presence of trace levels of inorganic compounds.

While the number of equipment blanks varies between projects, the following strategy is generally adopted (Table 10): a rate of one rinsate blank for each field collection (>5 samples). Rinsate sampling will be subject to project requirements for smaller batches (<5 samples).

Rinsate samples are not required if field equipment is dedicated for the specific sampling location.

11.1.5 Trip Blanks

Trip blanks consisting of pre-washed bottles containing distilled or de-ionised water and appropriate preservatives will be supplied by the analytical laboratory. The role of trip blanks is to detect potential contamination during sample transport. These samples reside in transport vessels during sampling activities and are not opened in the field. Trip blanks are analysed at the laboratory as regular samples or only for volatile organic compounds, as deemed appropriate.

One trip blank will be prepared for each field collection day as is the standard.

11.1.6 Laboratory Prepared Trip Spikes

Laboratory-prepared VOC spikes consisting of distilled, de-ionised water or sand spiked with known concentrations of BTEX should be included in QA/QC programmes where TPH and BTEX concentrations are being measured. Laboratory-prepared VOC spikes should be included at a rate of one per sample batch. These samples are to be submitted for BTEX analysis with results compared with the known additions. Generally, samples are spiked with concentrations of 10, 10, 10 and 30 ppm of benzene, toluene, ethylbenzene and total xylenes respectively. The purpose of these samples is to monitor VOC losses during transit.

Care will be taken to ensure that only freshly-prepared spiked samples are used. Spikes more than 2 days old at the time of receipt from the laboratory should be discarded. All trip spikes received will be checked for leakage or bubbles. Any spikes containing bubbles or any other defects will be discarded. Furthermore, only spikes delivered under laboratory COC will be accepted. COCs will be stored in the project file for reference.

11.2 LABORATORY QA/QC PROGRAMME

The reliability of test results from the analytical laboratories will be monitored according to the QA/QC procedures used by the NATA accredited laboratory. The QA/QC programme employed by ALS (the primary laboratory) will specify holding times, extraction dates, method descriptions, Chain of Custody (COC) requirements, analysis, PQLs and acceptance criteria for the results. Laboratory QA/QC requirements to be undertaken by ALS are based on NEPM requirements and are outlined below (NEPC, 1999).

11.2.1 Laboratory Duplicate Samples

Laboratory duplicates provide data on analytical precision for each batch of samples. Where required and in order to provide sufficient sample for analysis of laboratory duplicate, two

batches of samples are collected at the first site listed on the Chain of Custody form. This is done in order to ensure that sufficient sample is collected.

Laboratory duplicates are performed at a rate of one duplicate for batches of 6-14 samples with an additional duplicate for each subsequent ten samples.

11.2.2 Laboratory Control Samples

Laboratory control samples consist of a clean matrix (de-ionised water or clean sand) spiked with a known concentration of the analyte being measured. These samples monitor method recovery in clean samples and can also be used to evaluate matrix interference by comparison with matrix spikes. Laboratory control samples may be certified reference materials.

11.2.3 Surrogates

For organic analyses, a surrogate is added at the extraction stage in order to verify method effectiveness. The surrogate is then analysed with the batch of samples. Percent recovery is calculated.

11.2.4 Matrix Spike

A matrix spikes consist of samples spiked with a known concentration of the analyte being measured, in order to identify properties of the matrix that may hinder method effectiveness. Samples are spiked with concentrations equivalent to 5 to 10 times the PQL. Percent recovery is calculated.

11.2.5 Method Blanks

Method blanks (de-ionised water or clear sand) are carried through all stages of sample preparation and analysis at a rate of approximately 10%. Analyte concentrations in blanks should be less than the stated PQL. Reagent blanks are run if the method blank exceeds the PQL. The purpose of method blanks is to detect laboratory contamination.

11.3 DATA QUALITY OBJECTIVES (DQO) AND ACCEPTANCE CRITERIA

The QA/QC Data will be assessed against the Data Acceptance Criteria (DAC) provided in Table 11. If data does not meet the DAC then the following steps will be taken:

Request that the laboratory re-check or even re-analyse the sample; and

- Inspect the sample for anomalies which may be causing the failure; and
- If necessary, undertake additional sampling and analyses; or
- Qualify data. For example, data may be used for screening purposes only or working PQLs may be raised.

12 REPORTING

The proposed monitoring programme outlined in this SAQP, including field and laboratory methods and results, will be reported in accordance with the requirements of guidelines adopted by NSW EPA.

13 REFERENCES

Ahern, C.R., Stone, Y., and Blunden, B., 1998: *Acid Sulfate Soils Assessment Guidelines*. Published by the Acid Sulfate Soil Management Advisory Committee, Wollongbar, NSW, Australia.

ASSMAC (1998): *Acid Sulfate Soil Manual*. NSW Acid Soil Sulfate Soil Management Advisory Committee, August 1998.

Australian and New Zealand Environment and Conservation Council, 2000: Guidelines for Fresh and Marine Water Quality, National Water Quality Management Strategy. October 2000.

Australian Standard AS4482.2-1997: Guide to the sampling and investigation of potentially contaminated soil. Part 1. Non-volatile and semi-volatile compounds.

Australian Standard AS4482.2-1997: Guide to the sampling and investigation of potentially contaminated soil. Part 2. Volatile substances.

Consulting Earth Scientists, 2001: *Phase 1 Environmental Site Assessment: Cooks Cove Development Site*. Prepared for Trafalgar Properties Pty Ltd and Page Kirkland Management Pty Ltd. CES Report ID: CES010403-TRF-01-D1.

Consulting Earth Scientists, April 2001: *Site Contamination Issues Paper: Cooks Cove Development Site.* Prepared for Trafalgar Properties Pty Ltd and Page Kirkland Management Pty Ltd.

Consulting Earth Scientists, August 2001: *Phase 1 Environmental Site Assessment: Cooks Cove Development Site.* Prepared for Trafalgar Properties Pty Ltd and Page Kirkland Management Pty Ltd.

Consulting Earth Scientists, September 2001: "Report on Wetland Sampling Conducted 26 August 2001. Prepared for Trafalgar Properties Pty Ltd and Page Kirkland Management Pty Ltd.

Consulting Earth Scientists, October 2001: "Report on Well Installation and Groundwater Sampling Programme: Cooks River Development Site. Prepared for Trafalgar Properties Pty Ltd" and Page Kirkland Management Pty Ltd"

Department of Environment and Conservation (NSW), 2004: Contaminated Sites: Draft Guidelines for the Assessment and Management of Groundwater Contamination.

Department of Land and Water Conservation, 1997: Acid Sulfate Soil Risk Map – Edition Two (Botany Bay).

Department of Mineral Resources, 1983: Sydney 1:100000 Geological Series Map.

Environment Protection Authority NSW, 1994: *Guidelines for Assessing Service Station Sites*, EPA 94/119, December 1994, 31 pp.

Environment Protection Authority NSW, 1995: *Contaminated Sites: Sampling Design Guidelines*, EPA 95/59, September 1995, 35 pp.

Environment Protection Authority, 1996: *Environmental Guidelines: Solid Waste Landfills*. EPA NSW 95/85.

Environment Protection Authority NSW, 1997: *Guidelines for Consultants Reporting on Contaminated Sites*. EPA 97/104, Environment Protection Authority of New South Wales, Chatswood, 22 pp.

Golder Associates (January 2002). "Contamination Investigation and Conceptual Remediation Approach for Cooks River Development, Arncliffe".

Keighran Geotechnics (August 2001). "Preliminary Site Investigation, Cook Cove Industrial Development, Kogarah Golf Club, Arncliffe";

National Environmental Health Forum (NEHF), 1998: *Health-Based Soil Investigation Levels*. National Environmental Health Forum Monographs, Soil Series No 1, 2nd edition, NEHF, 33pp.

Project ID: CES050706-BCC-01-F

TABLES

Table 1: Proposed Sampling Locations					
Sample Location	Sampling Pattern	Location Rationale	Potential Contaminants of Concern for analysis	Method of Sample Collection	
BHAE100 series	Triangular Grid	Located on grid pattern across eastern portion of site.	General Suite (Table 2)	Boreholes	
BHAW100 series	Triangular Grid	Located on grid pattern across western portion of site.	General Suite (Table 2)	Borehole	
MWA101	Targetted	Located in south western corner of site.	General Suite (Table 2)	Soil and groundwater well	
MWA102	Targetted	Located along central westen boundary of site.	General Suite (Table 2)	Soil and groundwater well	
MWA103	Targetted	Located in north eastern corner of site.	General Suite (Table 2)	Soil and groundwater well	
MWA104	Targetted	Located towards middle of site.	General Suite (Table 2)	Soil and groundwater well	
MWA105	Targetted	Located along central eastern boundary of site.	General Suite (Table 2)	Soil and groundwater well	
MWA106	Targetted	Located in south eastern corner of site.	General Suite (Table 2)	Soil and groundwater well	
LGA101	Targetted	Located along southern boundary of site.	Gas monitoring	Soil and gas well	
LGA102	Targetted	Located along southern boundary of site.	Gas monitoring	Soil and gas well	
LGA103	Targetted	Located along southern boundary of site.	Gas monitoring	Soil and gas well	
LGA104	Targetted	Located along southern boundary of site.	Gas monitoring	Soil and gas well	
LGA105	Targetted	Located along southern boundary of site.	Gas monitoring	Soil and gas well	
LGA106	Targetted	Located along southern boundary of site.	Gas monitoring	Soil and gas well	

Table 2: Proposed Analytical Program				
Matrix	No. of Sampling Points	Potential Contaminants	Number of Environmental Samples to be Analysed	
Soil	108	General Suite	Metals and metalloids (162) TPH/BTEX (81) PAHs (81) OCPs/OPPs (54) VOCs (27) PAAHs (27) Phenols (27) Nutrients (27) Asbestos (37) SPOCAS - field (27) SPOCAS (12)	
Groundwater	6	General Suite	Metals and metalloids (6) Major ions (6) Nutrients (6) TPH/BTEX (6) PAHs (6) Salinity indicators (6)	

Table 3: Containers, preservation requirements and holding times – Soil						
Parameter	Container	Preservation	Maximum holding time	Colour code		
Acid digestible metals and metalloids (As, Cd, Cr, Cu, Ni, Pb, Zn, Sn)	250 mL glass	Nil	6 months	Orange		
Mercury	250 mL glass	4°C	28 days	Orange		
TPH/BTEX	250 mL glass	4°C	14 days	Orange		
PAHs	250 mL glass	4°C, zero headspace	14 days	Orange		
OCPs/OPPs/PCBs	250 mL glass	4°C, zero headspace	14 days	Orange		
VOCs, PAAHs, Phenols	250 mL glass	4°C, zero headspace	14 days	Orange		
Nutrients	250 mL glass	4°C	7 days	Orange		
Asbestos	Sealed plastic bag	Nil	Nil	Nil		
SPOCAS	Sealed plastic bag	Frozen	Nil	Nil		
Salinity indicators	Sealed plastic bag - min 1500g	Nil	Nil	Nil		

Table 4: Containers, preservation requirements and holding times – Groundwater					
Parameter	Container	Preservative	Maximum	Colour	Field
	Volume (mL)		holding time	Code	Filtered
Metals and metalloids	125 mL Plastic	$HNO_3 / 4^{\circ}C$	6 months	Red	Yes
Anions	250 ml Plastic	None / 4°C	48 Hrs	Green	No
Cations	125 mL Plastic	HNO ₃ / 4°C	7 days	Red	Yes
Nutrients	250 ml Plastic	$H_2SO_4 / 4^{\circ}C$	28 days	Purple	No
TPH (C ₆ -C ₉)/BTEX/VOCs	4 x 43 mL Glass	HCl / 4°C	14 days	Orange	No
TPH (C ₁₀ -C ₃₆)/PAHs	1000 mL Glass	None / 4°C	28 days	Orange	No
PAAHs, Phenols	1000 mL Glass	None / 4°C	28 days	Orange	No
Salinity Indicators	1000 mL	None / 4°C	48 Hrs	Green	No

Parameter	Unit	PQL	Method Based On
M	letals and Metalloid	ls in Soil	
Arsenic ¹	mg kg ⁻¹	1	USEPA 200.7
Cadmiun ¹	mg kg ⁻¹	1	USEPA 200.7
Chromium ¹	mg kg ⁻¹	1	USEPA 200.7
Copper ¹	mg kg ⁻¹	1	USEPA 200.7
Mercury ²	mg kg ⁻¹	0.1	USEPA 7471A
Nickel 1	mg kg ⁻¹	1	USEPA 200.7
Lead ¹	mg kg ⁻¹	1	USEPA 200.7
Zinc ¹	mg kg ⁻¹	1	USEPA 200.7
Total Petroleum H	lydrocarbons (TPH) and BTEX C	ompounds
C ₆ -C ₉ fraction	mg kg ⁻¹	2	USEPA 8015B
C ₁₀ -C ₁₄ fraction	mg kg ⁻¹	50	USEPA 8015B
C_{15} - C_{28} fraction	mg kg ⁻¹	100	USEPA 8015B
C_{29} - C_{36} fraction	mg kg ⁻¹	100	USEPA 8015B
C ₂₉ -C ₃₆ Haction Total C ₆ -C ₃₆	mg kg ⁻¹		USEPA 8015B
Benzene	mg kg ⁻¹	0.2	USEPA 8021A
Toluene	mg kg ⁻¹	0.5	USEPA 8021A
Ethylbenzene	mg kg ⁻¹	0.5	USEPA 8021A
m&p-xylene	mg kg ⁻¹	1	USEPA 8021A
o-xylenes	mg kg ⁻¹	0.5	USEPA 8021A
Del a dia Associa III describes	Organics in So		LICEDA 0270 CDA
Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	mg kg	0.5-1	USEPA 8270 SIM USEPA 8081A
Polychlorinated Biphenyls	mg kg ⁻¹	0.03-0.2	USEPA 8081A
Torychiormated Diphenyis	Asbestos	0.1	USLI A OUUIA
Asbestos	Assestes	_	Polarised Light Microscop
1 ISOCOTOS	SPOCAS analy		Totalised Eight Wieroscop
SPOCAS	% or mol H ⁺ tonne		Ahern et al (1998)
	Salinity Indicat	ors	
рН	pH units	0.01	AS2159:1995
Electrical Conductivity	μS cm ⁻¹	1	AS2159:1995
Salinity	ppt	1	AS2159:1995
Resistivity	Ohms	1	AS2159:1995
Soluble sulfate	mg kg ⁻¹	10	AS2159:1995
Chloride	mg kg ⁻¹	10	AS2159:1995

Parameter	Unit	PQL	Method Based On
	Metals in W	ater	
Arsenic	μg L ⁻¹	1	USEPA 200.8
Cadmium	μg L ⁻¹	0.1	USEPA 200.8
Chromium	μg L ⁻¹	1	USEPA 200.8
Copper	μg L ⁻¹	1	USEPA 200.8
Mercury	μg L ⁻¹	0.1	USEPA 7470
Nickel	μg L ⁻¹	1	USEPA 200.8
Lead	μg L ⁻¹	1	USEPA 200.8
Zinc	μg L ⁻¹	5	USEPA 200.8
M	ajor Ions in	Water	
Cations (Na ⁺ , K ⁺ , Ca ²⁺ , Mg ²⁺)	mg L ⁻¹	1	USEPA 200.7
Anions (Cl., SO ₄ ² , HCO ₃ , CO ₃ ²)	mg L ⁻¹	1	APHA 2320
	Nutrient	ts	
Fotal Nitrogen	mg L ⁻¹	0.1	APHA 20 th Ed 4500
Ammonia	mg L ⁻¹	0.1	APHA 20 th Ed 4500 NH ₃ -H
Total Phosphorous	mg L ⁻¹	0.1	USEPA 600/4-79-020
Total Petroleun	ı Hydrocark	ons (TPI	H) in Water
C ₆ -C ₉ fraction	μg L ⁻¹	50	USEPA 8015B
C ₁₀ -C ₁₄ fraction	μg L ⁻¹	50	USEPA 8015B
C ₁₅ -C ₂₈ fraction	μg L ⁻¹	400	USEPA 8015B
C ₂₉ -C ₃₆ fraction	μg L ⁻¹	100	USEPA 8015B
В	TEX Comp	ounds	
Benzene	μg L ⁻¹	1	USEPA 5030/8260B
Toluene	μg L ⁻¹	1	USEPA 5030/8260B
Ethylbenzene	μg L ⁻¹	1	USEPA 5030/8260B
ortho-Xylenes	μg L ⁻¹	2	USEPA 5030/8260B
meta- and para-Xylenes	μg L ⁻¹	1	USEPA 5030/8260B
Organic	Contamina	nts in W	ater
Polycyclic Aromatic Hydrocarbons	μg L ⁻¹	0.5	USEPA 8270/EP032B
S	Salinity Indi	cators	
pΗ	pH units	0.1	AS2159:1995
Electrical conductivity	μS cm ⁻¹	1	AS2159:1995
Salinity	ppt	1	AS2159:1995
Total dissolved solids	mg L ⁻¹	1	AS2159:1995
Resistivity	Ohms	1	AS2159:1995
Saturation Index	-	-	AS2159:1995
Alkalinity	mg L ⁻¹	1	AS2159:1995
Ammonia	mg L ⁻¹	0.01	AS2159:1995
Sulfate	mg L ⁻¹	0.1	AS2159:1995
Chloride	mg L ⁻¹	0.1	AS2159:1995

Table 7: Site Assessment Criteria – Soils (mg kg ⁻¹)				
Contaminant	HIL (Setting F)	HIL (Setting E)	EIL	Source
Arsenic (total)	500	200	20	NEPC (1999) – Schedule (B1)
Benzo(a)pyrene	5	2	-	NEPC (1999) – Schedule (B1)
Cadmium	100	40	3	NEPC (1999) – Schedule (B1)
Chromium (III)	60 %	24 %	400	NEPC (1999) – Schedule (B1)
Copper	5000	2000	100	NEPC (1999) – Schedule (B1)
Lead	1500	600	600	NEPC (1999) – Schedule (B1)
Mercury (inorganic)	75	30	1	NEPC (1999) – Schedule (B1)
Nickel	3000	600	60	NEPC (1999) – Schedule (B1)
Zinc	35 000	14 000	200	NEPC (1999) – Schedule (B1)
Total PAHs	100	40	-	NEPC (1999) – Schedule (B1)
TPH C ₆ -C ₉	65	65	-	NSW EPA (1994)
TPH C ₁₀ -C ₄₀	1000	1000	-	NSW EPA (1994)
Benzene	1	1	-	NSW EPA (1994)
Toluene	130	130	-	NSW EPA (1994)
Ethylbenzene	50	50	-	NSW EPA (1994)
Total Xylene	25	25	-	NSW EPA (1994)
Aldrin + Dieldrin	50	20	-	NEPC (1999) – Schedule (B1)
Chlordane	250	100	-	NEPC (1999) – Schedule (B1)
DDT+DDD+DDE	1000	400	-	NEPC (1999) – Schedule (B1)
Heptachlor	50	20	-	NEPC (1999) – Schedule (B1)
Polychlorinated Biphenyls	50	20	-	NEPC (1999) – Schedule (B1)

Table 8: Action criteria based on ASS soil analysis					
Type of Material		Action Criteria 1-1000 tonnes disturbed		Action Criteria if more than 1000 tonnes disturbed	
Texture range ¹	content	% S oxidisable	mol H+/tonne	% S oxidisable	mol H+/tonne
Texture range	(%<0.002 mm)	(oven-dry basis) eg	(oven-dry basis) eg	(oven-dry basis) eg	(oven-dry basis)
		S_{TOS} or S_{POS}	TPA or TSA	S_{TOS} or S_{POS}	eg TPA or TSA
Coarse Texture	≤5	0.03	18	0.03	18
Sands to loamy sands	≥3	0.03	10	0.03	10
Medium Texture					
Sandy loams to light	5-40	0.06	18	0.03	18
clays					
Fine Texture					
Medium to heavy	≥40	0.1	18	0.03	18
clays and silty clays.					
Source: Ahern et al. (1998a) Table 4.4.					

Parameter	Criterion (µg L ⁻¹)	Source and Comments ¹
1 41 41110001	Metals and Metallo	
Arsenic (V)	13	ANZECC 2000 (95 % freshwater)
Cadmium	5.5	ANZECC 2000 (95 % marine)
Chromium VI	4.4	ANZECC 2000 (95 % marine)
Copper	1.3	ANZECC 2000 (95 % marine)
Nickel	70	ANZECC 2000 (95 % marine)
Lead	4.4	ANZECC 2000 (95 % marine)
Zinc	15	ANZECC 2000 (95 % marine)
Mercury (inorganic)	0.1	ANZECC 2000 (99 % marine)
	Nutrients	
Nitrate	10 000	ANZECC 2000 ⁶
Ammonia	910	ANZECC 2000
	TPH and BTEX	
TPH C ₆ -C ₃₆	285	ANZECC 2000⁵
Benzene	700	ANZECC 2000
Toluene	180	ANZECC 2000 ²
Ethylbenzene	5	ANZECC 2000 ²
m + p xylene	ID	ANZECC 2000 ²
o-xylene	350	ANZECC 2000
Total xylenes	380	EPA NSW 1994 ³
	Polycyclic Aromatic Hydr	ocarbons
Fluoranthene	1	ANZECC 2000 ²
Phenanthrene	0.6	ANZECC 2000 ²
Anthracene	0.01	ANZECC 2000 ²
Benzo(a)pyrene	0.1	ANZECC 2000 ²
Napthalene	50	ANZECC 2000 (99%)
•	Organic Compound	ls
Organochlorine Pesticides	Various	ANZECC 2000 ²
Polychlorinated Biphenyls	Various	ANZECC 2000 ²
Volatile Organic Compounds	Various	ANZECC 2000 ²
Dissolved methane	-	-
Note 1: ANZECC 2000 05% level of prot		

Note 1: ANZECC 2000 95% level of protection in marine water.

Note 2: ANZECC 2000 low reliability threshold in marine water.

Note 3: EPA NSW 1994 Guidelines for Assessing Service Stations.

Note 4: ID - insufficient data for guideline development.

Note 5: Addition of the combined detection limits

Note 6: ANZECC 2000 recreational waters guideline

Table 10: Frequency of Field QA/QC sampling					
Environmental samples	Blind replicates Split sample Rinsate Blanks (if required)				
0 – 5	Sub	ject to project requireme	nts		
5 - 10	1 0		1		
10 – 15	1	1	1		
>15	10%	5%	1		

QA/QC Sample Type	Method of Assessment	Acceptable Range
	Field QA/QC	
Blind Replicates and Split Samples	The assessment of split replicate is undertaken by calculating the Relative Percent Difference (RPD) of the replicate concentration compared with the original sample concentration. The RPD is defined as:	The acceptable range depends upon the levels detected: • 0 – 100% RPD (When the average concentration is < 5 times the PQL) • 0 – 75% RPD (When the average concentration is 5 to 10 times the PQL) • 0 – 50% RPD (When the average concentration is > 10 times the PQL)
Laboratory-prepared Trip Spikes	The trip spike is analysed after returning from the field and the % Recovery of the known spike.	70% - 130%
Blanks (Rinsate and Trip blanks)	Each blank is analysed as per the original samples.	Analytical Result < PQL
	Laboratory QA/QC	
Laboratory Duplicates	Assessment as per Split Replicates.	The acceptable range depends upon the levels detected: • 0 - 100% RPD (When the average concentration is < 4 times the PQL) • 0 - 50% RPD (When the average concentration is 4 to 10 times the PQL) • 0 - 30% RPD (When the average concentration is > 10 times the PQL)
Surrogates Matrix Spikes Laboratory Control Samples	Assessment is undertaken by determining the % Recovery of the known spike or addition to the sample.	Surrogates: 70% - 130% Matrix Spikes: 70% - 130% (Organics) 80% - 120% (Inorganics) LCS: 70% - 130% (Organics) 90% - 110% (Inorganics)

Project ID: CES050706-BCC-01-F

FIGURES

APPENDIX 1 Sample Field Data Sheets

SAMPLING, ANALYSIS AND QUALITY PLAN:

ENVIRONMENTAL SITE ASSESSMENT, AREA B – PROPOSED GOLF COURSE NORTH, COOKS COVE DEVELOPMENT SITE PREPARED FOR BOYD COOK COVE.

REPORT ID: CES050706-BCC-02-F

Written by: Y. Carden

Field Scientists: N/A

Reviewed by: M. Petrozzi

Authorised by: Client:

Dr. Michael Petrozzi

Boyd Cook Cove

Suite 305, 35 Lime Street

Date: Sudney NSW 2000

28 June 2006 Sydney NSW 2000

Telephone: 02 8585 4888 • **Fax**: 02 9550 9566 • 1/111 Moore St • Leichhardt, NSW 2040 • Australia © Consulting Earth Scientists ALL RIGHTS RESERVED UNAUTHORISED REPRODUCTION OR COPYING STRICTLY PROHIBITED

SAMPLING, ANALYSIS AND QUALITY PLAN: ENVIRONMENTAL SITE ASSESSMENT, AREA B - PROPOSED GOLF COURSE NORTH, COOKS COVE DEVELOPMENT SITE. PREPARED FOR BOYD COOK COVE.

Report ID: CES050706-BCC-02-F

TABLE OF CONTENTS

1	Introduction		
2	2 Objective and Scope of Work		
3	Data	9	
4	Site I	nformation	13
	4.1	Site Identification	13
	4.2	Site Zoning and Land Use	13
	4.3	Topography	13
	4.4	Geology	13
	4.5	Hydrogeology	14
	4.5.	1 Regional Hydrogeology	14
	4.5.	2 Local Hydrogeology	14
	4.6	Acid Sulfate Soil Risk	15
5	Site (Condition and Surrounding Environment	16
	5.1	Current Owner, Occupier And Operations	20
	5.2	Site Description	20
	5.3	Tanks and Associated Services	20
	5.4	Surrounding Land-use	20
	5.5	Summary of Previous Investigations	21
	5.5.	Cooks Cove Development Site	21
	5.5.	-	23
6	Site I	History	16
	6.1	Historical Aerial Photographs	16
	6.1.	1 1930 (DLWC)	16
	6.1.	2 1943 (DMR)	16

	6.1.	3 1951 (DLWC)	17
	6.1.	4 1961 (DLWC)	17
	6.1.	5 1970 (DLWC)	18
	6.1.	5 1978 (DLWC)	18
	6.1.	7 1986 (DLWC)	18
	6.1.	8 1999 (DLWC)	18
7	Propo	osed Soil, Groundwater and Gas Investigation	26
	7.1	Soil	32
	7.1.	Sampling Pattern, Location and Number of Sampling Points	32
	7.1.	2 Sampling Depths	32
	7.1.	Method of Sample Collection	33
	7.1.	Decontamination Procedures.	35
	7.1.	Method of Sample Storage and Handling	35
	7.1.	Sample Logging	35
	7.1.	7 QA/QC Documentation	36
	7.2	Groundwater	37
	7.2.	Location and Number of Sampling Points	37
	7.2.	2 Well Construction	37
	7.2.	Well Development and Sample Collection	38
	7.2.	4 Decontamination Procedures	39
	7.2.	5 Sample Containers	39
	7.2.	Method of Sample Collection, Storage and Handling	39
	7.2.	7 Documentation	39
	7.3	Landfill Gas	40
	7.3.	Location and Number of Sampling Points	40
	7.3.	2 Well Construction	40
	7.3.	Well Development and Gas Monitoring	41
8	Propo	osed Analytical Plan	43
	8.1	Choice of Analytes	43
	8.1.	1 Soil	43
	8.1.	2 Groundwater	43
	8.1.	3 Landfill Gas	45
	8.2	Laboratory	45
	8.3	Analytical Methods	45
	8.3.	l Soil	45

8	3.3.2	Groundwater	46
9 Pr	oposed	Site Assessment Criteria	47
9.1	Soil		47
9	9.1.1	Health-Based Soil Investigation Levels	48
9	9.1.2	Asbestos in Soil	48
9	9.1.3	Acid Sulfate Soils	48
9.2	Gro	undwater	49
9.3	Lan	dfill Gas	50
10 Pr	roposed	Quality Control Plan	51
10.	1 Fiel	d QA/QC Programme	51
1	10.1.1	Environmental Samples	51
1	10.1.2	Blind Replicate Samples	51
1	10.1.3	Split Samples	52
1	10.1.4	Rinsate (Equipment) Samples	52
1	10.1.5	Trip Blanks	53
1	10.1.6	Laboratory Prepared Trip Spikes	53
10.	2 Lab	oratory QA/QC Programme	53
1	10.2.1	Laboratory Duplicate Samples	53
1	10.2.2	Laboratory Control Samples	54
1	10.2.3	Surrogates	54
1	10.2.4	Matrix Spike	54
1	10.2.5	Method Blanks	54
10.	3 Dat	a Quality Objectives (DQO) and Acceptance Criteria	54
11 Re	eporting		56

12 References

57

LIST OF TABLES

- Table 1: Proposed sample locations
- Table 2: Proposed analytical program
- Table 3: Containers, preservation requirements and holding times Soil
- Table 4: Containers, preservation requirements and holding times Groundwater
- Table 5: Analytical parameters, PQLs and methods Soil
- Table 6: Analytical parameters, PQLs and methods Groundwater.
- Table 7: Site assessment criteria Soils
- Table 8: Site assessment criteria Acid sulfate soils
- Table 9: Summary of site assessment criteria Groundwater
- Table 10: Frequency of field QA/QC sampling
- Table 11: QA/QC data acceptance criteria

LIST OF FIGURES

- Figure 1: Site location
- Figure 2: Site plan of larger development site
- Figure 3: Site plan showing proposed sample locations

LIST OF APPENDICES

Appendix 1: Sample Field Data Sheets

SAMPLING, ANALYSIS AND QUALITY PLAN: ENVIRONMENTAL SITE ASSESSMENT, AREA B - PROPOSED GOLF COURSE NORTH, COOKS COVE DEVELOPMENT SITE. PREPARED FOR BOYD COOK COVE.

Report ID: CES050706-BCC-02-F

1 INTRODUCTION

Consulting Earth Scientists (CES) was commissioned by Boyd Cook Cove (BCC) to provide environmental consulting services associated with the investigation phase of the Cooks Cove Development (CCD) site, located to the south of Sydney International Airport in southern Sydney (Figure 1). The total development area consists of an approximately 100 Ha parcel of land that is bound by Marsh Street to the north, the Cooks River and Muddy Creek to the east, Bestic Street to the south and West Botany Street and residential properties to the west.

The CCD involves the relocation of Kogarah Golf Course to accommodate the development of a Business and Technology Park in the northern portion of the CCD site. Land in the southern portion of the CCD site was previously used by Rockdale Council for landfilling activities and is currently used as public open space by a variety of recreational and sporting users.

Due to the large area of the CCD site it has been divided into five areas (Areas A to E) based upon future land use and physical features. These areas are:

- Area A (Proposed business and technology park): The northern portion of the CCD site located between the East-West Link to the south and Northern Pocket Park to the north (~21 ha);
- Area B: The golf course area between the East-West Link to the north and the SWSOOS to the south (~9.5 ha);
- Area C: The playing fields located between the SWSOOS to the north and the Spring Creek Channel to the south. These fields are located on a former putrescible waste landfill (~33 ha);
- Area D: The areas adjacent to the St George Soccer Stadium between the Spring Creek Channel to the north and Bestic Park to the south. These areas are located on a former waste landfill (~13 ha); and
- Area E: The area occupied by Firmstone Gardens located between Area C and West Botany Street (~1 ha). Information sources suggest that this area was also subject to landfilling.

This document refers to Area B, the second most northern portion of the CCD site, herein referred to as 'the site' or 'Area B' (Figure 2). Area B covers an area of approximately 9.5 Ha and is currently occupied by the southern portion of Kogarah Golf Club. It is proposed that this portion of the site will be retained by Kogarah Golf Club and in the new development will consist of the northern portion of the new golf course design.

This document outlines the proposed Sampling, Analysis and Quality Plan (SAQP) for the conduct of an Environmental Site Assessment (ESA) on Area B. The ESA will include the investigation of soil and groundwater conditions at the site in order to assess its suitability for continuation of the existing open space land use.

2 OBJECTIVE AND SCOPE OF WORK

The objectives of the investigation are to:

- Address existing information gaps on soil and groundwater conditions across the site;
- Undertake a preliminary Acid Sulfate Soil (ASS) Assessment of the site;
- Undertake a preliminary Salinity Assessment of the site; and
- Assess whether the site is suitable for the continuation of the existing open space land use.

To achieve this objective, CES propose to undertake the following scope of works for Area B:

- Preparation of Sampling, Analysis and Quality Program (SAQP);
- Drill sampling locations in a grid pattern across Area B so that statistical analysis can be used (if required) to assess whether this area is suitable for the proposed use as a golf course without any or major remediation works and to be able to assess the size of contamination hotspots (approximately 53m in diameter) which may be encountered during the investigation. A total of 48 sample locations (which equates to a sample density of 5 sample points per hectare or a sampling grid of approximately 45m) are proposed for the investigation. This sample density is less than the minimum sampling points required for site characterisation outlined in the NSW EPA (1996) Sampling Design Guidelines. A reduced sampling density has been proposed considering that the land use of the current area will not be changing as part of the development;
- Four (4) of the boreholes will be converted into groundwater monitoring wells and four (4) into gas monitoring wells. The boreholes for the groundwater wells will be extended to the base of fill or to bedrock refusal;
- Soil/fill samples will be analysed for metals and metalloids (As, Cd, Cr, Cu, Ni, Pb, Zn and Hg), Total Petroleum Hydrocarbons (TPH), the monocyclic aromatic hydrocarbons of Benzene, Toluene, Ethylbenzene and total Xylenes (BTEX), Polycyclic Aromatic Hydrocarbons (PAHs), Organochlorine Pesticides (OCPs), Organophosphate Pesticides (OPPs), Volatile Organic Compounds (VOCs), Phenoxyacetic Acid Herbicides (PAAHs), nutrients (nitrogen and phosphorus), phenols and potential Asbestos Containing Materials (ACMs). In addition, pieces of potential ACMs will be analysed as appropriate;
- Soil samples collected as part of the ASS assessment will be field screened, with select samples analysed for the Suspension Peroxide Oxidation Combined Acidity and Sulfate (SPOCAS) analysis;

- Soil samples collected as part of the salinity assessment will be analysed for pH, electrical conductivity, salinity, resistivity, texture, soluble sulfate and chloride;
- Wells will be installed using Geoprobe prepacked screens, which will be developed prior to sampling. Groundwater sampling will be undertaken using low-flow methods with minimum drawdown;
- Undertake sampling and analysis on all newly installed wells as well as existing groundwater wells BH106, BH107, BH304 and BH305, if locatable and in sound condition;
- Groundwater samples will be analysed for field parameters (depth to water table, temperature, pH, electrical conductivity, dissolved oxygen and redox potential) dissolved metals and metalloids, major ions, nutrients, TPH, BTEX, PAHs, OCPs, OPPs, VOCs, PAAHs and phenols;
- As part of the salinity assessment, groundwater samples will also be analysed for pH, electrical conductivity, salinity, total dissolved solids, resistivity, saturation index, alkalinity, ammonia, sulfate and chloride;
- Gas wells will be monitored to assess concentrations of methane, carbon dioxide, oxygen and combustible gasses as well as formation gas pressures and gas flow rates; and
- The results of the environmental assessment works for Area B will be prepared into a report which will outline the results of the former investigations along with the results of the current investigation and either conclude that Area B is suitable for the continuation of the existing open space land use or recommend any further investigations or remediation which may be required.

3 DATA QUALITY OBJECTIVES

Step 1 - State the Problem

The problem is that the limited investigations undertaken on the site to date do not provide sufficient information to adequately characterise soil and groundwater quality. Further, there has only been a limited assessment of whether the site has been impacted by landfill gas migrating from the landfills located to the south of the site.

Step 2 - Identify the Decision Statement

The aim of this step is to identify what questions this program will attempt to resolve and to discuss what actions may result.

The primary question that this programme will attempt to resolve is:

• What is the extent of soil, groundwater and landfill gas contamination on the site, if any, as a result of previous land uses on both this and adjacent sites?

It is expected that by resolving this question, it will be possible to develop more focussed remediation options for the site.

Step 3 - Identify inputs to the decision

The following data are required to resolve the decision question(s):

- The key contaminants of concern as identified from the findings from previous consultant investigations and more recently by CES;
- The installation of 48 boreholes across the site, with four boreholes converted to groundwater monitoring wells and four boreholes converted to gas monitoring wells. In addition, it will be attempted to locate four existing groundwater monitoring wells installed on the site by previous investigations;
- Collection of soil samples at regular depth intervals in each borehole;
- Collection of groundwater samples from each of the groundwater monitoring wells following development and purging in accordance with appropriate methods;
- Standing water levels to be recorded in each monitoring well prior to sampling;
- Monitoring of landfill gas characteristics in each of the sub-surface gas monitoring wells;

- Analysis of both soil and groundwater samples for the contaminants of concern and other analytes which will assist in developing remediation techniques;
- Comparison of the results with relevant site assessment criteria (ie. NEPM, (1998); ANZECC (2000) water quality guidelines and EPA NSW (1994) Guidelines for Assessing Service Station Site threshold concentrations for "Waters - Protection of Aquatic Ecosystems"); and
- Obtain survey data, including the position and relative heights, for each of the monitoring wells. When combined with the water level data and analytical results this will enable a determination of the spatial and vertical extent of the contaminant plumes and direction of groundwater flow.

Step 4 - Define the boundaries of the study

The site has been referred to as Area B of the Cooks Cove Development site. It is bound by Area A to the north, Marsh Street to the west, the Cooks River to the east and the M5 East and SWSOOS easements to the south. There is currently no obvious northern boundary, although it will be defined prior to undertaking the field component of this investigation.

The legal description of the developable land is Part of Lot 11 in Deposited Plan (DP) 570900, and Part of Lot 1 DP 108492. It is located within the Local Government Area (LGA) of Rockdale, Parish of St George, County of Cumberland.

A site survey plan including the site and individual allotment boundaries, building locations and other relevant detail is provided as Figure 2.

It is anticipated that the vertical extent of the study will be the top approximately 10 m, with this depth considered sufficient to provide an assessment of natural soil as well as intercept the shallow groundwater zone.

Step 5 - Develop a decision rule

The purpose of this step is to define the parameters of interest, specify the action levels and combine the outputs of the previous DQO steps into an "if...then..." decision rule that defines the conditions that would cause the decision maker to choose alternative actions.

The parameters of interest (or contaminants of concern) in the soil for this investigation are metals and metalloids, TPH, BTEX, PAHs, OCPs, PCBs and asbestos. For the groundwater investigation, the contaminants of concern are metals and metalloids, nutrients, TPH, BTEX and

PAHs. In addition to soil and groundwater, landfill gas is also a potential contaminant of concern.

The action level which will be used to decide if the parameter represents an unacceptable risk for the continuation of the existing open space land use are provided as Investigation Criteria in Section 10 of this document.

The types of data quality required during the fieldwork component of the investigation and for the laboratory analyses are specified in Sections 10.1 and 10.2 respectively. The acceptable limits for this data are defined in Table 11.

Based on these data quality types and limits the following decision rules will apply:

- Impacted soil will be identified by concentrations exceeding the assessment criteria;
- Impacted groundwater will be identified by concentrations exceeding the assessment criteria;
- The presence of elevated concentrations of landfill gas will be identified by concentrations exceeding the assessment criteria;
- If contaminants of concern are detected in the trip blanks, then potential cross contamination may have occurred during sample transport. To assess whether this is the case, CES will check the trip blank results with the laboratory and compare the results with other blanks provide by the same laboratory. It is possible that detections in trip blanks may reflect background concentrations in laboratory-supplied water or analytical error. If it is concluded that decontamination procedures were inadequate CES will assess the severity of the cross contamination and subsequent impacts on the ability to resolve the decision question. Possible actions may include the raising of working detection limits or the collection of replacement data;
- If RPDs for blind replicates or split samples are outside the acceptable limits, then there may be errors in laboratory analysis process. When assessing duplicate pairs with elevated RPDs, CES will check the results with the laboratory(ies) and examine the nature of the sample being assessed, since heterogeneous samples can often provide high RPDs. If it is believed that irreversible errors have occurred during the laboratory process then additional investigation will be required to resolve the decision question; and

• If any of the laboratory data quality tests do not meet the acceptable limits, the laboratory will be requested to retest samples or provide justification for the results.

Step 6 - Specify acceptable limits on decision errors

There are two types of errors:

- a) Deciding that the site is acceptable for recreational open space land use when it actually is not (Type I error). The consequence of this error may be unacceptable ecological or health risk for future users of the site.
- b) Deciding that the site is unacceptable for recreational open space land use when it is acceptable (Type II error). The consequence of this error is that the client will pay for further investigation / remediation that is not necessary.

The more severe consequence is with decision error (a) since the risk of jeopardising human health outweighs the consequences of paying more for remediation.

It will not be possible to conduct statistical hypothesis tests as the proposed sampling programme consists of the collection of one round of samples only. Unlike soils, it is not generally appropriate to compare guideline levels with Upper Confidence Limits (UCLs) for the mean of measured concentrations. The level of impact on groundwater and from landfill gas will need to be assessed at each monitoring well.

Step 7 - Optimising the Design for Obtaining Data

The purpose of this step is to identify a resource-effective data collection design for generating data that are expected to satisfy the DQOs.

The resource effective data collection design that is expected to satisfy the DQOs is described in detail in Section 10. To ensure the design satisfies the DQOs a comprehensive Quality Assurance and Quality Control plan will be implemented as described in Section 11.

4 SITE INFORMATION

4.1 SITE IDENTIFICATION

The site is referred to as Area B of the Cooks Cove Development site, Cooks Cove, NSW. It is located in the northern portion of the development site and covers an approximate area of 9.5 Ha. The legal description of the developable land is Part of Lot 11 in Deposited Plan (DP) 570900, and Part of Lot 1 DP 108492. It is located within the Local Government Area (LGA) of Rockdale, Parish of St George, County of Cumberland.

A plan showing the site layout is presented in Figure 3. A registered survey plan showing the boundaries of each Lot and DP will be provided in the report.

4.2 SITE ZONING AND LAND USE

The overall site is currently zoned for open space/recreational land use and is currently occupied by the Kogarah Golf Club for its golf course. It is not proposed to change the zoning of the site as part of the development.

4.3 TOPOGRAPHY

The Botany Bay 1:25000 Topographic map (9130-3-S) indicates that the site elevation ranges from 0 to 10 m above Australian Height Datum (AHD). The site topography has been significantly modified through the placement of fill material over the original swamp and delta. An undulating surface has been created to form the golf course including several small lakes as shown on Figure 3.

The site generally drains in an easterly direction towards the Cooks River, although localised flow paths occur across the golf course, including an un-named intermittent stream draining the golf course shown on the 1:25000 Topographic Map. In addition, the central portion of the golf course drains internally towards a series of lakes.

4.4 GEOLOGY

The Sydney 1:100 000 Geological Series map indicates that the site is underlain by silty to peaty quartz sand, silt and clay. Ferruginous and humic cementation occurs in places with common

shell layers also reported. This material is most likely of alluvial origin, deposited as sub-aerial and sub-aqueous components of the Cooks River delta. This deposit has been reworked significantly in the last century as part of river diversion and training works. These works would have involved significant dredging operations.

An outcrop of Hawkesbury Sandstone is also shown in the location of the existing Kogarah Golf Club House. The Sydney 1: 100 000 Soil Landscape Sheet 9130 indicates that the site is underlain by anthropogenic fill material.

4.5 HYDROGEOLOGY

4.5.1 Regional Hydrogeology

The groundwater at this site is expected to lie within a shallow unconfined aquifer, although localised layers of low permeability (*eg.* clay, peat and layers of localised iron-cemented sand) may act as local confining layers. Groundwater at the site is expected to flow in an easterly direction towards the Cooks River.

The Cooks River, Muddy Creek and the Spring Street Canal are tidal in the study area. It is expected that saline or brackish intrusion in the form of a Ghyben-Herzberg lens occurs around the periphery of the site. Diurnal fluctuations in groundwater levels in the peripheral areas are also expected to occur in response to tidal cycles.

4.5.2 Local Hydrogeology

CES (2001) undertook a search of the groundwater database at the DLWC (now DIPNR). A total of 66 registered groundwater wells were identified within a 2 km radius of the centre of the Cooks Cove Development site. Work summaries are presented in Appendix 1. Twenty five wells are registered for "General Use" with a further 17 registered for "Domestic Use". Wells for general use were registered between 1950 and 1969 while wells for domestic use were registered between 1991 and 2000. It is proposed that general and domestic wells refer to use by private persons for non-potable use. The different classes are attributed to a change in well classification methods by the DLWC.

Three wells are registered for recreational or irrigation use. All of these wells are registered to local sporting facilities, including the Kogarah Golf Club (installed in 1966). Twenty one of the wells are registered for environmental monitoring or testing. Sixteen of these wells are registered in association with the M5 East Motorway. None of these wells are located within Area B.

Inspection of DLWC work summaries reveals reported well yields of up to 3.0 L s⁻¹, with most yields of the order of 0.5 L s⁻¹. The salinity of wells installed is reported as "good". These data indicate that the study area is surrounded and underlain by relatively permeable strata. Low ("good") salinity of water extracted from the wells indicates that saline or brackish intrusion is likely to be limited to peripheral areas adjacent to the Cooks River and tidal reaches of tributaries thereof.

4.6 ACID SULFATE SOIL RISK

The Botany Bay Acid Sulfate Soil Risk Map (2nd Ed, 1997) produced by the DLWC indicates that the site is located in an area of "high probability of occurrence of acid sulfate soil materials. The environment of deposition has been suitable for the formation of acid sulfate soil materials. Acid sulfate soils materials are widespread or sporadic and may be buried by alluvium or windblown sediments". If present the depth is expected to be between 1 and 3 m below the ground surface.

Although extensive filling has occurred across the site, the fill material is most likely to consist of sediments dredged from the Cooks River. Therefore, this material, although technically fill, has the potential to be acid sulfate in nature.

5 SITE HISTORY

5.1 HISTORICAL AERIAL PHOTOGRAPHS

Historical aerial photographs from the Department of Land and Water Conservation were examined. Aerial surveys have typically been conducted every 8-10 years with the earliest photographs being taken in 1930. The following photographs were examined for this report: 1930; 1951; 1961; 1970; 1978; 1986, 1994 and 2002. In addition, the 1943 aerial photograph acquired by the Department of Main Roads (DMR), now the Roads and Traffic Authority (RTA), was also examined. The findings of air photo investigations are as presented below.

5.1.1 1930 (DLWC)

Cooks River is more torturous than at present day and does not adjoin the north-eastern section of the site as it does today. Muddy Creek and lower Cooks River are very thin and appear to be small tributaries off the main river only. The Cooks River outlet to Botany Bay is further north than presently located.

The study area has been subdivided. The northern half of the area presently occupied by Kogarah Golf Club, appears to be comprised of paddocks (possibly market gardens). The house in the north eastern part of the site presently utilised as the clubhouse has been built and may be surrounded by a few smaller buildings and a number of large trees. The southern half of the present day golf course and the area to the south have been subdivided and appear sandy with some scrubby vegetation.

The water main easement running across the Cooks River from the western to the eastern banks is present. Although property to the north west of the site adjoining the river appears to be comprised of sand it does seem to have been landscaped. River bank is in the present day location. Neighbouring areas to the west and north west are predominantly paddocks although some industrial buildings are present. Land south west of the site has been urbanised. East of the site across the lower Cooks River and Muddy Creek, the land is comprised of large subdivided blocks of dunes with some grass. White sand dunes occur on the north eastern side of the Cooks River.

5.1.2 1943 (DMR)

The 1943 aerial photograph indicates that the Cooks River is still fairly torturous in comparison to the aligned state of the present day. The golf club is present on the site, with what appears to

be the present day club house in position. The site is generally covered in vegetation with some patches of sandy areas and some sealed sections around the clubhouse.

Market Gardens are present to the south of the site, residential property to the west, open space to the north and the Kingsford Smith International Airport to the east.

5.1.3 1951 (DLWC)

The shape of Cooks River has been altered extensively with the lower parts of the river now bounding the property. Muddy Creek has been considerably widened and channelised. Spring Street Canal has been constructed, as has the present day channel opening of the Cooks River into Botany Bay. Dredges and sand stockpiles in the photo indicate that these works were still in progress at the time.

The entire area of the present day Kogarah Golf Club appears to have reverted back to grass-and scrub-covered sand dunes, with the southern half being sandier.

There is a continued build up of industry in the neighbouring area to the north west and airport developments on the eastern side of the river are continuing.

5.1.4 1961 (DLWC)

The Cooks River has been reshaped and repositioned since the 1951 photograph. The north eastern side of the property now bounds the river. In addition Muddy Creek has been significantly narrowed.

The northern part of the site is now occupied by the golf course and is close to the present day layout. Numerous vehicles were noted around the golf club.

To the north of the site, land on the rivers edge has been landscaped and some small buildings erected. Additional factories and houses have been built on properties to the north west of the site and numerous trucks and smaller vehicles are visible around these buildings. Airport runways and aircraft hangars have been completed on the eastern bank of the Cooks River and are in operation with numerous planes visible in this area.

5.1.5 1970 (DLWC)

Additional alterations to the Cooks River have been performed since the 1961 photograph with the river essentially as in its present day form. Further industrial development has occurred to the north west of the site as well as superficial changes to other buildings in this area.

The construction of the airport overpass at the north eastern end of Marsh Street has commenced. Numerous construction site sheds are visible in the north eastern corner of the Kogarah Golf Club. The golf course area is essentially the same as in the 1961 photograph although looking a little more grassy and with the addition of numerous small ponds.

5.1.6 1978 (DLWC)

The Kogarah Golf Club has been further landscaped with areas having been built up and additional ponds put in place. The western-most section of this area, previously occupied by market gardens is now included as part of the golf course.

To the north of the site demolition and construction of industrial buildings has occurred. The main span of the Marsh Street airport overpass has been constructed. Remaining neighbouring properties appear essentially the same.

5.1.7 1986 (DLWC)

The site in general has not undergone many changes since the 1978 photograph.

To the north west of the site across Marsh Road, tennis courts have been built, as has the Airport Hilton in the place of the demolition area noted in the last photo. In addition superficial changes have been made to other buildings in this area. A central section of the Marsh Street overpass to the airport has been constructed.

5.1.8 1999 (DLWC)

On the Kogarah Golf Course a large maintenance shed has been constructed on the northern most part of the property next to Marsh Street. In addition a small building has been built in the middle of the golf course.

On neighbouring properties to the north small-scale construction and demolition works have been carried out. Houses on the corner of Marsh and West Botany Streets have been demolished. Directly north of the site across the river, some construction works or redevelopment activities

are being carried out. The central section of the Marsh Street overpass to the airport has been completed.

A summary of the aerial photographs indicates that the site was part of the Cooks River floodplain prior to its reclamation and development. The golf course has been required to move over time in concert with reclamation activities of former mangrove areas. Therefore, although the golf course has been present in the area since circa 1930, it has not always been in its existing location.

The following potentially contaminating activities have been carried out on the site:

- Introduction of contaminants in fill material. The most probable source of fill material is dredged spoil from the Cooks River and its delta; and
- Chemical inputs associated with the golf course such as fertilisers and pesticides.

In addition, the site is located to the immediate north of a number of former municipal landfill sites. These former landfills are located on Areas C and D of the Cooks Cove Development Site, both located to the south of Area B. It is understood that neither leachate nor gas management systems were constructed on these landfills and as such the potential exists for either leachate or landfill gas to have migrated onto Area B.

6 SITE CONDITION AND SURROUNDING ENVIRONMENT

Descriptions of site and background information are presented in the Phase 1 Environmental Site Assessment (ESA) undertaken by CES (2001) on the entire Cooks Cove Development Site. It is not intended to fully replicate this information herein. However, a summary is provided below.

6.1 CURRENT OWNER, OCCUPIER AND OPERATIONS

Area B of the Cooks Cove Development Site is currently on land owned by Kogarah Golf Club Limited, with a section along Marsh Street on the western boundary owned by The Municipality of the Council of Rockdale. The entirety of Area B is currently occupied by Kogarah Golf Club for their golf course, with the section owned by Rockdale Council under lease to the Kogarah Golf Club.

6.2 SITE DESCRIPTION

The following description of the site is based upon a recent site inspection and information provided in previous reports.

Current access to the site is through Area A of the larger development site, that is, the northern portion of the existing Kogarah Golf Club. The site consists of features typical of a golf course such as greens, fairways, sand bunkers and surface water bodies.

The majority of the site is unsealed.

6.3 TANKS AND ASSOCIATED SERVICES

No Underground Storage Tanks (USTs) or Above Ground Storage Tanks (ASTs) are known to have previously existed on the site.

6.4 SURROUNDING LAND-USE

Without gaining access, the properties immediately surrounding the site are as follows.

• *North* – The northern portion of the Kogarah Golf Club, that is, Area A of the CCD site, forms the northern boundary of the site;

- South The M5 East and SWSOOS easements form the southern boundary of the site;
- *East* The Cooks River forms the eastern boundary of the site. To the east of the Cooks River is the International Terminal of Kingsford Smith Airport; and
- West Marsh Street and a wetlands area form the western boundary of the site.
 Residential properties are located on the western side of Marsh Street.

6.5 SUMMARY OF PREVIOUS INVESTIGATIONS

6.5.1 Cooks Cove Development Site

The following environmental and geotechnical investigation reports have been prepared for the entire CCD Site.

- Consulting Earth Scientists (April 2001). "Site Contamination Issues Paper: Cooks Cove Development Site. Prepared for Trafalgar Properties Pty Ltd and Page Kirkland Management Pty Ltd";
- Keighran Geotechnics (August 2001). "Preliminary Site Investigation, Cook Cove Industrial Development, Kogarah Golf Club, Arncliffe";
- Consulting Earth Scientists (August 2001). "Phase 1 Environmental Site Assessment:
 Cooks Cove Development Site. Prepared for Trafalgar Properties Pty Ltd and Page
 Kirkland Management Pty Ltd";
- Consulting Earth Scientists (September 2001). "Report on Wetland Sampling Conducted 26 August 2001";
- Consulting Earth Scientists (October 2001). "Report on Well Installation and Groundwater Sampling Programme: Cooks River Development Site. Prepared for Trafalgar Properties Pty Ltd and Page Kirkland Management Pty Ltd"; and
- Golder Associates (January 2002). "Contamination Investigation and Conceptual Remediation Approach for Cooks River Development, Arncliffe".

The main conclusions drawn from these reports with respect to contamination and other environmental constraints associated with the proposed development are outlined below:

- The CCD site has been subjected to extensive filling. The type and depth of filling varies across the CCD site:
- The subsurface conditions underlying Areas A and B generally consist of fill sands to depths of 0.2 to 0.8 metres below ground level (mBGL) underlying alluvial sands and

- clays. Sandstone bedrock was encountered at depth ranging from 0.9 mBGL near the clubhouse in Area A to 10.5 mBGL in the flatter sections of Areas A and B;
- Contaminating activities currently and historically known to have occurred on the CCD site include landfilling, reclamation works adjacent to adjoining water bodies, disposal of dredged material and canal sediments; use as a night sullage depot, market gardens and activities/operations associated with the maintenance of the golf course and playing fields;
- The former Unhealthy Building and notice registry (repealed by the *Contaminated Land Management Act*) managed by the NSW EPA noted the presence of "garbage and industrial waste disposal areas " across the CCD site";
- The CCD site adjoins several environmentally sensitive receptors including wetlands, surface water bodies and residential premises;
- No leachate controls have been constructed within any of the areas subjected to landfilling;
- Contamination typically associated with the landfilling of waste materials (putrescible and uncontrolled landfilling) has been detected in soils and groundwater beneath the site and in adjoining wetlands areas and surface water bodies;
- Landfill gas (containing methane) has been detected at concentrations above the Lower Explosive Limit (LEL) beneath the CCD site (Areas B, C and D) and at the CCD site boundaries. Buildings, tunnels and services present beneath and adjacent to the CCD site could potentially be impacted by the migration of landfill gas from the site;
- Virtually the entire CCD site is thought to be underlain by Potential Acid Sulfate Soils (PASS). Acid Sulfate Soils (ASS) could also be present within the stockpile of material generated during the construction of the M5 Tunnel located adjacent to the eastern boundary of Area C; and
- The capping material identified within Areas C and D during the investigations was highly variable and would be unlikely to comply with NSW EPA guidelines for the closure of landfills. In consideration of the heterogenous nature of the capping material encountered, it is likely that the capping works were uncontrolled and it is possible that other contamination above the respective guidelines are present in other areas not investigated. In most areas, the capping encountered does not contain engineered materials (ie. compacted clay) and therefore would not be adequate in reducing the infiltration of surface water from rainfall events and periodic irrigation which could in turn increase the generation of leachate from the buried waste materials.

6.5.2 Area B: Cooks Cove Development Site

From the information review, Area B has been subjected to a number of potentially contaminating activities including agricultural activities (entire area), reclamation of land using dredged sediments (eastern and southern boundary), miscellaneous filling (entire area) and activities/operations associated with the maintenance of the golf course. It is possible that the southern portion of Area B has been subjected to, and/or affected by, the landfilling activities known to have occurred on the adjoining Area C. A summary of the reports relevant to the soil and groundwater quality at the site is provided below.

6.5.2.1 CES (August, 2001)

CES (August 2001) prepared a Phase 1 Environmental Site Assessment (ESA) for the CCD site on behalf of Trafalgar Properties, the developer at the time. The Phase 1 ESA consisted of a desktop review of site history and land use as well as a limited investigation programme.

The main findings of the assessment relevant to Area B were as follows:

- Site stratigraphy consisted of sand and clay fill deposited over natural alluvium or Hawkesbury Sandstone Bedrock fill material;
- No contaminant concentrations in samples collected from Area B exceeded the adopted recreational open space assessment criteria; and
- Alluvium underlying fill material at the site was classified as Potential Acid Sulfate Soil.

6.5.2.2 Golders (2002)

Golders were commissioned to undertake a contamination investigation and prepare a conceptual remediation approach for the CCD site by Page Kirkland Management (Golders, 2002). The portion of the investigation undertaken on Area B of the CCD site included the excavation of ten test pits and the installation of two groundwater monitoring wells (BH304 and BH305).

Analytical data from the test pits is not provided in the report. Chromium concentrations were detected in soil samples collected from BH305 at depths of 0.5-0.7 and 2.6-3.0 m that exceeded the adopted phytoxicity guideline levels. Concentrations of other parameters in soil were less than the adopted assessment criteria. Elevated ammonia concentrations were detected in groundwater sampled from BH304 (7.96 and 6.67 mg L⁻¹) and BH305 (7.24 and 7.79 mg L⁻¹). No other groundwater parameters were detected at elevated concentrations.

6.5.3 Data Quality Review of Previous Investigations

6.5.3.1 CES (August, 2001)

Although the formal seven step Data Quality Objectives (DQOs) were not prepared prior to undertaking the investigation, the CES (August, 2001) investigation met the majority of the critical components of the DQO approach. This included:

- The objectives and scope of the investigation were stated;
- The appropriate type of samples were collected for the purposes of the investigation;
- Appropriate site investigation criteria were adopted for the proposed future land-use;
- Chain of Custody documentation was used to track all samples during transport to the laboratory;
- Samples were appropriately preserved and maintained during transport to the laboratory;
- Samples were analysed within the recommended holding times by a NATA accredited laboratory using NATA accredited methodologies;
- Detection limits for the chemicals of potential concern were appropriate for the site investigation criteria;
- Field duplicates, rinsate blanks, trip blanks and trip spikes were collected during the investigation; and
- The laboratory QA/QC included analysis of laboratory duplicates, matrix spikes, surrogates, laboratory control samples and laboratory blanks.

The above QA/QC programme is generally acceptable for the purposes of the investigation. The only major QA/QC component not undertaken or addressed was the collection of split sample(s) for inter-laboratory analysis.

6.5.3.2 Golders (2002)

A data quality and sampling plan was prepared by Golders prior to commencement of the project. CES have not seen a copy of this plan. A Field and Laboratory Quality Control Report is provided in Appendix C of the report which summarises the results of the QA/QC programme.

The stated Data Quality Objectives of the project (Section 7.1) were:

"...to generate data quality that was consistent with the objectives of the investigation. This mainly consisted of generating quality data on the soil and groundwater conditions in the areas

targeted for sampling. The key elements to achieve the DQO related to implementation of the field work, collection of quality control samples and generation of internal laboratory quality control data to support the reported results and the assessment of laboratory results."

The Golders (2002) investigation met the majority of the critical components of the DQO approach. This included:

- The objectives and scope of the investigation were stated;
- The appropriate type of samples were collected for the purposes of the investigation;
- Appropriate site investigation criteria were adopted for the proposed future land-use;
- Chain of Custody documentation was used to track all samples during transport to the laboratory;
- Samples were appropriately preserved and maintained during transport to the laboratory;
- Samples were analysed within the recommended holding times by a NATA accredited laboratory using NATA accredited methodologies;
- Detection limits for the chemicals of potential concern were appropriate for the site investigation criteria;
- Two field duplicates (10 %), a rinsate blank and a trip spike were collected during the soil sampling programme and five field duplicates (~10 %), one trip blank and two trip spikes were collected during the water sampling programme; and
- The laboratory QA/QC included analysis of laboratory duplicates, matrix spikes, surrogates, laboratory control samples and laboratory blanks.

The above QA/QC programme is generally acceptable for the purposes of the investigation. QA/QC components that were not undertaken or addressed were the absence of split samples during the soil and water sampling programme and the absence of a trip blank during the soil sampling programme.

7 CONCEPTUAL MODEL OF POTENTIAL CONTAMINATION

The conceptual model of potential contamination has been developed to provide an understanding of the critical parameters required to understand the contamination status of the site. Its purpose is to develop a hypothesis on the contamination of the site which can be tested through a programme of soil, groundwater and landfill gas testing.

The model has been developed from a review of background information, historical documents and a detailed site inspection. It includes potential sources of contamination and their associated Contaminants of Potential Concern (CoPC), characteristics of the CoPC, site conditions and a summary of the approach of the investigation.

7.1 POTENTIAL SOURCES OF CONTAMINATION AND ASSOCIATED COPC

A review of background information, historical documents and a detailed site inspection indicate that the following potential sources of contamination are present at the site or its immediate surrounds.

7.1.1 Market Gardens

Prior to 1978 the western part of the site was used for market gardens, which may have included the addition of fertilisers and pest control agents to the soil.

The CoPCs include metals and metalloids, nutrients, OCPs, OPPs and PAAHs.

7.1.2 Reclaimed Land

The Cooks River has been extensively altered over the past century. River training works may have utilised dredged sediments or imported fill material. Therefore, an investigation is required in order to assess the type of material used in the reclamation.

The CoPC includes metals and metalloids, nutrients, TPH, BTEX, PAHs, VOCs, phenols and ACMs.

7.1.3 Landfill Activities

Although the site was not an official landfill, anecdotal evidence form members of the Kogarah Golf Club indicate that waste material has been exposed during on-site excavations.

The CoPC includes metals and metalloids, nutrients, TPH, BTEX, PAHs, OCPs, OPPs, PAAHs, VOCs, phenols, ACMs and landfill gas.

7.1.4 Golf Course

The sites historical and current use as a golf course may have resulted in the application of fertilisers and pest control agents.

The CoPCs include metals and metalloids, nutrients, OCPs, OPPs and PAAHs.

7.1.5 Presence of Unlined Landfills on Adjacent Blocks

The presence of an unlined landfill on Area C of the CCD site indicate that leachate-impacted groundwater or landfill gas has the potential to migrate onto the site.

The CoPC includes metals and metalloids, nutrients, TPH, BTEX, PAHs, OCPs, OPPs, PAAHs, VOCs, phenols and landfill gas.

7.1.6 Summary of Chemicals of Potential Concern

Based on the above, the following CoPC have been identified for the entire site:

- Metals and metalloids;
- Nutrients, including ammonia, nitrate, nitrite, total kjeldahl nitrogen and total phosphorus;
- Total Petroleum Hydrocarbons (TPH), monocyclic aromatic hydrocarbons (BTEX);
- Polycyclic Aromatic Hydrocarbons (PAHs);
- Organochlorine Pesticides (OCPs);
- Organophosphate Pesticides (OPPs);
- Volatile Organic Compounds (VOCs);
- Phenols;
- Phenoxyacetic Acid Herbicides; and
- Asbestos Containing Materials (ACMs).

7.2 CHARACTERISTICS OF CHEMICALS OF POTENTIAL CONCERN

7.2.1 Metals and Metalloids

The metals and metalloids analytical suite generally consists of arsenic, cadmium, chromium, copper, lead, nickel, zinc and mercury. They all tend to bind strongly to soil particles and with the exception of zinc will dissolve in water. Both mercury and zinc accumulate in animal tissue while the others will not. The mobility of all metals increases with increasing acidity.

Additional considerations include detecting for the presence for hexavalent chromium and methyl mercury where land use indicates that this is prudent. These two forms of the metals have a much greater toxicity than that analysed for in a standard metals and metalloids analysis.

7.2.2 Nutrients

Nitrogen and phosphorus species are the main nutrients of concern, with ammonia the most likely to be present as a result of the former landfill activities both on the site and on adjacent sites.

The concentrations of the nitrogen species will vary depending on site conditions, especially the oxidative environment. For example, ammonia is a main indicator of landfill leachate which is a low oxygen or reducing environment. Nitrate is highly mobile in water and will rarely adsorb to particular matter.

Phosphorus is readily adsorbed to soil particles and as such is often not detected in groundwater.

7.2.3 Total Petroleum Hydrocarbons (TPHs) and BTEX Compounds

TPH and BTEX compounds are mostly associated with petroleum products. TPHs are divided into the C_6 - C_9 , C_{10} - C_{14} , C_{15} - C_{28} and C_{29} - C_{36} fractions based upon the number of carbon atoms within the compound. The C_6 - C_9 fraction is considered to be the volatile fraction, with volatility and density decreasing with increasing number of carbon atoms. As a result, the C_6 - C_9 fraction is generally the most mobile and will be present within the upper component of the aquifer, whereas the C_{29} - C_{36} fraction is the leats mobile and will tend to accumulate at the bottom of an aquifer or on top of less permeable layers within the aquifer.

The BTEX compounds are volatile and less dense than water and as such will behave in a similar fashion to the TPH C_6 - C_9 fraction.

7.2.4 Polycyclic Aromatic Hydrocarbons (PAHs)

PAHs are essentially a byproduct of incomplete combustion, either by natural or anthropogenic sources. Common sources are coal, soot, charcoal and bitumen. The PAH analytical suite consists of the 16 USEPA priority PAHs which are listed in order of decreasing volatility, with naphthalene being the most volatile. There are hundreds of PAHs in existence.

PAHs are very stable and persistent in the environment as well as being carcinogenic. Most PAHs adsorb strongly to soil particles, although some are capable of migrating into groundwater. They do not dissolve easily in water and are most likely to be associated with particulate matter.

7.2.5 Organochlorine Pesticides (OCPs) and Organophosphate Pesticides (OPPs)

OCPs are chlorine-based pesticides which are now generally banned from use in most parts of the world due to their environmental impact and bioaccumulative potential within fatty tissue. They are generally rapidly broken down by sunlight within about two days and adsorb strongly to soil. Only minor concentrations of OCPs would be expected to be detected in groundwater as they do not dissolve easily.

The OPPs are phosphate-based pesticides used widely in agricultural activities. They tend to dissolve easily in water and are degraded rapidly in the environment into harmless breakdown products. They do not tend to accumulate within animal or plant foods.

7.2.6 Volatile Organic Compounds (VOCs)

The VOCs in question have a density greater than 1 and thus are termed Dense Non-Aqueous Phase Liquids (DNAPLs). Due to their greater density they are expected to accumulate at the bottom of the aquifer or in areas of lower permeability. Thus it becomes important to understand the location and extent of low permeability layers (*ie.* peat) across the site.

The VOCs present are degraded under reducing conditions such as those found in groundwater across the site. Therefore, it is expected that breakdown products of the original contaminants will be present. Of interest will be whether any VOCs detected on the site are the original solvent products or the products of the reductive dehalogenation breakdown process such as chloroethane.

VOCs are generally not adsorbed onto the soil matrix so it is unlikely that they will be present within soil samples.

7.2.7 Phenoxyacetic Acid Herbicides

The Phenoxyacetic Acid Herbicide group is mostly used in agriculture and horticulture for their selective action against broad-leaved weeds. It includes herbicides such as 2,4-D (Agent Orange), Dicamba and MCPA.

They will degrade in soil through microbial action and will adsorb to soils with higher organic content. Residence time in soils is generally short-lived and in the order of weeks to months. Leaching into groundwater may occur in coarse sandy environments although the residence time is generally similar to that of soils.

7.2.8 Phenols

Phenols are produced during a number of industrial processes (*eg* coke processing, wood and iron/steel industry), in cigarette smoke and in smoked food products. Phenols have an objectionable smell and taste so human exposure is often limited by these early warning symptoms.

Phenols are highly mobile in soil and are not likely to persist in the environment or bioaccumulate.

7.2.9 Asbestos Containing Materials (ACMs)

ACMs are man-made fibres that consist of asbestos. They include fibro sheeting, fire retardants and lagging of piping and other features.

Any degradation will result in the release of microscopic fibres which can be harmful to human health and potentially result in lung diseases. ACMs can be detected either as fibres within a soil sample or by submitting larger pieces of material to the laboratory for analysis.

7.3 SITE CONDITIONS

Based on the results of previous investigations of the larger redevelopment site and knowledge of regional geology and hydrogeology, the following is understood about the site conditions likely to be encountered during the investigation:

 Bore logs for BH304 and BH305 (Golders, 2002) indicate that approximately one metre of fill material is present across Area B. The fill material encountered in these two

boreholes consisted of fine to medium grained silty or gravely sand. The underlying alluvium consisted of silty sands and clays with layers of peat material;

- Bedrock was not encountered in either BH304 or BH305 at final depths of 6 and 7.5 m respectively; and
- Groundwater was encountered at approximately 1.2 m in both boreholes. Groundwater present across the site would be expected to flow to the east into the Cooks River.

The site conditions described above indicate that any contamination on the site could easily migrate both vertically downwards and horizontally as, with the exception of the clayey peat layer present at the base of the landfill, there is little evidence of the presence of impervious or low permeability layers. Further, as the site has surface water receptors along it's eastern boundary, any horizontal migration would be likely to migrate off-site and into the Cooks River.

7.4 APPROACH OF INVESTIGATION

The investigation outlined in the remainder of this SAQP is designed to provide a delineation of the lateral and vertical extent of impacted soil and groundwater across the site, as well as provide an assessment of whether landfill gas is being generated.

As the major source of potential contamination is considered to be the adjacent landfilling activities, the investigation will focus on assessing whether the adjacent landfill has impacted on local soil and groundwater conditions. Boreholes will be drilled across the site with soil and groundwater samples analysed for the COPCs. The analytical suite selected will also include any additional COPCs identified in Section 7.1 of this document.

8 PROPOSED SOIL, GROUNDWATER AND GAS INVESTIGATION

8.1 **SOIL**

The following proposed soil sampling programme has been designed on the basis of a review of the site history.

8.1.1 Sampling Pattern, Location and Number of Sampling Points

A triangular or herringbone systematic (or grid) pattern will be used to locate boreholes across the site.

Summaries of the proposed sample locations and analytical programmes for soil and groundwater are provided in Tables 1, 2 and 3 respectively. The proposed sampling locations are shown on the attached site plan (Figure 3), with the exact locations to be determined during the sampling programme based on local access issues and field observations.

A total of 48 sampling locations, which equates to a sample density of 5 sample points per hectare or a sampling grid of approximately 45 m, are proposed for the investigation. This is less than the minimum sampling points required for site characterisation as outlined in NSW EPA *Sampling Design Guidelines* (NSW EPA, 1995). A reduced sampling density has been proposed considering that the area will maintain its existing land use and that historical filling is likely to have occurred in a single episode. This provides a circular hotspot with a diameter of approximately 53 m that can be detected with 95 % confidence (Procedure F, NSW EPA, 1995). The exact depths of samples will be determined in the field based on FID readings and any adverse aesthetics indicating the presence of contamination (*eg.* odour or discoloured soil).

8.1.2 Sampling Depths

8.1.2.1 Boreholes

Boreholes will be extended to at least one metre into natural soil or drill rig refusal as this depth is expected to be the lower limit of the inferred vertical migration zone of contaminants associated with fill material.

In accordance with NEPC (1999) *Data Collection, Sample Design and Reporting*, samples will be collected from the near surface between 0-150 mm unless there is evidence of a thin superficial layer of impacted material. At greater depths, samples will be collected at 0.5-1.0 m

intervals or at changes in fill or soil type and so that soil is also collected at depths where the presence of contamination is indicated (*eg*. based on unusual odour, colour, substances, liquids etc).

8.1.3 Method of Sample Collection

Care will be taken to ensure that representative samples are obtained and that the integrity is maintained, particularly when dealing with potentially volatile and semi-volatile components.

Samples will be collected in accordance with documented CES procedures by experienced staff. Samples will be collected using a track mounted rig with direct push tubes.

The sample will be transferred from the sample liners to the laboratory-supplied glass sample jar or resealable plastic bag using a new pair of disposable gloves for each sample. Samples will be stored in the manner outlined in Section 8.1.5.

Where there is sufficient sample volume, part of the sample will be placed in a re-sealable polyethylene bag for measurement of volatile soil gases using the closed headspace Photo Ionisation Detector (PID) or Flame Ionisation Detector (FID) method. The procedure for soil screening using a PID/FID is summarised as follows:

- 1. A corresponding sample to that selected for possible laboratory analysis is placed into a "snap-lock" or re-sealable plastic bag until half filled, then sealed;
- 2. The bag is then hand warmed (or left in sunlight) for ten minutes with occasional agitation to maximise the release of volatile compounds into the bag;
- 3. Calibrate the PID/FID instrument;
- 4. Measure background VOC concentrations in ambient air prior to each reading in order to account for sensor drift. Record on a field data sheet along with date, location details, depth and method (HS for headspace method);
- 5. Use the point of the PID/FID or a knife to punch a small hole in the top the plastic bag. Place the tip of the PID/FID in the bag and monitor the readout and note the maximum and minimum concentration during the recording period;
- 6. Make entries in field data sheets:
- 7. Repeat process outlined above for each sample (ie, background reading followed by sample reading);

- 8. Check instrument calibration against span gas at the conclusion of monitoring. A check should be undertaken after every 20 samples if more than 20 samples are to be tested. Calibration checks are to be recorded on field data sheets; and
- 9. Check that samples with high concentrations of volatile compounds in headspace gases have been included for laboratory analysis.

The PID/FID is a non-specific detector, as such, the instrument provides a measure of concentrations of total combustible and ionisable compounds reported as equivalents of a calibration span gas. Therefore, the data are used to compare concentrations of volatile compounds between samples without an understanding of the specific compounds present. PIDs/FIDs are generally calibrated using zero (ambient) air and methane/isobutylene span gases.

FIDs are capable of detecting a wide range of organic compounds from C_1 upwards including a number of chlorinated solvents. For this reason, samples of organic-rich sediments sampled from anoxic environments may display elevated concentrations of combustible gases. This is due to the ability of the FID to detect compounds such as methane.

Volatile concentrations detected by PIDs/FIDs are dependent on a number of factors including:

- The concentration and type of volatile compound present in the soil sample;
- Soil texture and compaction largely influence the potential for volatiles to be released from samples;
- Time since sample collection; and
- Temperature. This strongly affects the level of volatilisation of volatile compounds from soil and fill samples. In fact, temperature changes may result in differences of up to one order of magnitude in levels of volatiles detected using PIDs/FIDs. Consequently, field screening for volatiles should be undertaken at the same time for all samples in order to produce representative results. Generally, it is recommended that samples be stored on ice and returned to base. Screening should be carried out after allowing samples to equilibrate to ambient air temperatures.

As the site consists largely of dredged sediments, soil samples collected as part of the ASS assessment will be sampled from both above and below the water table. Samples will be placed in a resealable plastic bag and frozen prior to transport to the laboratory. Field testing for PASS will be undertaken by the laboratory.

8.1.4 Decontamination Procedures.

The following decontamination procedures will be adopted for drilling and sampling equipment.

8.1.4.1 Boreholes

The boreholes will be established using a track mounted rig using a direct push tube sampling method. In order to minimise potential cross-contamination of the boreholes, all drilling equipment will be thoroughly cleaned between sampling points (set-ups) using a steam cleaner or pressure washer. Initially using Decon 90 and finally rinsed with clean water. Samples taken using the track mounted rig and the direct push tube sampling method do not require decontamination as dedicated liners are used to collect samples.

8.1.4.2 Sampling Equipment

Sampling equipment, such as trowels, will be washed between sampling locations using Decon 90 initially followed by adequate rinsing with clean water. To check the adequacy of the decontamination protocol, rinsate samples will be collected for analysis.

8.1.4.3 Sample Containers

The soil sample jars (Table 3) will comprise glass with a Teflon lined lid and be supplied by either the primary or secondary laboratory. The jars will be completely filled with soil, labelled with the job number, date, unique sampling point identification and initials of CES staff.

Resealable plastic bags will be used for the collection of samples for the ASS assessment.

8.1.5 Method of Sample Storage and Handling

The soil jars, once filled with sample, will immediately be placed in an esky / cool box in which ice has been added to keep the samples below a temperature of approximately 4°C. At the end of each day the samples in the cool box will be transported to the CES Sydney office where more ice will be added until delivery to the laboratory (within one day).

Samples collected for the ASS assessment will be frozen prior to transport to the laboratory.

8.1.6 Sample Logging

A borehole log will be completed during drilling by a qualified environmental engineer/scientist. The log records the following data:

- Sample number and depth;
- Soil classification, colour, consistency or density, odour and moisture content;
- Depth of boring / excavation;
- Auger / bucket refusal;
- Method of drilling / excavation;
- The depth of first encountered free water; and
- Presence or absence of odour and potential asbestos containing materials.

A copy of a blank borehole log is provided in Appendix 1.

All samples, including QA samples, will be transported to the primary and check laboratories under Chain-of Custody procedures and maintained in an ice-filled cooler. The COC will detail the following information:

- Site identification;
- The sampler;
- Nature of the sample;
- Collection time and date;
- Analyses to be performed;
- Sample preservation method;
- Departure time from site; and
- Dispatch courier(s).

8.1.7 QA/QC Documentation

While on site, the supervising engineer/scientist will be required to fill out a copy of CES 'sample register', which documents:

- Time of sample collection;
- Weather;
- Unique sample identification number; and
- Sample location and depth.

All samples will be classified in the field based on soil/fill characteristics and obvious signs of contamination such as discolouration or odour will be noted on the borehole log.

All samples, including QA samples, will be transported to the primary and check laboratories under Chain-of Custody procedures and maintained in an ice-filled cooler. The COC will detail the following information:

- Site identification;
- The sampler;
- Nature of the sample;
- Collection time and date;
- Analyses to be performed;
- Sample preservation method;
- Departure time from site; and
- Dispatch courier(s)

8.2 GROUNDWATER

8.2.1 Location and Number of Sampling Points

Four groundwater-monitoring wells will be installed across the site in order to ensure adequate site coverage. Groundwater in the north eastern corner of the site will be assessed using a groundwater well that is to be installed in the south eastern corner of Area A. The proposed location of the groundwater monitoring wells is provided in Figure 3.

In addition, existing groundwater wells on the site that were installed during previous investigations will also be sampled, provided that they can be located and are in sound condition. These include BH106 and BH107 (CES, 2001) and BH304 and BH305 (Golders, 2001) (Figure 3).

8.2.2 Well Construction

The groundwater investigation will comprise the installation of four shallow groundwater monitoring wells at various locations across the site using a Geoprobe 6620DT drill rig. Groundwater wells are to be constructed using factory-decontaminated, 40 mm internal diameter Schedule 40 PVC machine slotted pre-packed screen sections, 1 mm sand pack, bentonite seal, steel monument set in concrete block at the surface. The use of pre-packed wells allows a gravel pack to be reliably installed around screens in collapsing formations.

Well construction will consist of the following:

- Probe rods fitted with an expendable drive point are driven to the desired depth ensuring approximately 0.5 m of screen is installed above the water table to allow sampling of LNAPLs and free-phase product;
- The well assembly (with end cap) is then lowered into the probe rod string with threaded PVC riser pipe. Once the well assembly is lowered to the bottom of the probe rod string, the probe rods are retracted to a point (approximately 1 metre) above the screen;
- In natural sands, where natural formation collapse (occurring during the initial probe rod retraction) occurs, using pre-pack screens negates the need to add sand. However CES propose to place additional fine-grade (1mm) sand through the rod annulus effectively placing sand from the base of the well to approximately one metre above the screen;
- Granular bentonite is to then be installed in the annulus above the sand pack to form a well seal;
- A PVC cap (screw, push-in or push-on) is to be installed on each well; and
- The well will be finished at the surface by the installation of a flush mounted steel gatic cover set in concrete.

8.2.3 Well Development and Sample Collection

Fieldwork will be undertaken in accordance with documented CES procedures by experienced staff. Depending on the volumes of water present, wells will be developed with a foot valve and using a Waterra Power Pack PP1 Pump. Following development of the wells, they will then be allowed to recharge before purging and sampling. The purging process will be undertaken using a low-flow method with drawdown control to limit drawdown to less than 0.05m. This will be done using either a peristaltic pump with inlet tubing set in the middle of the well screen or a bladder pump.

A calibrated water quality meter placed within a flow cell will be used during the purging process to assess chemical equilibrium by measuring pH, redox potential (Eh), electrical conductivity, dissolved oxygen and temperature. The parameters will be considered stable and at equilibrium when two consecutive readings (during the removal of each well volume) are within $\pm 10\%$. The water quality meter will be calibrated at the beginning and end of each sampling day by trained CES staff. Calibration standards are kept in the CES office and are appropriate for the water quality meter used.

8.2.4 Decontamination Procedures

The pumps used to re-develop each well will be decontaminated in between sample locations by washing in a solution of phosphate-free detergent followed by rinsing with distilled water. The peristaltic pump will not require decontamination since CES propose to use dedicated tubing for each well. Bladders will be disposable and used only once.

8.2.5 Sample Containers

Laboratory supplied sample containers will be used to contain the groundwater samples (Table 4). Sample containers will be filled in order of volatility, with the most volatile substances collected first. Care will be taken to minimise disturbance of the sample to avoid aeration by minimising the distance between the outlet tubing and the container, tilting the container so that discharge flows gently down the inner walls, and ensuring containers have no airspace, are capped tightly and placed in an ice cooler immediately.

8.2.6 Method of Sample Collection, Storage and Handling

All sample containers will be labelled with the sample number, project number, date obtained and site name. This information will be repeated on the Chain-of-Custody (COC) record form.

Sample containers will be filled in order of the most volatile substances. Care will be taken to minimise disturbance of the sample to avoid aeration by minimising the distance between the outlet tubing and the container and tilting the container so that discharge flows gently down the inner walls.

Once filled, the caps will be checked to ensure that they are secure (and that there are no air bubbles/head space) then placed within an esky / cool box in which a cooling medium has been added to keep the samples below a temperature of approximately 4°C. At the end of each sampling day the samples in the cool box will be transported to the CES office where ice will be added until delivered to the laboratory (within one day). Custody seals will be placed on the esky / cool box for delivery to the laboratory.

8.2.7 Documentation

While on site, the supervising engineer/scientist will be required to fill out a copy of CES "Groundwater Sampling Field Data Sheet" and "Sample Register', which document:

- Time of sample collection;
- Weather;

- Unique sample identification number;
- Sample location and depth;
- Static Water Level;
- Water quality screening results (DO, Temperature, Redox potential, pH and conductivity);
- Presence or absence of odour (nature and intensity);
- Colour of the water:
- Presence or absence of sediment in the well; and
- Well condition and purging volumes.

Copies of these forms are provided in Appendix 1.

All samples, including QA samples, will be transported to the primary and check laboratories under Chain-of Custody procedures and maintained in an ice-filled cooler. The COC will detail the following information:

- Site identification;
- The sampler;
- Nature of the sample;
- Collection time and date;
- Analyses to be performed;
- Sample preservation method;
- Departure time from site; and
- Dispatch couriers.

8.3 LANDFILL GAS

8.3.1 Location and Number of Sampling Points

Four sub-surface gas monitoring wells will be installed across the sites southern boundary to assess whether landfill gas may be migrating onto the site. The proposed location of the sub-surface gas monitoring wells is provided in Figure 3.

8.3.2 Well Construction

Wells will be constructed in accordance with the following specifications:

- Well casing will be Class 18, PVC with 25 to 50 mm internal diameter. Matching male and female threads fitted with O-ring seals were machined onto each length of screen;
- Well screens will be factory slotted and match the specifications as outlined above for casing;
- Wells will be installed to approximately one metre into the unconfined aquifer and be screened to approximately one metre from the surface;
- The annulus around well screens will be filled with washed, graded river gravel (filter pack);
- A bentonite seal will be installed above the filter pack;
- Push-on or threaded caps will be fitted to the base of each well;
- Caps with vapour monitoring ports shall be fitted to each of the sub-surface gas monitoring wells. The fittings will ensure that an "air tight" seal is maintained on the well between sampling events; and
- The wells will be finished using either galvanised steel monuments set in a concrete base or gatic covers concreted at ground level.

8.3.3 Well Development and Gas Monitoring

Depending on the volumes of water present, wells will be developed with a foot valve and using a Waterra Power Pack PP1 Pump.

Monitoring will be undertaken in accordance with procedures developed by CES based on techniques for soil-gas studies and landfill surface gas surveys. These procedures are currently used by CES on a number of landfill sites in the Sydney metropolitan region. An outline of subsurface gas monitoring methods is provided below. The procedure for monitoring landfill gas wells involves the following stages:

- Initial measurements and observations;
- Purge well by the application of vacuum; and
- Gas measurements in well.

The following initial measurements and observations will be made upon arrival at each gas well:

- 1. Measure concentrations of combustible gases in the ambient air using a calibrated Flame Ionisation Detector (FID) or landfill gas analyser;
- 2. Inspect the well for damage;

- 3. Estimate the air volume in the gas monitoring well;
- 4. Measure formation pressure (gas pressure in well before venting) using a pressure gauge;
- 5. Vent gas while taking care not to breathe in the emissions. Note the response of the well to venting (*eg*, no response; brief initial pulse (typically 1-2 s), long pulse (>5 s) or continuous gas emission); and
- 6. Measure initial concentrations in the well. Use a gas sampling bag if the well discharges gas continuously when vented to atmospheric pressure.

The procedure for purging gas wells is summarised as follows:

- 1. Generate a vacuum in a pressure vessel fitted with compressor motor;
- 2. Open the vacuum to the well while noting the initial vacuum applied;
- 3. Measure recovery time, defined as the time required for the well to return to atmospheric pressure after vacuum has been applied;
- 4. Measure gas concentrations in the well upon return to atmospheric pressure; and
- 5. Repeat purging and measurement cycle until concentrations stabilise to within +/-10% or three well volumes have been purged.

It should be noted that recovery times of greater than 10 minutes should be considered to be suspect as the effect of sample train leakages is increased with long recovery times. If recovery times of greater than 10 minutes occur, the operator should conclude that the formation has a low permeability to gas, record the final vacuum (small gauge) and take no further action.

In addition to the monitoring discussed above, samples of landfill gas will be collected for analysis of Volatile Organic Compounds (VOCs). Samples will be collected by drawing a volume of air under pressure through activated carbon tubes. Samples will only be collected from wells that equilibrate to atmospheric pressure during the purging process. The tubes of activated carbon will then be submitted to the laboratory for VOC analysis. The tubes will be placed within eskies/coolers and transported to the laboratory within twenty four hours of collection.

9 PROPOSED ANALYTICAL PLAN

9.1 CHOICE OF ANALYTES

9.1.1 Soil

The analytes selected for soil testing have been determined based on our knowledge of past land use and the results of previous investigations and will comprise:

- Metals and metalloids (arsenic, cadmium, chromium, copper, nickel, lead, mercury and zinc);
- Total Petroleum Hydrocarbons (TPH);
- Monocyclic Aromatic Hydrocarbons of Benzene, Toluene, Ethylbenzene and total Xylenes (BTEX);
- Polycyclic Aromatic Hydrocarbons (PAHs);
- Organochlorine Pesticides (OCPs);
- Polychlorinated Biphenyls (PCBs);
- Volatile Organic Compounds (VOCs);
- Phenoxyacetic Acid Herbicides (PAAHs);
- Phenols:
- Nutrients (ammonia, nitrate, nitrite, total kjeldahl nitrogen and total phosphorus);
- Potential Asbestos Containing Materials (ACMs), as required;
- SPOCAS; and
- Salinity indicators such as pH, electrical conductivity, salinity, resistivity, texture, soluble sulfate and chloride.

9.1.2 Groundwater

9.1.2.1 Field Parameters

Standard field measurements will be taken during purging of the wells, to ascertain when equilibrium is reached, prior to the collection of each groundwater sample. Measurements to be taken will be:

- Dissolved oxygen;
- Electrical conductivity;
- Temperature;
- Redox potential; and
- pH.

Field measurements will be taken using a calibrated water quality meter. Calibration will be checked by measuring known standard solutions at the end of each day.

9.1.2.2 Laboratory Testing

The analytes selected for testing have been determined based on the results of previous investigations and with a view to future remediation. CES propose to analyse groundwater for:

- Dissolved metals and metalloids (arsenic, cadmium, chromium, copper, nickel, lead, zinc and mercury);
- Major anions (chloride, sulfate and alkalinity) and cations (sodium, potassium, calcium and magnesium).
- Nutrients ammonia, nitrogen and phosphorous;
- Total Petroleum Hydrocarbon (TPH);
- Monocyclic Aromatic Hydrocarbons of Benzene, Toluene, Ethylbenzene and total Xylenes (BTEX);
- Polycyclic Aromatic Hydrocarbons (PAHs);
- Organochlorine Pesticides (OCPs);
- Organophosphate Pesticides (OPPs);
- Volatile Organic Compounds (VOCs);
- Phenoxyacetic Acid Herbicides (PAAHs);
- Phenols; and
- Salinity indicators such as salinity, total dissolved solids, corrosion potential (resistivity and saturation index), alkalinity, ammonia, sulfate and chloride.

9.1.3 Landfill Gas

The parameters selected for monitoring have been determined based on CES experience with sub-surface landfill gas monitoring of putrescible landfills in the Sydney metropolitan area. CES propose to monitor sub-surface gas wells for:

- Methane, carbon dioxide and oxygen concentrations;
- Formation pressures; and
- Flow rates.

Methane, carbon dioxide and oxygen concentrations will be measured using a Landfill Gas Analyser (LGA) which will be calibrated at the beginning and end of each work day using manufacturer supplied calibration gases.

Landfill gas will also be analysed for VOCs as part of the human health risk assessment.

9.2 LABORATORY

CES propose to use either Australian Laboratory Services (ALS) Pty Ltd or Labmark Pty Ltd (Labmark) as the primary and secondary 'check' laboratories for the soil and groundwater investigations. Both laboratories are NATA accredited for the above analyses.

Bio-Track Pty Ltd will be contracted for the ASS assessment.

9.3 ANALYTICAL METHODS

9.3.1 Soil

Soil samples will be analysed in accordance with ANZECC (1996) Guidelines for the Laboratory Analysis of Contaminated Soils using USEPA and APHA approved analytical methods as described in Table 5. The laboratory Practical Quantitation Limits (PQLs) are also summarised in Table 5.

The SPOCAS analysis will be undertaken utilising the procedure outlined in the ASSMAC (1998) manual.

9.3.2 Groundwater

The water samples will be analysed using analytical methods based on US EPA and APHA methods as described in Table 6. The corresponding laboratory PQLs are also provided in Table 6.

9.3.3 Landfill Gas

The gas samples will be analysed using analytical methods based on US National Institute of Occupational Health and Safety (NIOSH) methods 1003, 1300, 1301, 1500 and 1501. The laboratory PQL is $1 \mu g$ tube⁻¹.

10 PROPOSED SITE ASSESSMENT CRITERIA

10.1 SOIL

When determining the significance of any contaminants detected in the soil, it is important to define site assessment criteria. For recreational open space land use this should include aesthetics (including soil colour and odour), ecological and potential human health issues. That is, the site assessment criteria should be set at a level that provides confidence that contaminant concentrations below the criteria will not adversely impact the environment, human health or be aesthetically adverse.

10.1.1 Aesthetics

Aesthetics relates to the generation of odours from the site and any discolouration of the soil as a result of contamination. Aesthetic issues will continually be addressed during the investigation and reported on the borehole logs.

10.1.2 Ecologically Based Investigation Levels

Potential ecological impacts have to be assessed for soils to be retained on site, which are not underneath buildings or slabs. To address potential ecological impacts of these soils, CES will compare the analytical testing results against the lower of the health based investigation levels a set of Ecological based Investigation Levels (EILs) that provides confidence that contaminant concentrations below these levels will not adversely impact specific flora proposed for the site.

Specific flora proposed for the site is not known therefore CES propose to adopt the interim urban Ecological Investigation Levels (EILs) as published in NEPC (1999), which are equivalent to the provisional Phytotoxicity-based Investigation Levels (PBIL) published in NSW EPA (1998). With respect to hydrocarbons, CES will adopt the ecologically based threshold concentrations as published in NSW EPA (1994) Guidelines for Assessing Service Station Sites.

The EILs are generally based on threshold levels for phytotoxicity or other impact to flora. As such, they are framed to protect the most sensitive environmental receptor. Both the NEPC EILs and the NSW EPA PBIL are provisional and only intended as a screening guide. Furthermore, the published levels specifically relate to sandy loams with a pH of between 6 and 8. If the proposed exposed soil does not fit this description, then field observations in conjunction with results of CEC, pH, clay content and organic content testing will be relied upon rather than the EILs.

A summary of the adopted EIL criteria is provided in Table 7.

10.1.3 Health-Based Soil Investigation Levels

To address potential health impacts at the site, CES will compare the analytical testing results against a set of Health Based Soil Investigation Levels (HIL) appropriate for the proposed landuse. That is, the HIL will be set at a level that provides confidence that contaminant concentrations below the HIL will not adversely affect human health.

It is understood that Area B will retain its existing recreational open space land use. Therefore, CES has adopted the following HIL criteria:

- NEPC (1999) Health Based Investigation Levels (HIL) recommended for exposure setting 'E' which includes recreational open space land use; and
- With respect to hydrocarbons (TPH and BTEX), the NSW EPA (1994) Threshold Levels.

For contaminants with no relevant Australian guidelines, CES will examine guideline levels from overseas which are appropriate for the future intended land-use (*eg*. USEPA Region 9 Preliminary Remediation Goals).

A summary of the soil assessment criteria is provided in Table 7.

10.1.4 Asbestos in Soil

The current EPA policy is that sites should not contain any Asbestos Containing Material (ACM) or asbestos fibres at the surface. For this project, CES propose that there must be no visible ACM and each soil sample collected must not contain any respirable asbestos fibres above the lower detection limit of the analytical method used by Australian Safer Environment and Technology Pty Ltd (ie 0.1 grams per kilogram).

10.1.5 Acid Sulfate Soils

ASSMAC (1998) criteria were selected to identify the presence of Acid Sulfate Soils on the site. These guidelines provide a series of trigger levels or action criteria, above which an ASS management plan should be prepared and development consent obtained prior to excavation works (Table 8). The trigger levels are based on the percentage of oxidisable sulfur (or equivalent TPA, TAA) for broad categories of soil types. For projects that disturb more than

1000 tonnes of soil with $\geq 0.03\%$ oxidisable sulfur or equivalent existing acidity, a detailed management plan and development consent will be required (Ahern *et al.*, 1998).

10.2 GROUNDWATER

Assessment criteria for groundwater will be derived from the ANZECC (2000) water quality guidelines.

Trigger values for marine water will be adopted for this study rather than freshwater guidelines, on the basis that the ultimate receiving system for groundwater at the site is the estuarine section of the Cooks River and ultimately Botany Bay.

The ANZECC (2000) water quality guidelines specify four sets of trigger values corresponding with different levels of protection for ecosystem conditions. Trigger values, derived using the statistical distribution method, relate to the protection of 99%, 95%, 90% and 80% of species in an aquatic ecosystem. Three "categories of ecosystem conditions" are developed in the guidelines. The guidelines advocate that the level of protection afforded to a particular ecosystem should be determined following consideration of site conditions in consultation with key stakeholders. The guidelines recommend that, in most cases, the 95% protection trigger values should be applied to "slightly to moderately disturbed" ecosystems. Consequently, with the 95% protection trigger values have been adopted. However, the ANZECC (2000) guidelines require that for chemicals which are bioaccumulative, such as mercury, that the 99 % protection trigger values be adopted. Therefore, the 99 % protection trigger value will be adopted for mercury.

In the absence of appropriate marine water levels, the 95% trigger values for freshwater will be utilised for o-xylenes. Additionally, ANZECC (2000) Low Reliability and Environmental Concern Levels (ECLs) will be utilised for TPH C₆-C₄₀. In the absence of any appropriate site assessment criteria for the remaining analytes detected, the EPA NSW (1994) *Guidelines for Assessing Service Station Site* threshold concentrations for "Waters – Protection of Aquatic Ecosystems" will be adopted for toluene, ethylbenzene and total xylenes. Assessment criteria for relevant parameters are summarised in Table 9.

10.3 LANDFILL GAS

EPA NSW (1996) specifies that a detection of methane above 1.25% v/v in sub-surface gas monitoring wells will require notification to EPA and an increase in the frequency of monitoring. This criterion will be adopted for the purposes of this investigation.

11 PROPOSED QUALITY CONTROL PLAN

Fieldwork will be undertaken by experienced staff in accordance with documented CES procedures as outlined in Section 7. Field and laboratory QA/QC requirements compliant with National Environmental Protection Council (1999) requirements are outlined below.

11.1 FIELD QA/QC PROGRAMME

Field QA/QC for this project consists of blind replicates, split samples, rinsate samples, trip spikes and trip blanks. A description of each of these samples and their proposed frequency of testing is provided below.

Rinsate samples are unlikely to be included in this investigation as the Geoprobe 6620DT drill rig utilises location specific core liners for the collection of soil samples. In addition, groundwater sampling will be undertaken using site specific tubing and equipment. However, a description of their collection and purpose has been provided below in the event that different sampling equipment becomes required.

11.1.1 Environmental Samples

Environmental samples or field samples are the representative samples of, groundwater or soil (in this case groundwater and soil) collected for analysis to determine aspects of their chemical composition.

11.1.2 Blind Replicate Samples

Blind replicate samples are provided by the collection of two environmental samples from the same location or successively from the same monitoring bore. These samples are preserved, stored, transported, prepared and analysed in an identical manner. As a minimum, the results of analyses on the blind replicate sample pair are assessed by calculating the Relative Percentage Differences (RPDs) between the results. The RPD is calculated as the difference between the results divided by their mean value and expressed as a percentage. If the RPD exceeds the value adopted for any analytes, additional investigation will be required, or justification provided for not conducting additional investigation.

One blind replicate will be collected for every ten environmental samples or one for each batch larger than five samples (Table 10). This equates to two blind replicates samples for this investigation.

11.1.3 Split Samples

Split samples provide a check on the analytical proficiency of the laboratories. Split samples are collected from the same location or successively from the same monitoring bore. Split samples must be taken from the same location as the blind replicate, thus becoming a triplicate sample. However, split samples are not taken as often as blind replicates. Split samples will generally be collected at a rate of one split sample for every 20 environmental samples or 5% of samples. For small batches split samples are collected subject to project requirements (Table 10). This equates to one split sample for this investigation

Spilt samples (triplicates) are preserved, stored, transported, prepared and analysed in an identical manner to environmental samples.

11.1.4 Rinsate (Equipment) Samples

Rinsate (equipment) blanks consist of pre-preserved bottles filled with laboratory-prepared water that has been passed over decontaminated field equipment. Rinsate blanks are prepared on site, labelled with a unique CES sample identification number and transported to the principle laboratory for analysis as regular environmental samples. The purpose of the rinsate blank is to assess the efficiency of decontamination procedures.

For inorganic compounds and semi-volatile organic compounds (SVOCs), rinsate water must consist of milli-Q water (distilled tap water passed through a resin de-ioniser). This water is unsuitable for the analysis of volatile organic compounds (VOC) due to the inclusion of volatiles in the milli-Q water. Only purged water is to be used for volatiles (VOC) rinsate blanks. This water is produced at the laboratory by purging spring water that has not been adulterated by VOCs as with tap water. Purged water is unsuitable for the production of rinsate samples for inorganics due to the presence of trace levels of inorganic compounds.

While the number of equipment blanks varies between projects, the following strategy is generally adopted (Table 10): a rate of one rinsate blank for each field collection (>5 samples). Rinsate sampling will be subject to project requirements for smaller batches (<5 samples).

Rinsate samples are not required if field equipment is dedicated for the specific sampling location.

11.1.5 Trip Blanks

Trip blanks consisting of pre-washed bottles containing distilled or de-ionised water and appropriate preservatives will be supplied by the analytical laboratory. The role of trip blanks is to detect potential contamination during sample transport. These samples reside in transport vessels during sampling activities and are not opened in the field. Trip blanks are analysed at the laboratory as regular samples or only for volatile organic compounds, as deemed appropriate.

One trip blank will be prepared for each field collection day as is the standard.

11.1.6 Laboratory Prepared Trip Spikes

Laboratory-prepared VOC spikes consisting of distilled, de-ionised water or sand spiked with known concentrations of BTEX should be included in QA/QC programmes where TPH and BTEX concentrations are being measured. Laboratory-prepared VOC spikes should be included at a rate of one per sample batch. These samples are to be submitted for BTEX analysis with results compared with the known additions. Generally, samples are spiked with concentrations of 10, 10, 10 and 30 ppm of benzene, toluene, ethylbenzene and total xylenes respectively. The purpose of these samples is to monitor VOC losses during transit.

Care will be taken to ensure that only freshly-prepared spiked samples are used. Spikes more than 2 days old at the time of receipt from the laboratory should be discarded. All trip spikes received will be checked for leakage or bubbles. Any spikes containing bubbles or any other defects will be discarded. Furthermore, only spikes delivered under laboratory COC will be accepted. COCs will be stored in the project file for reference.

11.2 LABORATORY QA/QC PROGRAMME

The reliability of test results from the analytical laboratories will be monitored according to the QA/QC procedures used by the NATA accredited laboratory. The QA/QC programme employed by ALS (the primary laboratory) will specify holding times, extraction dates, method descriptions, Chain of Custody (COC) requirements, analysis, PQLs and acceptance criteria for the results. Laboratory QA/QC requirements to be undertaken by ALS are based on NEPM requirements and are outlined below (NEPC, 1999).

11.2.1 Laboratory Duplicate Samples

Laboratory duplicates provide data on analytical precision for each batch of samples. Where required and in order to provide sufficient sample for analysis of laboratory duplicate, two

batches of samples are collected at the first site listed on the Chain of Custody form. This is done in order to ensure that sufficient sample is collected.

Laboratory duplicates are performed at a rate of one duplicate for batches of 6-14 samples with an additional duplicate for each subsequent ten samples.

11.2.2 Laboratory Control Samples

Laboratory control samples consist of a clean matrix (de-ionised water or clean sand) spiked with a known concentration of the analyte being measured. These samples monitor method recovery in clean samples and can also be used to evaluate matrix interference by comparison with matrix spikes. Laboratory control samples may be certified reference materials.

11.2.3 Surrogates

For organic analyses, a surrogate is added at the extraction stage in order to verify method effectiveness. The surrogate is then analysed with the batch of samples. Percent recovery is calculated.

11.2.4 Matrix Spike

A matrix spikes consist of samples spiked with a known concentration of the analyte being measured, in order to identify properties of the matrix that may hinder method effectiveness. Samples are spiked with concentrations equivalent to 5 to 10 times the PQL. Percent recovery is calculated.

11.2.5 Method Blanks

Method blanks (de-ionised water or clear sand) are carried through all stages of sample preparation and analysis at a rate of approximately 10%. Analyte concentrations in blanks should be less than the stated PQL. Reagent blanks are run if the method blank exceeds the PQL. The purpose of method blanks is to detect laboratory contamination.

11.3 DATA QUALITY OBJECTIVES (DQO) AND ACCEPTANCE CRITERIA

The QA/QC Data will be assessed against the Data Acceptance Criteria (DAC) provided in Table 11. If data does not meet the DAC then the following steps will be taken:

Request that the laboratory re-check or even re-analyse the sample; and

- Inspect the sample for anomalies which may be causing the failure; and
- If necessary, undertake additional sampling and analyses; or
- Qualify data. For example, data may be used for screening purposes only or working PQLs may be raised.

12 REPORTING

The proposed monitoring programme outlined in this SAQP, including field and laboratory methods and results, will be reported in accordance with the requirements of guidelines adopted by NSW EPA.

13 REFERENCES

Ahern, C.R., Stone, Y., and Blunden, B., 1998: *Acid Sulfate Soils Assessment Guidelines*. Published by the Acid Sulfate Soil Management Advisory Committee, Wollongbar, NSW, Australia.

ASSMAC (1998): *Acid Sulfate Soil Manual*. NSW Acid Soil Sulfate Soil Management Advisory Committee, August 1998.

Australian and New Zealand Environment and Conservation Council, 2000: Guidelines for Fresh and Marine Water Quality, National Water Quality Management Strategy. October 2000.

Australian Standard AS4482.2-1997: Guide to the sampling and investigation of potentially contaminated soil. Part 1. Non-volatile and semi-volatile compounds.

Australian Standard AS4482.2-1997: Guide to the sampling and investigation of potentially contaminated soil. Part 2. Volatile substances.

Consulting Earth Scientists, 2001: *Phase 1 Environmental Site Assessment: Cooks Cove Development Site*. Prepared for Trafalgar Properties Pty Ltd and Page Kirkland Management Pty Ltd. CES Report ID: CES010403-TRF-02-D1.

Consulting Earth Scientists, April 2001: *Site Contamination Issues Paper: Cooks Cove Development Site*. Prepared for Trafalgar Properties Pty Ltd and Page Kirkland Management Pty Ltd.

Consulting Earth Scientists, August 2001: *Phase 1 Environmental Site Assessment: Cooks Cove Development Site.* Prepared for Trafalgar Properties Pty Ltd and Page Kirkland Management Pty Ltd.

Consulting Earth Scientists, September 2001: "Report on Wetland Sampling Conducted 26 August 2001. Prepared for Trafalgar Properties Pty Ltd and Page Kirkland Management Pty Ltd.

Consulting Earth Scientists, October 2001: "Report on Well Installation and Groundwater Sampling Programme: Cooks River Development Site. Prepared for Trafalgar Properties Pty Ltd" and Page Kirkland Management Pty Ltd"

Department of Environment and Conservation (NSW), 2004: Contaminated Sites: Draft Guidelines for the Assessment and Management of Groundwater Contamination.

Department of Land and Water Conservation, 1997: Acid Sulfate Soil Risk Map – Edition Two (Botany Bay).

Department of Mineral Resources, 1983: Sydney 1:100000 Geological Series Map.

Environment Protection Authority NSW, 1994: *Guidelines for Assessing Service Station Sites*, EPA 94/119, December 1994, 31 pp.

Environment Protection Authority NSW, 1995: *Contaminated Sites: Sampling Design Guidelines*, EPA 95/59, September 1995, 35 pp.

Environment Protection Authority, 1996: *Environmental Guidelines: Solid Waste Landfills*. EPA NSW 95/85.

Environment Protection Authority NSW, 1997: *Guidelines for Consultants Reporting on Contaminated Sites*. EPA 97/104, Environment Protection Authority of New South Wales, Chatswood, 22 pp.

Golder Associates (January 2002). "Contamination Investigation and Conceptual Remediation Approach for Cooks River Development, Arncliffe".

Keighran Geotechnics (August 2001). "Preliminary Site Investigation, Cook Cove Industrial Development, Kogarah Golf Club, Arncliffe";

National Environmental Health Forum (NEHF), 1998: *Health-Based Soil Investigation Levels*. National Environmental Health Forum Monographs, Soil Series No 1, 2nd edition, NEHF, 33pp.

Project ID: CES050706-BCC-02-F

TABLES

Table 1: Proposed Sampling Locations					
Sample Location	Sampling Pattern	Location Rationale	Potential Contaminants of Concern for analysis	Method of Sample Collection	
BHB100 series	Triangular Grid	Located on grid pattern across site.	General Suite (Table 2)	Boreholes	
BH106	Targetted	Located towards south eastern corner of site. Installed by CES (2001).	General Suite (Table 2)	Groundwater well	
BH107	Targetted	Located along northern boundary of site. Installed by CES (2001).	General Suite (Table 2)	Groundwater well	
BH304	Targetted	Located towards eastern boundary of site. Installed by Golders (2001).	General Suite (Table 2)	Groundwater well	
BH305	Targetted	Located towards centre of site. Installed by Golders (2001).	General Suite (Table 2)	Groundwater well	
MWB101	Targetted	Located along western boundary of site.	General Suite (Table 2)	Soil and groundwater well	
MWB102	Targetted	Located along central northern boundary of site.	General Suite (Table 2)	Soil and groundwater well	
MWB103	Targetted	Located along central southern boundary of site.	General Suite (Table 2)	Soil and groundwater well	
MWB104	Targetted	Located in south eastern corner of site.	General Suite (Table 2)	Soil and groundwater well	
LGB101	Targetted	Located along southern boundary of site.	Gas monitoring	Soil and gas well	
LGB102	Targetted	Located along southern boundary of site.	Gas monitoring	Soil and gas well	
LGB103	Targetted	Located along southern boundary of site.	Gas monitoring	Soil and gas well	
LGB104	Targetted	Located along southern boundary of site.	Gas monitoring	Soil and gas well	

Table 2: Proposed Analytical Program				
Matrix	No. of Sampling Points	Potential Contaminants	Number of Environmental Samples to be Analysed	
Soil	48	General Suite	Metals and metalloids (72) TPH/BTEX (36) PAHs (36) OCPs (36) OPPs (24) VOCs (12) PAAHs (12) Phenols (12) Nutrients (12) Asbestos (18) SPOCAS - field (12) SPOCAS (6) Salinity indicators (5)	
Groundwater	10	General Suite	Metals and metalloids (10) Major ions (10) Nutrients (10) TPH/BTEX (10) PAHs (10) VOCs (10) PAAHs (10) Phenols (10) Salinity indicators (10)	

Table 3: Containers, preservation requirements and holding times – Soil					
Parameter	Container	Preservation	Maximum holding time	Colour code	
Acid digestible metals and metalloids (As, Cd, Cr, Cu, Ni, Pb, Zn, Sn)	250 mL glass	Nil	6 months	Orange	
Mercury	250 mL glass	4°C	28 days	Orange	
TPH/BTEX	250 mL glass	4°C	14 days	Orange	
PAHs	250 mL glass	4°C, zero headspace	14 days	Orange	
OCPs/OPPs/PCBs	250 mL glass	4°C, zero headspace	14 days	Orange	
VOCs, PAAHs, Phenols	250 mL glass	4°C, zero headspace	14 days	Orange	
Nutrients	250 mL glass	4°C	7 days	Orange	
Asbestos	Sealed plastic bag	Nil	Nil	Nil	
SPOCAS	Sealed plastic bag	Frozen	Nil	Nil	
Salinity indicators	Sealed plastic bag - min 1500g	Nil	Nil	Nil	

Table 4: Containers, preservation requirements and holding times – Groundwater					
Parameter	Container	Preservative	Maximum	Colour	Field
	Volume (mL)		holding time	Code	Filtered
Metals and metalloids	125 mL Plastic	$HNO_3 / 4^{\circ}C$	6 months	Red	Yes
Anions	250 ml Plastic	None / 4°C	48 Hrs	Green	No
Cations	125 mL Plastic	HNO ₃ / 4°C	7 days	Red	Yes
Nutrients	250 ml Plastic	$H_2SO_4 / 4^{\circ}C$	28 days	Purple	No
TPH (C ₆ -C ₉)/BTEX/VOCs	4 x 43 mL Glass	HCl / 4°C	14 days	Orange	No
TPH (C ₁₀ -C ₃₆)/PAHs	1000 mL Glass	None / 4°C	28 days	Orange	No
PAAHs/Phenols	1000 mL Glass	None / 4°C	28 days	Orange	No
Salinity Indicators	1000 mL	None / 4°C	48 Hrs	Green	No

Parameter	Unit	PQL	Method Based On
M	letals and Metalloids	in Soil	
Arsenic ¹	mg kg ⁻¹	1	USEPA 200.7
Cadmiun ¹	mg kg ⁻¹	1	USEPA 200.7
Chromium ¹	mg kg ⁻¹	1	USEPA 200.7
Copper ¹	mg kg ⁻¹	1	USEPA 200.7
Mercury ²	mg kg ⁻¹	0.1	USEPA 7471A
Nickel ¹	mg kg ⁻¹	1	USEPA 200.7
Lead ¹	mg kg ⁻¹	1	USEPA 200.7
Zinc ¹	mg kg ⁻¹	1	USEPA 200.7
Total Petroleum H	lydrocarbons (TPH) a	and BTEX Co	ompounds
C ₆ -C ₉ fraction	mg kg ⁻¹	2	USEPA 8015B
C_{10} - C_{14} fraction	mg kg ⁻¹	50	USEPA 8015B
C_{15} - C_{28} fraction	mg kg ⁻¹	100	USEPA 8015B
C_{29} - C_{36} fraction	mg kg ⁻¹	100	USEPA 8015B
Total C ₆ -C ₃₆	mg kg ⁻¹		USEPA 8015B
Benzene	mg kg ⁻¹	0.2	USEPA 8021A
Toluene	mg kg ⁻¹	0.5	USEPA 8021A
Ethylbenzene	mg kg ⁻¹	0.5	USEPA 8021A
m&p-xylene	mg kg ⁻¹	1	USEPA 8021A
o-xylenes	mg kg ⁻¹ Organics in Soil	0.5	USEPA 8021A
Delvavelie America Hydrogenhous	mg kg ⁻¹	0.5-1	USEPA 8270 SIM
Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	mg kg	0.05-1	USEPA 8081A
Polychlorinated Biphenyls	mg kg ⁻¹	0.03-0.2	USEPA 8081A
Toryemormated Diphenyis	Asbestos	0.1	CSLI II 0001II
Asbestos	-	_	Polarised Light Microscopy
130 2010 5	SPOCAS analysis		Totalised Light Hilleroseopy
SPOCAS	% or mol H ⁺ tonne ⁻¹	0.001-0.01	Ahern et al (1998)
	Salinity Indicator	's	
рН	pH units	0.01	AS2159:1995
Electrical Conductivity	μS cm ⁻¹	1	AS2159:1995
Salinity	ppt	1	AS2159:1995
Resistivity	Ohms	1	AS2159:1995
Soluble sulfate	mg kg ⁻¹	10	AS2159:1995
Chloride	mg kg ⁻¹	10	AS2159:1995

Parameter	Unit	PQL	Method Based On
	Metals in W	ater	
Arsenic	μg L ⁻¹	1	USEPA 200.8
Cadmium	μg L ⁻¹	0.1	USEPA 200.8
Chromium	μg L ⁻¹	1	USEPA 200.8
Copper	μg L ⁻¹	1	USEPA 200.8
Mercury	μg L ⁻¹	0.1	USEPA 7470
Nickel	μg L ⁻¹	1	USEPA 200.8
Lead	μg L ⁻¹	1	USEPA 200.8
Zinc	μg L ⁻¹	5	USEPA 200.8
M	ajor Ions in	Water	
Cations (Na ⁺ , K ⁺ , Ca ²⁺ , Mg ²⁺)	mg L ⁻¹	1	USEPA 200.7
Anions (Cl ⁻ , SO ₄ ² , HCO ₃ , CO ₃ ²)	mg L ⁻¹	1	APHA 2320
	Nutrient	ts	
Fotal Nitrogen	mg L ⁻¹	0.1	APHA 20 th Ed 4500
Ammonia	mg L ⁻¹	0.1	APHA 20 th Ed 4500 NH ₃ -H
Total Phosphorous	mg L ⁻¹	0.1	USEPA 600/4-79-020
Total Petroleun	n Hydrocark	ons (TP	H) in Water
C ₆ -C ₉ fraction	μg L ⁻¹	50	USEPA 8015B
C ₁₀ -C ₁₄ fraction	μg L ⁻¹	50	USEPA 8015B
C ₁₅ -C ₂₈ fraction	μg L ⁻¹	400	USEPA 8015B
C ₂₉ -C ₃₆ fraction	μg L ⁻¹	100	USEPA 8015B
В	TEX Comp	ounds	
Benzene	μg L ⁻¹	1	USEPA 5030/8260B
Toluene	μg L ⁻¹	1	USEPA 5030/8260B
Ethylbenzene	μg L ⁻¹	1	USEPA 5030/8260B
ortho-Xylenes	μg L ⁻¹	2	USEPA 5030/8260B
meta- and para-Xylenes	μg L ⁻¹	1	USEPA 5030/8260B
Organio	Contamina	nts in W	ater
Polycyclic Aromatic Hydrocarbons	μg L ⁻¹	0.5	USEPA 8270/EP032B
S	Salinity Indi	cators	
pH	pH units	0.1	AS2159:1995
Electrical conductivity	μS cm ⁻¹	1	AS2159:1995
Salinity	ppt	1	AS2159:1995
Total dissolved solids	mg L ⁻¹	1	AS2159:1995
Resistivity	Ohms	1	AS2159:1995
Saturation Index	-	-	AS2159:1995
Alkalinity	mg L ⁻¹	1	AS2159:1995
Ammonia	mg L ⁻¹	0.01	AS2159:1995
Sulfate	mg L ⁻¹	0.1	AS2159:1995
Chloride	mg L ⁻¹	0.1	AS2159:1995

Table 7	Table 7: Site Assessment Criteria – Soils (mg kg ⁻¹)												
Contaminant	HIL (Setting E)	EIL (Phytotoxicity)	Source										
Arsenic (total)	200	20	NEPC (1999) – Schedule (B1)										
Benzo(a)pyrene	2	-	NEPC (1999) – Schedule (B1)										
Cadmium	40	3	NEPC (1999) – Schedule (B1)										
Chromium (III)	24 %	400	NEPC (1999) – Schedule (B1)										
Copper	2000	100	NEPC (1999) – Schedule (B1)										
Lead	600	600	NEPC (1999) – Schedule (B1)										
Mercury (inorganic)	30	1	NEPC (1999) – Schedule (B1)										
Nickel	600	60	NEPC (1999) – Schedule (B1)										
Zinc	14 000	200	NEPC (1999) – Schedule (B1)										
Total PAHs	400	-	NEPC (1999) – Schedule (B1)										
TPH C ₆ -C ₉	65	-	NSW EPA (1994)										
TPH C ₁₀ -C ₄₀	1000	-	NSW EPA (1994)										
Benzene	1	-	NSW EPA (1994)										
Toluene	130	-	NSW EPA (1994)										
Ethylbenzene	50	-	NSW EPA (1994)										
Total Xylene	25	-	NSW EPA (1994)										
Aldrin + Dieldrin	20	-	NEPC (1999) – Schedule (B1)										
Chlordane	100	-	NEPC (1999) – Schedule (B1)										
DDT+DDD+DDE	400	-	NEPC (1999) – Schedule (B1)										
Heptachlor	20	-	NEPC (1999) – Schedule (B1)										
Polychlorinated Biphenyls	20	-	NEPC (1999) – Schedule (B1)										

	Table 8: Action criteria based on ASS soil analysis													
Type of Ma	iterial	Action	Criteria	Action Criteria if more than										
		1-1000 tonn	es disturbed	1000 tonnes	disturbed									
	Approx. clay	Sulfur trail	Acid trail	Sulfur trail	Acid trail									
Texture range ¹	content	% S oxidisable	mol H+/tonne	% S oxidisable	mol H+/tonne									
Texture range	(%<0.002 mm)	(oven-dry basis) eg	(oven-dry basis) eg	(oven-dry basis) eg	(oven-dry basis)									
		S_{TOS} or S_{POS}	TPA or TSA	S_{TOS} or S_{POS}	eg TPA or TSA									
Coarse Texture	≤5	0.03	18	0.03	18									
Sands to loamy sands	≥3	0.03	10	0.03	10									
Medium Texture														
Sandy loams to light	5-40	0.06	18	0.03	18									
clays														
Fine Texture														
Medium to heavy ≥40		0.1	18	0.03	18									
clays and silty clays.														
Source: Ahern et al. (1998a)	Table 4.4.													

Table 9: Su	ımmary of site assessment	criteria - groundwater				
Parameter	Criterion (µg L ⁻¹)	Source and Comments ¹				
	Metals and Metallo	ids				
Arsenic (V)	13	ANZECC 2000 (95 % freshwater)				
Cadmium	5.5	ANZECC 2000 (95 % marine)				
Chromium VI	4.4	ANZECC 2000 (95 % marine)				
Copper	1.3	ANZECC 2000 (95 % marine)				
Nickel	70	ANZECC 2000 (95 % marine)				
Lead	4.4	ANZECC 2000 (95 % marine)				
Zinc	15	ANZECC 2000 (95 % marine)				
Mercury (inorganic)	0.1	ANZECC 2000 (99 % marine)				
	Nutrients					
Nitrate	10 000	ANZECC 2000 ⁶				
Ammonia	910	ANZECC 2000				
	TPH and BTEX					
TPH C ₆ -C ₃₆	285	ANZECC 2000⁵				
Benzene	700	ANZECC 2000				
Toluene	180	ANZECC 2000 ²				
Ethylbenzene	5	ANZECC 2000 ²				
m + p xylene	ID	ANZECC 2000 ²				
o-xylene	350	ANZECC 2000				
Total xylenes	380	EPA NSW 1994 ³				
	Polycyclic Aromatic Hydr	ocarbons				
Fluoranthene	1	ANZECC 2000 ²				
Phenanthrene	0.6	ANZECC 2000 ²				
Anthracene	0.01	ANZECC 2000 ²				
Benzo(a)pyrene	0.1	ANZECC 2000 ²				
Napthalene	50	ANZECC 2000 (99%)				
	Organic Compound	ls				
Organochlorine Pesticides	Various	ANZECC 2000 ²				
Polychlorinated Biphenyls	Various	ANZECC 2000 ²				
Volatile Organic Compounds	Various	ANZECC 2000 ²				
Dissolved methane	-	-				

Note 1: ANZECC 2000 95% level of protection in marine water.

Note 2: ANZECC 2000 low reliability threshold in marine water.

Note 3: EPA NSW 1994 Guidelines for Assessing Service Stations.

Note 4: ID - insufficient data for guideline development.

Note 5: Addition of the combined detection limits

Note 6: ANZECC 2000 recreational waters guideline

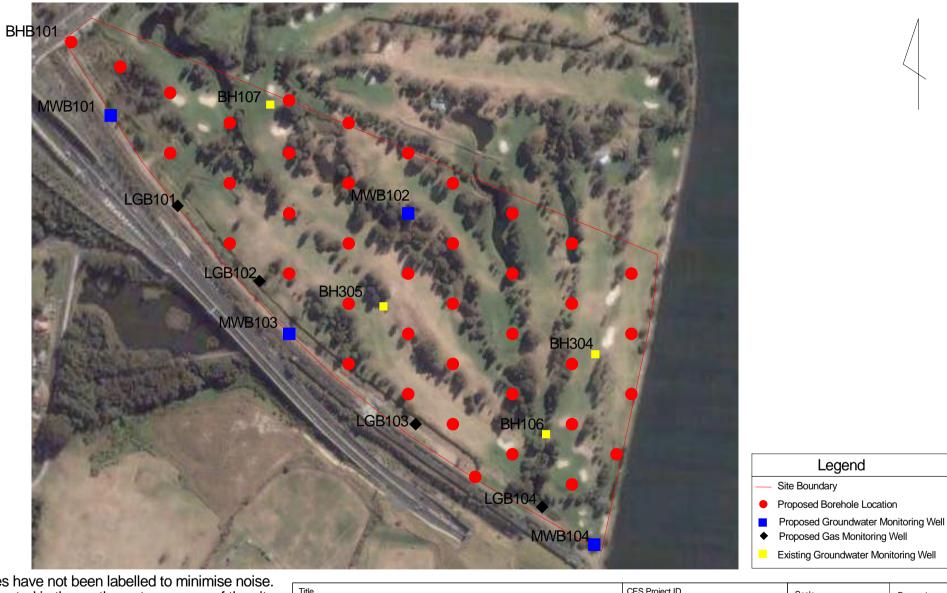
	Table 10: Frequency of Field QA/QC sampling												
Environmental samples Blind replicates Split sample Rinsate Blank (if required)													
0 – 5	Sub	ject to project requireme	nts										
5 - 10	1	0	1										
10 – 15	1	1	1										
>15	10%	5%	1										

QA/QC Sample Type	Method of Assessment	Acceptable Range
	Field QA/QC	
Blind Replicates and Split Samples	The assessment of split replicate is undertaken by calculating the Relative Percent Difference (RPD) of the replicate concentration compared with the original sample concentration. The RPD is defined as:	The acceptable range depends upon the levels detected: • 0 - 100% RPD (When the average concentration is < 5 times the PQL) • 0 - 75% RPD (When the average concentration is 5 to 10 times the PQL) • 0 - 50% RPD (When the average concentration is > 10 times the PQL)
Laboratory-prepared Trip Spikes	The trip spike is analysed after returning from the field and the % Recovery of the known spike.	70% - 130%
Blanks (Rinsate and Trip blanks)	Each blank is analysed as per the original samples.	Analytical Result < PQL
	Laboratory QA/QC	
Laboratory Duplicates	Assessment as per Split Replicates.	The acceptable range depends upon the levels detected: • 0 - 100% RPD (When the average concentration is < 4 times the PQL) • 0 - 50% RPD (When the average concentration is 4 to 10 times the PQL) • 0 - 30% RPD (When the average concentration is > 10 times the PQL)
Surrogates Matrix Spikes Laboratory Control Samples	Assessment is undertaken by determining the % Recovery of the known spike or addition to the sample.	Surrogates: 70% - 130% Matrix Spikes: 70% - 130% (Organics) 80% - 120% (Inorganics) LCS: 70% - 130% (Organics) 90% - 110% (Inorganics)
		` & /

Project ID: CES050706-BCC-02-F

FIGURES

Checked by


MP

Aerial photograph sourced from © 2005 Google Earth: Image © Digital Globe.

Legend
Site Boundary
Area Boundaries

CES PROJECT ID	SCALE	SIZE		TITLE				
CES050706-BCC	CES050706-BCC Approx. 1:8700		۸4	Figure 2 Site Layout				
DATE	PREPARED BY	CHECKED B	Y	CONSULTING				
27 September 2005	YC	MP		EARTH 1/ 111 Moore St, Leichhardt NSW 2040 ph: 02 8585 4888 f ax: 02 9550 9566				

BHB100 boreholes have not been labelled to minimise noise. BHB101 will be located in the north western corner of the site. Boreholes will be numbered sequentially from left to right and north to south.

Aerial photograph sourced from $^{\odot\,2005}\text{Google}$ Earth: Image $^{\odot}$ Digital Globe.

	Title Figure 3: Proposed sample locations, Cooks Cove Development Site - Area B	CES Project ID CES050706-BCC		Scale Approx. 1:410	00	Paper size
-	CONSULTING 1/111 Moore St, Leichhardt NSW 2040 scientists ph: 02 8585 4888 fax: 02 9550 9566	Date 28 September 2005	Prepa	YC ed by MP	Figui	re number

APPENDIX 1 Sample Field Data Sheets

Project:

Northing:

EARTH SCIENTISTS

Elevation:

m

1/111 Moore Street Leichhardt NSW 2040 PH: (02) 8585 4886 FAX: (02) 9550 9560

DRILLING	INFO.	LITHOLOGY							SAMPLING INFORMATION FID/PID (ppm)										WELL DETAIL				
epth Method Water								FID/PID (ppm) Sample ID Type p 2 2 2															
		11				<u>-</u> · -	<u>-</u>	7]			İ									
												,											
									•								_						
	•	.								•									,				
								·									.				•		
				•									-	-		-	-		1				
3			,				•	`															
						,					•	. ;		-	-	-	-				,		
1					٠						•	,											
		·	•			•			••										ļ ,				
] 				•	•			·	-	•								1		•			
			Ì											-									
	,							-						$\mid \downarrow \mid$	+	-		1	-				
		-					,						·		-		-						
3		·		•						-		'		-	1					•			
		·					. •				:		•	1			***************************************	-					
						,									-	.							
<u>, </u>					٠	,	. ,									-	-		_				
		1			••		·	:			,										٠		
				-							. •			- _	_		_						
8	, l								· •											,			
· <u>-</u>			Ţ		:	•			,		•		•						-				
9 1				_				•										1	7.				
<u>:</u>	-	-																					
				,									_				_						
4D —, ———			•	•	•		•		•	_					3.						٠		
Drill Co		у:					.*					omr			-		•				•		
Drill Me Hole D	•						•					dich											

PHOTOIONISATION DETECTOR (PID) DATA SHEET

		T	
Client:		CES Project Code:	
Project:		Location:	
	Signature(s):	Project Manager:	
Sampler (s): PID manufacturer and model:	2182222200	Serial no:	
LID HERBRINGING STORE TO OCCU.			

	* 1.
Calibration gas type and concentration:	Lamp voltage:
	Calibration check and date:
Calibration date:	CAMPIAGOR CHOCKE AND CALCE.

Date	Location Depth Method Duration Background Readings (ppm) Details m (Note 1) min. ppm Minimum Maximum						Comments	
Date ld/mm/yyyy	Details	m	(Note 1)	min.	ppm	Minimum	Maximum	
шшиууу	Detanta		(2.5					
	•							
				•	,			
								
].	
	·						 	
_								
			1					
		1						
	 -	 	 					
		 	<u> </u>	<u> </u>	<u> </u>		 	
,			<u> </u>					
				, -	,			
			 				•	
		 	 	 	 			
		<u> </u>	 .	 				
				ļ	-			
· · · · · · · · · · · · · · · · · · ·								
							,	
			 		- 			
·		 	 	 	· · · · · · · · ·		-	
				ļ	<u> </u>			
	ĺ	l	<u> </u>					
							ļ	
		 				1		
		╂	1	 	 		-	
		 		 	 			
		<u> </u>	1					
			1					
		 	1	1	<u> </u>			
		 -		1	-	 		
			4	 	- 			
	1							
						. [1

Note 1: HS - Headspace method. SG - Ambient soil gas method.

《中华人名 化多元 化二甲基 医多种 医克勒氏 医阿拉耳氏 医阿拉耳氏 医阿拉耳氏 医克勒氏 医克勒氏试验检检验检验检验检验检验检验检验检验检验检验检验检验检验检验检验检验检验检验		CES051107-ERM
· 子名· · · · · · · · · · · · · · · · · ·		CES Project Code:
是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	MONITORING WELL DEVELOPMENT FIELD DATA SHEET	
	CONSULTING	SCIENTISTS

CES Project Code:

Standing Water Level Depth to Bottom of Well Water Volume Removed Description and comments (eg. Turbidity, odours, free-pluse product, changes through development process) (beforefatter) CESOS1107-JERM Rallway Street, Corrinal Y. Carden Location: Project Manager: Signature(s): Development Method (5) EnviroRisk Management Illawinta Coke Company Y. Carden Well ID Well Development Record Cllent: Project: Sampler (5): Date

Issue Z, Revision 1, Updated 06/11/2002

Parge 1

Note I: B = Baller; 58 = Surge Block; AIR = Air spargingiair lift; NLIFT = Nitrogen gas sparging/filt; PUMP = Pumpingfover pumping

GROUNDWATER FIELD DATA SHEET

Client:	Envirogurard		CES Project Code:	CES000102-EGD
Project:	Erskine Park Landfill		Location:	Erskine Park Landfil
Sampler (s):	Petrozzi	Signature(s):	Project Manager:	Petrozzi
BH ID:	1 010		Sample ID:	
Purging Date	e: 29-Mar-05		Sampling Date:	29-Mar-05

Well Status

Well damaged:	YES/NO	Well locked:	YES/NO
Cement footing damaged:	YES/NO	Cap on PVC casing:	YES/NO
Internal obstructions in casing:	YES/NO	Well ID visible:	YES/NO
Standing water, vegetation around monument:	YES/NO	Monument damaged:	YES/NO
Water between PVC and protective casing:	YES/NO	Odours from groundwater	YES/NO
Comments			•

Comments:

Standing Water Level (SWL): (mBTOC)

Well volume: (L)

Water level after purging: (mBTOC)
Water level at time of sampling: (mBTOC)

Volume of water purged: (L)

Well purged to dry?: YES/NO

Purging equipment: Pump/micro-Purging/Bailer/Foot valve

Sampling equipment: Pump / Bailer / Foot valve

Purging Details

Elapsed time (min)	Cumulative volume (L)	DO (mg L ¹)	EC (uS cm ⁻¹)	р Н -	Eh (mV)	Temp.	Comments
					•		·
·						į	
						,	
		·					
		<u></u>	1			 	

Groundwater field parameters at the end of purging to be marked "Field Measurements".

Client:		CES Project Code:	. ,
Project:		Location:	
	Signature(s):	Project Manager:	
Sampler (s): BH ID:	Signitur o(s)4	Monitoring Date / Time:	
1111 1101			
Well Status			
NET 14 1 1	VERMO	Well locked:	YES/NO

Well locked: YES/NO Well damaged: YES/NO Cement footing damaged: YES/NO Standing water, vegetation around monument: YES/NO

Vapour cap on PVC casing: YES/NO YES/NO Well ID visible: YES/NO Monument damaged:

Comments:

Ambient air measurement (FID):

Water between PVC and protective casing:

ppm

Length of air column in well (L):

(m estimated) (L) (4.2L/m air in 50mm ID screen with gravel pack inside 110mm ID borchole)

Estimated air volume in well: Formation pressure:

Initial vent:

Nil / Initial pulse / Pulse > 5 s / Continuous - (% 3000L/hr)

(% 440L/hr) OR Gas flow rate:

k**P**a

Well pressure after initial vent:

Cumulative Maximu		cuum on Well	Recevery Time - For well	CH ₄	CO ₂	O ₂	FID	Comments
volume (L)*	(psi)	(LPa)	Recevery Time - For well vacuum to equilibrate to atmospheric pressure (min)	(%)	(%)	(%)	(ppm)	
Initial	-	-				,		
		<u> </u>						
		<u> </u>						
						٠ ,		
		·		· · ·				
		·						•
	·							
		•						
					-			
		ļ				·	l	

^{*} Where one vacuum tank volume = 12 L

Unit conversions 1 kPa = 0.145 psi 1 psi = 6.90 kPa

FIELD DATA SHEET: Landfill Surface Gas Surveys

CES Project Code:

Client:						Date:
Project:						1
Sampler (s):	<u> </u>	•	Signature(s):			Project Manager:
Wenther Candition	s and General C	omments:	· · · · · · · · · · · · · · · · · · ·			
					- 4,	
Field Calibration a	ıd Instrument I	Details (Includa m	oke, model and se	erial number)		į
					• •	
,						
,						·
Grid Details and D	Q (nerma					•
			•	•		
						·
						•
					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Date	Time	x coord	y zoord	Methane	Comments (odour, wind, l	enclate, location)
	ĺ			ppm		
/ /2002						
//2002	 					
	 					·
/ /2002			···········			
/ /2002	1	<u> </u>				
/ /2002	1	 	· · · · · · · · · · · · · · · · · · ·			
/ /2002	1					
<i>j 1</i> 2002	-					,
1 12082	 	<u> </u>				
/ /2002	- t	<u> </u>			 	
//2.082		 				
/ /2002	 	-				
/ /2002					· · · · · ·	
/ /2002	<u> </u>		<u> </u>			
1 /2002	;	 -	 		 	
/ /2,002			 	 		
/ /2.002			ļ	 	 	
/ /2002	<u>;</u>			<u> </u>		
/ /2002	;			 		·

Page 1 o

/ /2002 / /2002

Appendix 2 Tabulated QA/QC Data

A2 QUALITY ASSURANCE AND QUALITY CONTROL (QA/QC) PROGRAMME

A2.1 Field QA/QC Programme

Field QA/QC for the soil investigation consisted of thirty one blind replicates, nine split samples, nine trip blank, nine trip spike and one rinsate sample. Field QA/QC for the groundwater investigation consisted of four blind replicate, two split sample, three trip blank and three trip spike.

The number of samples collected during the soil and groundwater investigation is summarised in Tables A2-1 and A2-2.

Ta	ble A2-1: Num	ber and Frequ	iency of QA/Q	C Samples (Duplicates)	
		Quantity			
Analytes	Total	Blinds	Splits	Recommended	Actual
	•		Soil		•
Metals	196	24	12	≥ 10 %	12.2
Wietals	190	24	12	≥ 5 %	6.1
ТРН	107	15	8	≥ 10 %	14.0
1111	107	13	O	≥ 5 %	7.4
BTEX	107	15	8	≥ 10 %	14.0
DILA	107	13	O	≥ 5 %	7.4
РАН	105	15	6	≥ 10 %	14.0
TAII	103	13	U	≥ 5 %	5.7
OC/OP/PCB	98	12	5	≥ 10 %	12.2
OC/OP/PCB	98	12	3	≥ 5 %	5.1
PAAH	42	5	2	≥ 10 %	11.9
РААП	42	3	2	≥ 5 %	4.8
Dhanala	45		2	≥ 10 %	13.3
Phenols	45	6	3	≥ 5 %	6.7
VOC	43	5	3	≥ 10 %	11.6
VOC	43	3	3	≥ 5 %	7.0
Nutrients	53	6	2	≥ 10 %	10.7
Nutrients	33	0	2	≥ 5 %	3.8
		Gro	oundwater		
36.41	24	4	2	≥ 10 %	16.6
Metals	24	4	2	≥ 5 %	8.3
TODA	24	4	2	≥ 10 %	16.6
TPH	24	4	2	≥ 5 %	8.3
DWDY	2.1	4	2	≥ 10 %	16.6
BTEX	24	4	2	≥ 5 %	8.3
DAIL	24	4	2	≥ 10 %	16.6
PAH	24	4	2	≥ 5 %	8.3
OC/OD/DCD	24	4	2	≥ 10 %	16.6
OC/OP/PCB	24	4	2	≥ 5 %	8.3
NOC	22	4	2	≥ 10 %	16.6
VOC	22	4	2	≥ 5 %	8.3
NI delication	24	4	2	≥ 10 %	16.6
Nutrients	24	4	2	≥ 5 %	8.3
VOC Nutrients	22	4	2	≥ 5 % ≥ 10 %	8.

Table A2	Table A2-2: Number and Frequency of QA/QC Samples (Duplicates)													
QA/QA Sample	Analytes	Quantity	Freque	ncy										
		QA/QC	Recommended	Actual										
Rinsate Blanks ¹	All analytes	1	1 per sampling equipment	1 per sampling equipment										
Trip Blanks	Volatiles	9 (sand) 3 (water)	1 Day Dotah	1 per batch										
Trip Spike	BTEX	9 (sand) 3 (water)	1 Per Batch	1 per batch										

A description of each of the field QA/QC samples is provided in the following sections.

A2.1.1 Environmental Samples

Environmental samples are the representative samples of soil or groundwater collected for analysis to determine aspects of their chemical composition. Environmental samples are the original sample taken from a particular location and other samples are replicates or triplicates of the original.

A2.1.2 Blind Replicate Samples

Blind replicate samples are provided by the collection of two similar samples from the same location or successively from the same monitoring bore. These samples are preserved, stored, transported, prepared and analysed in an identical manner to environmental samples.

A2.1.3 Split Samples

Split samples provide a check on the analytical proficiency of the laboratories. Split samples are collected from the same location or successively from the same monitoring bore. Split samples must be taken from the same location as the blind replicate, thus becoming a triplicate sample. However, split samples are not taken as often as blind replicates. Split samples (triplicates) are preserved, stored, transported, prepared and analysed in an identical manner to environmental samples.

A2.1.4 Trip Blanks

Trip blanks consisting of pre-washed bottles containing distilled or de-ionised water and appropriate preservatives will be supplied by the analytical laboratory. The role of trip blanks is to detect potential contamination during sample transport. These samples reside in transport vessels during sampling activities and are not opened in the field. Trip blanks are analysed at the laboratory as regular samples or only for volatile organic compounds, as deemed appropriate. For soil sampling programmes, the trip blank consists of a laboratory-supplied sand blank containing acid-washed quartz sand.

A2.1.4 Laboratory-prepared Trip Spikes

Laboratory-prepared trip spikes consisting of distilled, de-ionised water or sand spiked with known concentrations of BTEX should be included in QA/QC programmes where TPH and BTEX concentrations are being measured. Laboratory-prepared trip spikes should be included at a rate of one per sample batch. These samples are to be submitted for BTEX analysis with results compared with the known additions. Generally, samples are spiked with concentrations of 10, 10, 10 and 30 ppm of benzene, toluene, ethylbenzene and total xylenes respectively. The purpose of these samples is to monitor VOC losses during transit.

Care will be taken to ensure that only freshly-prepared spiked samples are used. Spikes more than 2 days old at the time of receipt from the laboratory should be discarded. All trip spikes received will be checked for leakage or bubbles. Any spikes containing bubbles or any other defects will be discarded. Furthermore, only spikes delivered under laboratory COC will be accepted. COCs will be stored in the project file for reference.

A2.2 Laboratory QA/QC Programme

The reliability of test results from the analytical laboratories will be monitored according to the QA/QC procedures used by the NATA accredited laboratory. The QA/QC programme employed by the NATA registered laboratory specifies sample tracking procedures, methods of extraction, analysis, Practical Quantitation Limit (PQL) and acceptance criteria for results. Laboratory QA/QC procedures adopted by the laboratories used in this investigation are summarised below.

A2.2.1 Laboratory Duplicate Samples

Laboratory duplicates provide data on analytical precision for each batch of samples. Where required and in order to provide sufficient sample for analysis of laboratory duplicate, two batches of samples are collected at a site listed and marked "laboratory"

duplicate" on the Chain of Custody form. This is done in order to ensure that sufficient sample is collected.

A2.2.2 Standards

Calibration standards are prepared from individual certified materials, AR Grade or better reagents purchased as certified mixtures. Stock solutions are replaced every 6 months. Working standards are prepared at least every month from the stock solutions.

A2.2.3 Laboratory Control Samples

Laboratory control samples consist of a clean matrix (de-ionised water or clean sand) spiked with a known concentration of the analyte being measured. These samples monitor method recovery in clean samples and can also be used to evaluate matrix interference by comparison with matrix spikes. Laboratory control samples may be certified reference materials.

A2.2.4 Surrogates

For organic analyses, a surrogate is added at the extraction stage in order to verify method effectiveness. The surrogate is then analysed with the batch of samples. Percent recovery is calculated.

A2.2.4 Matrix Spike

A matrix spikes consist of samples spiked with a known concentration of the analyte being measured, in order to identify properties of the matrix that may hinder method effectiveness. Samples are spiked with concentrations equivalent to 4 to 10 times the PQL. Percent recovery is calculated.

A2.2.6 Method Blanks

Method blanks (de-ionised water or clear sand) were carried through all stages of sample preparation and analysis at a rate of approximately 10%. Analyte concentrations in blanks should be less than the stated PQL. Reagent blanks are run if the method blank exceeds the PQL. The purpose of method blanks is to detect laboratory contamination.

A8.3 DATA ACCEPTANCE CRITERIA

Data Acceptance Criteria (DAC) for this investigation are summarised in Table A9-3.

QA/QC Sample Type	Method of Assessment	Acceptable Range
	Field QA/QC	
Blind Replicates and Split Samples	The assessment of split replicate is undertaken by calculating the Relative Percent Difference (RPD) of the replicate concentration compared with the original sample concentration. The RPD is defined as: $\frac{ X_1 - X_2 }{\text{RPD} = 100 \text{ x}} \frac{ X_1 - X_2 }{\text{Average}}$ Where: X_1 and X_2 are the concentration of the original and replicate samples.	The acceptable range depends upon the levels detected: • 0 – 100% RPD (When the average concentration is < 5 times the LOR/EQL) • 0 – 75% RPD (When the average concentration is 5 to 10 times the LOR/EQL) • 0 – 50% RPD (When the average concentration is > 10 times the LOR/EQL)
Blanks (Rinsate and Trip Blanks)	Each blank is analysed as per the original samples.	Analytical Result < LOR/EQL
Laboratory-prepared Trip Spike	The trip spike is analysed after returning from the field and the % recovery of the known spike is calculated.	70% - 130%
	Laboratory QA/QC	
Laboratory Duplicates	Assessment as per Blind Replicates and Split Samples.	The acceptable range depends upon the levels detected: • 0 - 100% RPD (When the average concentration is < 4 times the LOR/EQL) • 0 - 50% RPD (When the average concentration is 4 to 10 times the LOR/EQL) • 0 - 30% RPD (When the average concentration is > 10 times the LOR/EQL)
Surrogates Matrix Spikes Laboratory Control Samples	Assessment is undertaken by determining the percent recovery of the known spike or addition to the sample. $ \frac{C-A}{B} $ % Recovery = $100 \text{ x} \frac{C-A}{B} $ Where: A = Concentration of analyte determined in the original sample; B = Added Concentration; C = Calculated Concentration.	70% - 130% (General Analytes) 50% - 130% (Phenols) 60% - 130% (OP Pesticides) If the result is outside the above ranges, the result must be < 3x Standard Deviation of the Historical Mean (calculated over past 12 months)
Method Blanks	Each blank is analysed as per the original samples.	Analytical Result < LOR/EQL

CES Document Reference: CES130608-BP-AR QAQC Appendix

			1			7			1		7			1		7	
Sample ID			280408-12-KW	280408-13-KW	280408-14-KW			290805-39-KW	290408-40-KW	290408-41-KW			010508-136-KW	010508-137-KW	010508-138-KW	_	
Location				BBH403					BBH409					BBH445			
Depth				1.1-1.4					0.2-0.5					0.1-0.4		1	
Date				28 April 2008					29 April 2008					1 May 2008		1	
Laboratory			Envirolab	Envirolab	ALS			Envirolab	Envirolab	ALS			Envirolab	ALS	1		
-						Blind Replicate	Split Sample				Blind Replicate	Split Sample		Envirolab		Blind Replicate	Split Sample
Parameter	PQL	Units	Original Sample	Blind Replicate	Split Sample	Average RPD	Average RPD	Original Sample	Blind Replicate	Split Sample	Average RPD	Average RPD	Original Sample	Blind Replicate	Split Sample	Average RPD	Average RPD
Metals																	
Arsenic	4	mg/kg	7.3	5.8	- 11	6.55 23% N/A N/A	9.15 40% N/A N/A	82	40	56	61 69% N/A N/A	69 38% N/A N/A	<4	< 4	- 5	N/A N/A N/A N/A	N/A N/A N/A N/A
Chromium	2	mg/kg	<1 6.1	< 1 5.2	< 1 4	N/A N/A 5.65 16%	N/A N/A 5.05 42%	<1 73	< 1 97	< 1 72	N/A N/A 85 28%	72.5 1%	<1	<1 1.4	<1	N/A N/A 1.4 0%	
Copper	1	mg/kg mg/kg	1.6	3.4	< 5	2.5 72%	1.6 N/A	160	150	133	155 6%	146.5 18%	1.9	2.3	6	2.1 19%	3.95 104%
Nickel	1	mg/kg	2.9	1.9	< 2	2.4 42%	2.9 N/A	3.8	4.3	3	4.05 12%	3.4 24%	< 1	< 1	<2	N/A N/A	N/A N/A
Lead	1	mg/kg	5.8	11	< 5	8.4 62%	5.8 N/A	290	360	268	325 22%	279 8%	3	5	18	4 50%	
Zinc	0.1	mg/kg	17 < 0.1	7.5 < 0.1	< 5 < 0.1	12.25 78% N/A N/A	17 N/A N/A N/A	140 0.49	150 0.58	0.3	145 7% 0.535 17%	125.5 23% 0.395 48%	6.9 < 0.1	8.7 < 0.1	18 <0.1	7.8 23% N/A N/A	
Mercury TPH/BTEX	0.1	mg/kg	< 0.1	< 0.1	< 0.1	N/A N/A	N/A N/A	0.49	0.58	0.3	0.535 17%	0.395 48%	< 0.1	< 0.1	<0.1	N/A N/A	N/A N/A
TPH C6 - C9	25	mg/kg	< 25	< 25	< 10	N/A N/A	N/A N/A	< 25	< 25	< 10	N/A N/A	N/A N/A	< 25	< 25	<10	N/A N/A	N/A N/A
TPH C10 - C14	50	mg/kg	< 50	< 50	< 50	N/A N/A	N/A N/A	< 50	< 50	< 50	N/A N/A	N/A N/A	< 50	< 50	<50	N/A N/A	N/A N/A
TPH C15 - C28	100	mg/kg	< 100	< 100	< 100	N/A N/A	N/A N/A	< 100	< 100	< 100	N/A N/A	N/A N/A	< 100	< 100	<100	N/A N/A	
TPH C29 - C36	100		< 100	< 100	< 100	N/A N/A	N/A N/A	< 100	< 100	< 100	N/A N/A N/A N/A	N/A N/A	< 100	< 100	<100 <0.2	N/A N/A	
Benzene Toluene	0.5	mg/kg	< 0.5	< 0.5	< 0.2	N/A N/A N/A N/A	N/A N/A N/A N/A	< 0.5	< 0.5	< 0.2	N/A N/A N/A N/A	N/A N/A N/A N/A	< 0.5	< 0.5	<0.2	N/A N/A	N/A N/A N/A N/A
Ethylbenzene	0.5	mg/kg mg/kg	<0.5	<0.5	< 0.5	N/A N/A	N/A N/A	<0.5	< 0.5	< 0.5	N/A N/A	N/A N/A	<0.5	<0.5	<0.5	N/A N/A	
meta- & para-Xylene	2	mg/kg	< 2	< 2	< 0.5	N/A N/A	N/A N/A	< 2	< 2	< 0.5	N/A N/A	N/A N/A	< 2	< 2	< 0.5	N/A N/A	
ortho-Xylene	1		<1	< 1	< 0.5	N/A N/A	N/A N/A	<1	< 1	< 0.5	N/A N/A	N/A N/A	< 1	< 1	< 0.5	N/A N/A	N/A N/A
PAHs																	
Naphthalene Acenaphthylene	0.1	mg/kg mg/kg	nt	nt	nt nt	N/A N/A N/A N/A	N/A N/A N/A N/A	< 0.1	< 0.1	< 0.5 < 0.5	N/A N/A N/A N/A	N/A N/A N/A N/A	< 0.1 < 0.1	< 0.1	<0.5 <0.5	N/A N/A N/A N/A	N/A N/A N/A N/A
Acenaphthene	0.1	mg/kg	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.5	N/A N/A		< 0.1	< 0.1	<0.5	N/A N/A	
Fluorene	0.1	mg/kg	nt	nt	nt	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.5	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.5	N/A N/A	N/A N/A
Phenanthrene	0.1	mg/kg	nt	nt	nt	N/A N/A	N/A N/A	0.1	0.3	< 0.5	0.2 100%	0.1 N/A	< 0.1	< 0.1	< 0.5	N/A N/A	
Anthracene	0.1	mg/kg	nt	nt	nt	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.5	N/A N/A		< 0.1	< 0.1	< 0.5	N/A N/A	
Fluoranthene Pyrene	0.1		nt nt	nt nt	nt nt	N/A N/A N/A N/A	N/A N/A N/A N/A	0.3	0.7	0.6	0.5 80% 0.55 55%	0.45 67%	< 0.1	< 0.1	<0.5	N/A N/A N/A N/A	
Pyrene Benzo(a)anthracene	0.1	mg/kg mg/kg	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	0.4	0.7	< 0.5	0.25 40%	0.2 N/A	< 0.1	< 0.1	<0.5	N/A N/A	
Chrysene	0.1	mg/kg	nt	nt	nt	N/A N/A	N/A N/A	0.2	0.4	< 0.5	0.3 67%	0.2 N/A	< 0.1	< 0.1	<0.5	N/A N/A	N/A N/A
Benzo(b)&(k)fluoranthene	0.2	mg/kg	nt	nt	nt	N/A N/A	N/A N/A	0.5	0.6	nt	0.55 18%	0.5 N/A	< 0.2	< 0.2	< 0.5	N/A N/A	N/A N/A
Benzo(a)pyrene	0.05	mg/kg	nt	nt	nt	N/A N/A	N/A N/A	0.3	0.3	< 0.5	0.3 0%	0.3 N/A	< 0.05	< 0.05	< 0.5	N/A N/A	N/A N/A
Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	0.1		nt nt	nt nt	nt nt	N/A N/A N/A N/A	N/A N/A N/A N/A	0.2 < 0.1	0.2 < 0.1	< 0.5 < 0.5	0.2 0% N/A N/A	0.2 N/A N/A N/A	< 0.1	< 0.1	<0.5 <0.5	N/A N/A N/A N/A	
Benzo(g,h,i)perylene	0.1		nt nt	nt nt	nt nt	N/A N/A	N/A N/A	0.2	0.2	< 0.5	0.2 0%		< 0.1	< 0.1	<0.5	N/A N/A	N/A N/A
OCP																	1
alpha-BCH	0.1	mg/kg	nt	nt	nt	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.05	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.05	N/A N/A	N/A N/A
Hexachlorobenzene	0.1	mg/kg	nt	nt	nt	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.05	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.05	N/A N/A	N/A N/A
b-BHC gamma-BHC (Lindane)	0.1	mg/kg	nt nt	nt nt	nt nt	N/A N/A N/A N/A	N/A N/A N/A N/A	< 0.1	< 0.1	< 0.05	N/A N/A N/A N/A	N/A N/A N/A N/A	< 0.1	< 0.1	< 0.05	N/A N/A N/A N/A	
d-BHC	0.1	mg/kg mg/kg	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	< 0.1 < 0.1	< 0.1	< 0.05	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.05	N/A N/A	
Heptachlor	0.1	mg/kg	nt	nt	nt	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.05	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.05	N/A N/A	
Aldrin	0.1	mg/kg	nt	nt	nt	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.05	N/A N/A		< 0.1	< 0.1	< 0.05	N/A N/A	
Heptachlor epoxide	0.1	mg/kg	nt	nt	nt	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.05	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.05	N/A N/A	
Chlordane - trans Chlordane - cis	0.1	mg/kg	nt nt	nt nt	nt nt	N/A N/A N/A N/A	N/A N/A N/A N/A	< 0.1	< 0.1	< 0.05	N/A N/A N/A N/A	N/A N/A N/A N/A	< 0.1	< 0.1	< 0.05	N/A N/A	N/A N/A N/A N/A
Endosulfan alpha	0.1	mg/kg mg/kg	nt nt	nt nt	nt	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.05	N/A N/A		< 0.1	< 0.1	< 0.05	N/A N/A	
Dieldrin	0.1	mg/kg	nt	nt	nt	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.05	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.05	N/A N/A	
4,4-DDE	0.1	mg/kg	nt	nt	nt	N/A N/A	N/A N/A	< 0.1	< 0.1	0.1	N/A N/A	0.1 N/A	< 0.1	< 0.1	0.1	N/A N/A	0.1 N/A
4,4-DDD	0.1	mg/kg	nt	nt	nt	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.05	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.05	N/A N/A	
Endrin	0.1	mg/kg	nt	nt	nt	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.05	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.05	N/A N/A	
Endosulfan II Endrin aldehyde	0.1	mg/kg	nt nt	nt nt	nt nt	N/A N/A N/A N/A	N/A N/A N/A N/A	< 0.1	< 0.1	< 0.05 < 0.05	N/A N/A N/A N/A	N/A N/A N/A N/A	< 0.1 < 0.1	< 0.1	< 0.05 < 0.05	N/A N/A N/A N/A	N/A N/A N/A N/A
Endosulfan sulphate	0.1	mg/kg mg/kg	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.05	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.05	N/A N/A	N/A N/A
4,4-DDT	0.1	mg/kg	nt	nt	nt	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.2	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.2	N/A N/A	N/A N/A
Methoxychlor	0.1	mg/kg	nt	nt	nt	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.2	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.2	N/A N/A	N/A N/A
OPP																	
Directhoate Diazinon	0.1		nt nt	nt nt	nt nt	N/A N/A N/A N/A	N/A N/A N/A N/A	< 0.1	< 0.1	< 0.05	N/A N/A	N/A N/A N/A N/A	< 0.1	< 0.1	< 0.05	N/A N/A	
Diazmon Chlorpyrifos-methyl	0.1	mg/kg mg/kg	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.05	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.05	N/A N/A	
Ronnel	0.1	mg/kg	nt	nt	nt	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.05 nt	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.05 nt	N/A N/A	N/A N/A
Fenitrothion	0.1	mg/kg	nt	nt	nt	N/A N/A	N/A N/A	< 0.1	< 0.1	nt	N/A N/A	N/A N/A	< 0.1	< 0.1	nt	N/A N/A	N/A N/A
			nt	pf	nt	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.05	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.05	N/A N/A	N/A N/A
Chlorpyrifos	0.1																
Chlorpyrifos Ethion	0.1	mg/kg mg/kg	nt	nt	nt	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.05	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.05	N/A N/A	N/A N/A
	0.1		nt	nt					< 0.1	< 0.05		N/A N/A		< 0.1			N/A N/A N/A N/A

Sample ID	Sample ID 280408-12-KW 280408-13-KW 280408-14-KW		1				290805,39.KW	290408-40-KW	290408-41-KW	Т			Г	010508-136-KW	010508-137-KW	010508.138.KW	1						
Location			200408-12-K11	280408-13-K W	280408-14-1411	1				270803-37-KW	270403-40-KW	270405-41-KW	-			ŀ	010308-130-K11	010308-137-KW	010508-138-KW	-			
						1							1			ŀ				4			
Depth				1.1-1.4							0.2-0.5		╡		0.1-0.4			-					
Date				28 April 2008							29 April 2008		-			-		1 May 2008		1			
Laboratory	1	1	Envirolab	Envirolab	ALS					Envirolab	Envirolab	ALS					Envirolab	Envirolab	ALS				
Parameter	PQL	Units	Original Sample	Blind Replicate	Split Sample	Average	Replicate RPD	Split Sa Average	RPD	Original Sample	Blind Replicate	Split Sample	Average	Replicate RPD	Average	Sample RPD	Original Sample	Blind Replicate	Split Sample	Blind Re	RPD	Split Sa Average	RPD
VOC Styrene	1	mg/kg	nt	nt	nt	N/A	N/A	N/A	N/A	nt	nt	nt	N/A	N/A	N/A	N/A	<1	<1	< 0.5	N/A	N/A	N/A	N/A
Cumene (isopropylbenzene)	i	mg/kg	nt	nt	nt	N/A	N/A	N/A	N/A	nt	nt	nt	N/A	N/A	N/A	N/A	<1	<1	< 0.5	N/A	N/A	N/A	N/A
n-Propylbenzene 1,3,5-Trimethylbenzene	1	mg/kg mg/kg	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	N/A N/A	N/A N/A	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	N/A N/A	N/A N/A	<1	<1	< 0.5 < 0.5	N/A N/A	N/A N/A	N/A N/A	N/A N/A
sec-butylbenzene	1	mg/kg	nt	nt	nt	N/A	N/A	N/A	N/A	nt	nt	nt	N/A	N/A	N/A	N/A	<1	<1	< 0.5	N/A	N/A	N/A	N/A
1,2,4-Trimethylbenzene	- 1	mg/kg	nt	nt	nt	N/A	N/A	N/A	N/A	nt	nt	nt	N/A	N/A	N/A		<1	<1	< 0.5	N/A	N/A		N/A
tert-Butylbenzene p-isopropyltoluene	1	mg/kg mg/kg	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	N/A N/A	N/A N/A	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	N/A N/A	N/A N/A	<1	<1	< 0.5 < 0.5	N/A N/A	N/A N/A	N/A N/A	N/A N/A
n-Butylbenzene	1	mg/kg	nt	nt	nt	N/A	N/A	N/A	N/A	nt	nt	nt	N/A	N/A	N/A	N/A	<1	<1	< 0.5	N/A	N/A	N/A	N/A
2,2-Dichloropropane	1	mg/kg	nt	nt	nt	N/A	N/A	N/A	N/A	nt	nt	nt	N/A	N/A	N/A		<1	<1	< 0.5	N/A	N/A	N/A	N/A
1,2-dichloropropane	1	mg/kg	nt	nt nt	nt	N/A N/A	N/A N/A	N/A N/A	N/A N/A	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	N/A N/A	N/A N/A	<1	<1	< 0.5	N/A N/A	N/A N/A	N/A N/A	N/A N/A
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	1	mg/kg mg/kg	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	N/A N/A	N/A N/A	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	N/A N/A	N/A N/A	<1	<1	< 0.5 < 0.5	N/A N/A	N/A N/A	N/A N/A	N/A N/A
1,2-Dibromoethane	i	mg/kg	nt	nt	nt	N/A	N/A	N/A	N/A	nt	nt	nt	N/A	N/A	N/A		< 1	<1	< 0.5	N/A	N/A	N/A	N/A
Dichlorodifluoromethane	10	mg/kg	nt	nt	nt	N/A	N/A	N/A	N/A N/A	nt	nt	nt	N/A	N/A	N/A	N/A	< 10	< 10	< 5	N/A N/A	N/A	N/A N/A	N/A N/A
Chloromethane Vinyl chloride	10	mg/kg mg/kg	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	N/A N/A	N/A N/A	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	N/A N/A	N/A N/A	< 10 < 10	< 10 < 10	< 5 < 5	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Bromomethane	10	mg/kg	nt	nt	nt	N/A	N/A	N/A	N/A	nt	nt	nt	N/A	N/A	N/A	N/A	< 10	< 10	< 5	N/A	N/A	N/A	N/A
Chloroethane	10	mg/kg	nt	nt	nt	N/A	N/A	N/A	N/A	nt	nt	nt	N/A	N/A	N/A	N/A	< 10	< 10	< 5	N/A	N/A	N/A	N/A
Trichlorofluoromethane 1,1-Dichloroethylene	10	mg/kg	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	N/A N/A	N/A N/A	nt nt	nt	nt nt	N/A N/A	N/A N/A	N/A N/A	N/A N/A	< 10	< 10	< 5	N/A N/A	N/A N/A	N/A N/A	N/A N/A
trans-1.2-Dichloroethylene	1	mg/kg mg/kg	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	N/A	N/A	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	N/A N/A	N/A	<1	<1	< 0.5 < 0.5	N/A	N/A	N/A N/A	N/A N/A
1,1-Dichloroethane	1	mg/kg	nt	nt	nt	N/A	N/A	N/A	N/A	nt	nt	nt	N/A	N/A	N/A		nt	nt	< 0.5	N/A	N/A	N/A	N/A
cis-1,2-Dichloroethylene	1	mg/kg	nt	nt	nt	N/A	N/A	N/A	N/A	nt	nt	nt	N/A	N/A	N/A	N/A	<1	<1	< 0.5	N/A	N/A	N/A	N/A
1,1,1-Trichloroethane 1,1-Dichloropropene	1	mg/kg mg/kg	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	N/A N/A	N/A N/A	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	N/A N/A	N/A N/A	<1	<1	< 0.5 < 0.5	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Carbon tetrachloride	1	mg/kg	nt	nt	nt	N/A	N/A	N/A	N/A	nt	nt	nt	N/A	N/A	N/A	N/A	<1	<1	< 0.5	N/A	N/A	N/A	N/A
1,2-Dichloroethane	1	mg/kg	nt	nt	nt	N/A	N/A	N/A	N/A	nt	nt	nt	N/A	N/A	N/A		<1	<1	< 0.5	N/A	N/A	N/A	N/A
Trichloroethene Dibromomethane	1	mg/kg mg/kg	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	N/A N/A	N/A N/A	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	N/A N/A	N/A N/A	<1	<1	< 0.5 < 0.5	N/A N/A	N/A N/A	N/A N/A	N/A N/A
1,1,2-trichloroethane	1	mg/kg mg/kg	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	N/A	N/A	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	N/A N/A	N/A	<1	<1	< 0.5	N/A	N/A N/A	N/A N/A	N/A N/A
1,3-dichloropropane	i	mg/kg	nt	nt	nt	N/A	N/A	N/A	N/A	nt	nt	nt	N/A	N/A	N/A	N/A	<1	< 1	< 0.5	N/A	N/A	N/A	N/A
Tetrachloroethene 1.1.1.2-Tetrachloroethane	1	mg/kg	nt	nt	nt	N/A N/A	N/A N/A	N/A N/A	N/A N/A	nt	nt	nt	N/A N/A	N/A N/A	N/A N/A	N/A N/A	<1	<1	< 0.5	N/A N/A	N/A N/A	N/A N/A	N/A N/A
1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane	1	mg/kg mg/kg	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	N/A N/A	N/A N/A	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	N/A N/A	N/A N/A	<1	<1	< 0.5 < 0.5	N/A N/A	N/A N/A	N/A N/A	N/A N/A
1,2,3-Trichloropropane	1	mg/kg	nt	nt	nt	N/A	N/A	N/A	N/A	nt	nt	nt	N/A	N/A	N/A	N/A	<1	<1	< 0.5	N/A	N/A	N/A	N/A
1,2-Dibromo-3-chloropropane Hexachlorobutadiene	1	mg/kg	nt	nt	nt	N/A N/A	N/A N/A	N/A N/A	N/A N/A	nt	nt	nt	N/A N/A	N/A N/A	N/A N/A		<1	<1	< 0.5	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Hexachlorobutadiene Bromocholoromethane	1	mg/kg mg/kg	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	N/A N/A	N/A N/A	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	N/A N/A	N/A N/A	<1 <1	<1	< 0.5 nt	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Chlorobenzene	i	mg/kg	nt	nt	nt	N/A	N/A	N/A	N/A	nt	nt	nt	N/A	N/A	N/A	N/A	<1	<1	< 0.5	N/A	N/A	N/A	N/A
Bromobenzene	1	mg/kg	nt	nt	nt	N/A	N/A	N/A	N/A N/A	nt	nt	nt	N/A N/A	N/A	N/A N/A	N/A	<1	<1	< 0.5	N/A N/A	N/A N/A	N/A N/A	N/A N/A
o-Chlorotoluene 4-chlorotoluene	1	mg/kg mg/kg	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	N/A N/A	N/A N/A	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	N/A N/A	N/A N/A	<1	<1	< 0.5 < 0.5	N/A N/A	N/A N/A	N/A N/A	N/A N/A
1,3-Dichlorobenzene	1	mg/kg	nt	nt	nt	N/A	N/A	N/A	N/A	nt	nt	nt	N/A	N/A	N/A	N/A	< 1	<1	< 0.5	N/A	N/A	N/A	N/A
1,4-Dichlorobenzene	1	mg/kg	nt	nt	nt	N/A	N/A	N/A	N/A	nt	nt	nt	N/A	N/A	N/A	N/A	<1	<1	< 0.5	N/A	N/A	N/A	N/A
1,2-Dichlorobenzene 1,2,4-trichlorobenzene	1	mg/kg mg/kg	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	N/A N/A	N/A N/A	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	N/A N/A	N/A N/A	<1	<1	< 0.5	N/A N/A	N/A N/A	N/A N/A	N/A N/A
1,2,4-trichlorobenzene 1,2,3-trichlorobenzene	1	mg/kg mg/kg	nt nt	nt nt	nt nt	N/A N/A	N/A	N/A	N/A	nt nt	nt nt	nt nt	N/A N/A	N/A	N/A N/A	N/A N/A	<1	<1	< 0.5	N/A	N/A	N/A	N/A N/A
Chloroform	1	mg/kg	nt	nt	nt	N/A	N/A	N/A	N/A	nt	nt	nt	N/A	N/A	N/A		<1	< 1	< 0.5	N/A	N/A	N/A	N/A
Bromodichloromethane Chlorodibromomethane	1	mg/kg	nt	nt	nt	N/A N/A	N/A N/A	N/A N/A	N/A N/A	nt	nt	nt	N/A N/A	N/A N/A	N/A N/A	N/A N/A	<1	<1	< 0.5	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Chlorodibromomethane Bromoform	1	mg/kg mg/kg	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	N/A N/A	N/A N/A	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	N/A N/A	N/A N/A	<1	<1	< 0.5	N/A N/A	N/A N/A	N/A N/A	N/A N/A
PAAH		- mg/ng				1 1000		1 100	1273						100	1975	``		~ 0.0	1 1925	150		17/73
2,4-DB	100	ug/kg	nt	nt	nt	N/A	N/A	N/A	N/A	nt	nt	nt	N/A	N/A		N/A	< 100	< 100	< 100	N/A	N/A	N/A	
Dicamba 2-Methyl-4-chlorophenoxyacetic acid	100	ug/kg	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	N/A N/A	N/A N/A	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	N/A N/A		< 100 < 100	< 100 < 100	< 100 < 100	N/A N/A	N/A N/A	N/A N/A	N/A N/A
2,4-DP (Dichloroprop)	100	ug/kg ug/kg	nt nt	nt nt	nt nt	N/A	N/A	N/A	N/A	nt nt	nt nt	nt nt	N/A N/A	N/A	N/A N/A	N/A N/A	< 100 < 100	< 100 < 100	< 100 < 100	N/A	N/A	N/A	N/A N/A
2,4-D	100	ug/kg	nt	nt	nt	N/A	N/A	N/A	N/A	nt	nt	nt	N/A	N/A	N/A	N/A	< 100	< 100	< 100	N/A	N/A	N/A	N/A
Triclopyr	100	ug/kg	nt nt	nt nt	nt nt	N/A	N/A	N/A	N/A	nt nt	nt nt	nt nt	N/A	N/A	N/A	N/A	< 100	< 100	< 100	N/A	N/A		N/A
2-(2,4,5-Trichlorophenoxy) propionic acid 2,4,5-T	100	ug/kg ug/ke	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	N/A N/A	N/A N/A	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	N/A N/A	N/A N/A	< 100 < 100	< 100 < 100	< 100 < 100	N/A N/A	N/A N/A	N/A N/A	N/A N/A
2,4,3×1 Phenols	100	ug/kg	1	1	I III	N/A	NA	NA	IVA		III.	1	NA	N/A	N/A	NA	< 100	× 100	< 100	NA	NA	NA	NA
Total Phenols	5	mg/kg	nt	nt	nt	N/A	N/A	N/A	N/A	nt	nt	nt	N/A	N/A	N/A	N/A	্ত	d	্ব	N/A	N/A	N/A	N/A
Nutrients					1																		
Ammonia as N Total Kjeldahl Nitrogen	0.5 30	mg/kg mg/kg	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	N/A N/A	N/A N/A	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	N/A N/A		nt	nt	nt	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Nitrite as N	0.1	mg/kg mg/kg	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	N/A N/A	N/A	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	N/A N/A	N/A	nt nt	nt nt	nt nt	N/A	N/A N/A	N/A N/A	N/A
Nitrate as N	0.5	mg/kg	nt	nt	nt	N/A	N/A	N/A	N/A	nt	nt	nt	N/A	N/A	N/A	N/A	nt	nt	nt	N/A	N/A	N/A	N/A
Total Phosphorous	10	mg/kg	nt	nt	nt	N/A	N/A	N/A	N/A	nt	nt	nt	N/A	N/A	N/A	N/A	nt	nt	nt	N/A	N/A	N/A	N/A
NOTES:																							

NA - not applicable.

NO - not applicable.

Signifies RPD > 50% where the average concentration exceeds ten times the EQL, or where the RPD > 75% where the average concentration is between 5-10 times the EQL or where the RPD > 100% where the average concentration is between 2-5 times the EQL or where the RPD > 100% where the average concentration is between 2-5 times the EQL.

nd - Result is below the laboratory Estimated Quantitation Limit. * EQL increased due to matrix interference

				1		1								1	1		1	
Sample ID			060508-14-KW	060508-15-KW	060508-16-KW	1		070508-55-KW	070508-56-KW	070508-57-KW			ļ	280508-123-KW	280508-124-KW	280508-125-KW	1	
Location				ABH229					ABH204						ABH240			
Depth				0.5-0.8		1			0.1-0.4				Ī		0.1-0.4		1	
Date				6 May 2008					7 May 2008				f		28 May 2008			
Laboratory			Envirolab	Envirolab	ALS			Envirolab	Envirolab	ALS			ŀ	Envirolab	Envirolab	ALS		
-						Blind Replicate	Split Sample				Blind Replicate	Split Sa	mple				Blind Replicate	Split Sample
Parameter	PQL	Units	Original Sample	Blind Replicate	Split Sample	Average RPD	Average RPD	Original Sample	Blind Replicate	Split Sample	Average RPD	Average	RPD	Original Sample	Blind Replicate	Split Sample	Average RPD	Average RPD
Metals Arsenic											N/A N/A							N/A N/A
Arsenic Cadmium	4	mg/kg mg/kg	<4	< 4	<5	N/A N/A N/A N/A	N/A N/A N/A N/A	< 4	<4	<5	N/A N/A N/A N/A	N/A N/A	N/A N/A	< 4	<4	<5	N/A N/A N/A N/A	N/A N/A N/A N/A
Chromium	Ĩ.	mg/kg	2.1	1.8	<2	1.95 15%	2.1 N/A	3.1	3	2	3.05 3%	2.55	43%	2	2.6	2	2.3 26%	2 0%
Copper	1	mg/kg	<1	<1	< 5	N/A N/A	N/A N/A	3.9	6.5	6	5.2 50%	4.95	42%	1.8	1.6	<5	1.7 12%	1.8 N/A
Nickel Lead	1	mg/kg mg/kg	<1 1.1	< 1 1.2	<5 <2	N/A N/A 1.15 9%	N/A N/A 1.1 N/A	9,9	1 16	< 2	1 0% 12.95 47%	9.45	N/A 10%	< 1 3.5	1.1	< 2 < 5	1.1 N/A 2.75 55%	N/A N/A 3.5 N/A
Zinc	1	mg/kg	36	12	28	24 100%	32 25%	4.8	16	8	10.4 108%		50%	5.3	3.3	<5	4.3 47%	
Mercury	0.1	mg/kg	< 0.1	< 0.1	<0.1	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.1	N/A N/A	N/A	N/A	< 0.1	< 0.1	< 0.1	N/A N/A	N/A N/A
TPH/BTEX					-10	N. 1 N.	V/4 V/4				574 T 574	N//4	27/4				1 No. 1 No.	T NO.
TPH C6 - C9 TPH C10 - C14	25 50	mg/kg mg/kg	< 25 < 50	< 25 < 50	<10	N/A N/A N/A N/A	N/A N/A N/A N/A	< 25 < 50	< 25 < 50	< 10 < 50	N/A N/A N/A N/A	N/A N/A	N/A N/A	< 25 < 50	< 25 < 50	< 10 < 50	N/A N/A N/A N/A	N/A N/A N/A N/A
TPH C15 - C28	100	mg/kg	< 100	< 100	<100	N/A N/A	N/A N/A	< 100	< 100	< 100	N/A N/A	N/A	N/A	< 100	< 100	< 100	N/A N/A	N/A N/A
TPH C29 - C36	100	mg/kg	< 100	< 100	<100	N/A N/A	N/A N/A	< 100	< 100	< 100	N/A N/A	N/A	N/A	< 100	< 100	< 100	N/A N/A	N/A N/A
Benzene Toluene	0.5	mg/kg	< 0.5	< 0.5	<0.2	N/A N/A N/A N/A	N/A N/A N/A N/A	< 0.5	< 0.5	< 0.2	N/A N/A N/A N/A	N/A N/A	N/A N/A	< 0.5	< 0.5	< 0.2	N/A N/A N/A N/A	N/A N/A N/A N/A
Toluene Ethylbenzene	0.5	mg/kg mg/kg	< 0.5 < 1	< 0.5	<0.5 <0.5	N/A N/A	N/A N/A	< 0.5	< 0.5	< 0.5 < 0.5	N/A N/A	N/A N/A	N/A N/A	< 0.5 < 1	< 0.5	< 0.5 < 0.5	N/A N/A	N/A N/A
meta- & para-Xylene	2	mg/kg	< 2	< 2	<0.5	N/A N/A	N/A N/A	< 2	< 2	< 0.5	N/A N/A	N/A	N/A	< 2	< 2	< 0.5	N/A N/A	N/A N/A
ortho-Xylene	1	mg/kg	<1	<1	<0.5	N/A N/A	N/A N/A	<1	<1	< 0.5	N/A N/A	N/A	N/A	<1	<1	< 0.5	N/A N/A	N/A N/A
PAHs Naphthalene	0.1	mg/kg	< 0.1	< 0.1	<0.5	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.5	N/A N/A	N/A	N/A	< 0.1	< 0.1	< 0.5	N/A N/A	N/A N/A
Acenaphthylene	0.1	mg/kg	< 0.1	< 0.1	<0.5	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.5	N/A N/A	N/A	N/A	< 0.1	< 0.1	< 0.5	N/A N/A	N/A N/A
Acenaphthene	0.1	mg/kg	< 0.1	< 0.1	<0.5	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.5	N/A N/A	N/A	N/A	< 0.1	< 0.1	< 0.5	N/A N/A	N/A N/A
Fluorene	0.1	mg/kg	< 0.1	< 0.1	<0.5	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.5	N/A N/A	N/A	N/A	< 0.1	< 0.1	< 0.5	N/A N/A	N/A N/A
Phenanthrene Anthracene	0.1	mg/kg mg/kg	< 0.1	< 0.1	<0.5	N/A N/A N/A N/A	N/A N/A N/A N/A	< 0.1	0.1 < 0.1	< 0.5 < 0.5	0.1 N/A N/A N/A	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.5 < 0.5	N/A N/A N/A N/A	N/A N/A N/A N/A
Fluoranthene	0.1	mg/kg	< 0.1	< 0.1	<0.5	N/A N/A	N/A N/A	< 0.1	0.3	< 0.5	0.3 N/A	N/A	N/A	< 0.1	< 0.1	< 0.5	N/A N/A	N/A N/A
Pyrene	0.1	mg/kg	< 0.1	< 0.1	<0.5	N/A N/A	N/A N/A	< 0.1	0.3	< 0.5	0.3 N/A	N/A	N/A	< 0.1	< 0.1	< 0.5	N/A N/A	N/A N/A
Benzo(a)anthracene Chrysene	0.1	mg/kg	< 0.1	< 0.1	<0.5	N/A N/A	N/A N/A N/A N/A	< 0.1	0.1	< 0.5	0.1 N/A 0.2 N/A	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.5	N/A N/A N/A N/A	N/A N/A N/A N/A
Cnrysene Benzo(b)&(k)fluoranthene	0.1	mg/kg mg/kg	< 0.1	< 0.1	<0.5	N/A N/A	N/A N/A	< 0.1	0.2	< 0.5	0.2 N/A 0.4 N/A	N/A	N/A N/A	< 0.1	< 0.1	< 0.5	N/A N/A	N/A N/A
Benzo(a)pyrene	0.05	mg/kg	< 0.05	< 0.05	<0.5	N/A N/A	N/A N/A	< 0.05	0.2	< 0.5	0.2 N/A	N/A	N/A	< 0.05	< 0.05	< 0.5	N/A N/A	N/A N/A
Indeno(1,2,3-cd)pyrene	0.1	mg/kg	< 0.1	< 0.1	<0.5 <0.5	N/A N/A N/A N/A	N/A N/A N/A N/A	< 0.1	0.1 < 0.1	< 0.5 < 0.5	0.1 N/A N/A N/A	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.5 < 0.5	N/A N/A N/A N/A	N/A N/A N/A N/A
Dibenz(a,h)anthracene Benzo(g,h,i)perylene	0.1	mg/kg mg/kg	< 0.1 < 0.1	< 0.1	<0.5	N/A N/A	N/A N/A	< 0.1	< 0.1 0.1	< 0.5	0.1 N/A	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.5	N/A N/A	N/A N/A
OCP																		
alpha-BCH	0.1	mg/kg	< 0.1	< 0.1	<0.5	N/A N/A	N/A N/A	nt	nt	nt	N/A N/A	N/A	N/A	< 0.1	< 0.1	< 0.05	N/A N/A	N/A N/A
Hexachlorobenzene b-BHC	0.1	mg/kg	< 0.1	< 0.1	<0.5 <0.5	N/A N/A N/A N/A	N/A N/A N/A N/A	nt nt	nt nt	nt nt	N/A N/A N/A N/A	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.05 < 0.05	N/A N/A N/A N/A	N/A N/A N/A N/A
gamma-BHC (Lindane)	0.1	mg/kg mg/kg	< 0.1	< 0.1	<0.5	N/A N/A	N/A N/A	nt	nt nt	nt	N/A N/A	N/A	N/A	< 0.1	< 0.1	< 0.05	N/A N/A	N/A N/A
d-BHC	0.1	mg/kg	< 0.1	< 0.1	< 0.5	N/A N/A	N/A N/A	nt	nt	nt	N/A N/A	N/A	N/A	< 0.1	< 0.1	< 0.05	N/A N/A	N/A N/A
Heptachlor	0.1	mg/kg	< 0.1	< 0.1	<0.5	N/A N/A	N/A N/A	nt	nt	nt	N/A N/A	N/A	N/A	< 0.1	< 0.1	< 0.05	N/A N/A	N/A N/A
Aldrin Heptachlor epoxide	0.1	mg/kg mg/kg	< 0.1	< 0.1	<0.5	N/A N/A N/A N/A	N/A N/A N/A N/A	nt nt	nt nt	nt nt	N/A N/A N/A N/A	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.05	N/A N/A N/A N/A	N/A N/A N/A N/A
Chlordane - trans	0.1	mg/kg	< 0.1	< 0.1	<0.5	N/A N/A	N/A N/A	nt	nt	nt	N/A N/A	N/A	N/A	< 0.1	< 0.1	< 0.05	N/A N/A	N/A N/A
Chlordane - cis	0.1	mg/kg	< 0.1	< 0.1	<0.5	N/A N/A	N/A N/A	nt	nt	nt	N/A N/A	N/A	N/A	< 0.1	< 0.1	< 0.05	N/A N/A	N/A N/A
Endosulfan alpha Dieldrin	0.1	mg/kg	< 0.1	< 0.1	<0.5 <0.5	N/A N/A N/A N/A	N/A N/A N/A N/A	nt nt	nt nt	nt nt	N/A N/A N/A N/A	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.05 < 0.05	N/A N/A N/A N/A	N/A N/A N/A N/A
Dieldrin 4,4-DDE	0.1	mg/kg mg/kg	< 0.1	< 0.1	<0.5	N/A N/A	N/A N/A	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.05	N/A N/A	N/A N/A
4,4-DDD	0.1	mg/kg	< 0.1	< 0.1	<0.5	N/A N/A	N/A N/A	nt	nt	nt	N/A N/A	N/A	N/A	< 0.1	< 0.1	< 0.05	N/A N/A	N/A N/A
Endrin	0.1	mg/kg	< 0.1	< 0.1	<0.5	N/A N/A	N/A N/A	nt	nt	nt	N/A N/A	N/A	N/A	< 0.1	< 0.1	< 0.05	N/A N/A	N/A N/A
Endosulfan II Endrin aldehyde	0.1	mg/kg	< 0.1	< 0.1	<0.5	N/A N/A N/A N/A	N/A N/A N/A N/A	nt nt	nt nt	nt nt	N/A N/A N/A N/A	N/A N/A	N/A N/A	< 0.1	< 0.1	< 0.05	N/A N/A N/A N/A	N/A N/A N/A N/A
Endosulfan sulphate	0.1	mg/kg mg/kg	< 0.1	< 0.1	<0.5	N/A N/A	N/A N/A	nt nt	nt nt	nt nt	N/A N/A	N/A	N/A N/A	< 0.1	< 0.1	< 0.05	N/A N/A	N/A N/A
4,4-DDT	0.1	mg/kg	< 0.1	< 0.1	<0.2	N/A N/A	N/A N/A	nt	nt	nt	N/A N/A	N/A	N/A	< 0.1	< 0.1	< 0.2	N/A N/A	N/A N/A
Methoxychlor	0.1	mg/kg	< 0.1	< 0.1	<0.2	N/A N/A	N/A N/A	nt	nt	nt	N/A N/A	N/A	N/A	< 0.1	< 0.1	< 0.2	N/A N/A	N/A N/A
OPP Dimethoate	0.1	mg/kg	< 0.1	< 0.1	<0.05	N/A N/A	N/A N/A	nt	nt	nf	N/A N/A	N/A	N/A	< 0.1	< 0.1	< 0.05	N/A N/A	N/A N/A
Diazinon	0.1	mg/kg mg/kg	< 0.1	< 0.1	< 0.05	N/A N/A	N/A N/A	nt nt	nt nt	nt nt	N/A N/A	N/A	N/A N/A	< 0.1	< 0.1	< 0.05	N/A N/A	N/A N/A
Chlorpyrifos-methyl	0.1	mg/kg	< 0.1	< 0.1	< 0.05	N/A N/A	N/A N/A	nt	nt	nt	N/A N/A	N/A	N/A	< 0.1	< 0.1	< 0.05	N/A N/A	N/A N/A
Ronnel	0.1	mg/kg	< 0.1	< 0.1	nt	N/A N/A	N/A N/A	nt	nt	nt	N/A N/A	N/A	N/A	< 0.1	< 0.1	nt	N/A N/A	
Fenitrothion Chlorpyrifos	0.1	mg/kg mg/kg	< 0.1 < 0.1	< 0.1 < 0.1	<0.05	N/A N/A N/A N/A	N/A N/A N/A N/A	nt nt	nt nt	nt nt	N/A N/A N/A N/A	N/A N/A	N/A N/A	< 0.1	< 0.1	nt < 0.05	N/A N/A N/A N/A	N/A N/A N/A N/A
Ethion	0.1	mg/kg	< 0.1	< 0.1	< 0.05	N/A N/A	N/A N/A	nt	nt	nt	N/A N/A	N/A	N/A	< 0.1	< 0.1	< 0.05	N/A N/A	N/A N/A
PCB Total PCB											N/A N/A							
	0.1	mg/kg	< 0.1	< 0.1	<0.1	N/A N/A	N/A N/A							<0.1				N/A N/A

nd - Result is below the laboratory Estimated Quantitation Limit.

* EQL increased due to matrix interference
N/A - not applicable.

BOLD

Signifies RPD

Signifies RPD > 50% where the average concentration exceeds ten times the EQL, or where the RPD > 75% where the average concentration is between 5-10 times the EQL, or where the RPD > 100% where the average concentration is between 2-5 times the EQL.

Sample ID			060508-14-KW	060508-15-KW	060508-16-KW	1			070508-55-KW	070508-56-KW	070508-57-KW	7		280508-123-KW	280508-124-KW	280508-125-KW	1			
Location				ABH229		1				ABH204		-			ABH240		1			
Depth				0.5-0.8						0.1-0.4					0.1-0.4					
Date				6 May 2008		1				7 May 2008		-			28 May 2008		1			
Laboratory			Envirolab	Envirolab	ALS				Envirolab	Envirolab	ALS	1		Envirolab	Envirolab	ALS				
Laboratory			Environio	Environa	ALS	Blind Replie	rate	Split Sample	Environio	Environab	ALS	Blind Replicate	Split Sample		Environio	ALS	Blind Replic	rate	Split Sar	mple
Parameter	PQL	Units	Original Sample	Blind Replicate	Split Sample			Average RPD	Original Sample	Blind Replicate	Split Sample	Average RPD		Original Sample PD	Blind Replicate	Split Sample			Average	RPD
VOC Styrene	1	mg/kg	<1	<1	< 0.5	N/A	N/A	N/A N/A	nt	nt	nt	N/A N/A	N/A	VA <1	<1	< 0.5	N/A	N/A	N/A	N/A
Cumene (isopropylbenzene)	1	mg/kg	<1	<1	< 0.5	N/A	N/A	N/A N/A	nt	nt	nt	N/A N/A	N/A	I/A < 1	<1	< 0.5	N/A	N/A	N/A	N/A
n-Propylbenzene 1,3,5-Trimethylbenzene	1	mg/kg mg/kg	<1	<1	< 0.5 < 0.5		N/A N/A	N/A N/A N/A N/A	nt nt	nt nt	nt nt	N/A N/A N/A N/A		VA <1	<1	< 0.5 < 0.5		N/A N/A		N/A N/A
sec-butylbenzene	1	mg/kg	<1	<1	< 0.5		N/A	N/A N/A	nt nt	nt nt	nt nt	N/A N/A		1/A < 1	<1	< 0.5		N/A		N/A
1,2,4-Trimethylbenzene	1	mg/kg	<1	<1	< 0.5	N/A	N/A	N/A N/A	nt	nt	nt	N/A N/A	N/A	VA < 1	< 1	< 0.5	N/A	N/A	N/A	N/A
tert-Butylbenzene	1	mg/kg	<1	<1	< 0.5		N/A	N/A N/A	nt	nt	nt	N/A N/A		VA <1	< 1	< 0.5		N/A		N/A
p-isopropyltoluene n-Butylbenzene	1	mg/kg	<1	<1	< 0.5 < 0.5	N/A N/A	N/A N/A	N/A N/A N/A N/A	nt	nt	nt	N/A N/A N/A N/A		I/A <1 I/A <1	<1	< 0.5 < 0.5		N/A N/A	N/A N/A	N/A N/A
2,2-Dichloropropane	1	mg/kg mg/kg	<1	<1	< 0.5		N/A	N/A N/A	nt nt	nt nt	nt nt	N/A N/A		1/A < 1	<1	< 0.5		N/A	N/A	N/A
1,2-dichloropropane	1	mg/kg	<1	< 1	< 0.5	N/A	N/A	N/A N/A	nt	nt	nt	N/A N/A	N/A	I/A < 1	< 1	< 0.5	N/A	N/A	N/A	N/A
cis-1,3-Dichloropropene	1	mg/kg	<1	<1	< 0.5	N/A	N/A	N/A N/A	nt	nt	nt	N/A N/A	N/A	VA <1	<1	< 0.5		N/A	N/A	N/A
trans-1,3-Dichloropropene 1,2-Dibromoethane	1	mg/kg	<1	<1	< 0.5		N/A N/A	N/A N/A N/A N/A	nt	nt	nt	N/A N/A N/A N/A		VA <1	<1	< 0.5		N/A N/A	N/A N/A	N/A N/A
1,2-Dibromoethane Dichlorodifluoromethane	1 10	mg/kg mg/kg	< 1 < 10	< 1 < 10	< 0.5 < 5		N/A N/A	N/A N/A	nt nt	nt nt	nt nt	N/A N/A		I/A < 1 I/A < 10	< 1 < 10	< 0.5 < 5		N/A N/A	N/A N/A	N/A N/A
Chloromethane	10	mg/kg mg/kg	< 10	< 10	< 5		N/A N/A	N/A N/A	nt nt	nt nt	nt nt	N/A N/A		VA < 10	< 10	<5		N/A	N/A	N/A N/A
Vinyl chloride	10	mg/kg	< 10	< 10	<5	N/A	N/A	N/A N/A	nt	nt	nt	N/A N/A	N/A	VA < 10	< 10	<5	N/A	N/A		N/A
Bromomethane	10	mg/kg	< 10	< 10	< 5		N/A	N/A N/A	nt	nt	nt	N/A N/A		VA < 10	< 10	<5		N/A	N/A	N/A
Chloroethane	10	mg/kg	< 10	< 10	< 5		N/A	N/A N/A	nt	nt	nt	N/A N/A		I/A < 10	< 10	< 5		N/A	N/A	N/A
Trichlorofluoromethane 1.1-Dichloroethylene	10	mg/kg mg/kg	< 10	< 10	< 5		N/A N/A	N/A N/A N/A N/A	nt nt	nt nt	nt nt	N/A N/A N/A N/A		VA < 10	< 10	< 5		N/A N/A	N/A N/A	N/A N/A
trans-1,2-Dichloroethylene	1	mg/kg	<1	<1	< 0.5		N/A	N/A N/A	nt nt	nt nt	nt nt	N/A N/A		i/A < 1	<1	< 0.5		N/A	N/A	N/A
1,1-Dichloroethane	1	mg/kg	<1	<1	< 0.5	N/A	N/A	N/A N/A	nt	nt	nt	N/A N/A		VA <1	<1	< 0.5		N/A	N/A	N/A
cis-1,2-Dichloroethylene	1	mg/kg	<1	<1	< 0.5	N/A	N/A	N/A N/A	nt	nt	nt	N/A N/A		i/A < 1	<1	< 0.5	N/A	N/A	N/A	N/A
1,1,1-Trichloroethane	1	mg/kg	<1	< 1	< 0.5		N/A	N/A N/A	nt	nt	nt	N/A N/A		I/A < 1	<1	< 0.5		N/A	N/A	N/A
1,1-Dichloropropene Carbon tetrachloride	1	mg/kg mg/kg	<1	<1	< 0.5		N/A N/A	N/A N/A N/A N/A	nt nt	nt nt	nt nt	N/A N/A N/A N/A		VA <1	<1	< 0.5		N/A N/A	N/A N/A	N/A N/A
1,2-Dichloroethane	1	mg/kg	<1	<1	< 0.5		N/A	N/A N/A	nt nt	nt nt	nt nt	N/A N/A		VA <1	<1	< 0.5		N/A	N/A	N/A
Trichloroethene	1	mg/kg	<1	<1	< 0.5		N/A	N/A N/A	nt	nt	nt	N/A N/A		I/A < 1	<1	< 0.5		N/A		N/A
Dibromomethane	- 1	mg/kg	<1	<1	< 0.5		N/A	N/A N/A	nt	nt	nt	N/A N/A		I/A < 1	<1	< 0.5		N/A	N/A	N/A
1,1,2-trichloroethane	1	mg/kg	<1	<1	< 0.5		N/A	N/A N/A	nt	nt	nt	N/A N/A		I/A < 1	< 1	< 0.5		N/A		N/A
1,3-dichloropropane Tetrachloroethene	1	mg/kg mg/kg	<1	<1	< 0.5 < 0.5		N/A N/A	N/A N/A N/A N/A	nt nt	nt nt	nt	N/A N/A N/A N/A		VA <1	<1	< 0.5 < 0.5		N/A N/A	N/A N/A	N/A N/A
1.1.1.2-Tetrachloroethane	1	mg/kg	<1	<1	< 0.5		N/A	N/A N/A	nt nt	nt nt	nt nt	N/A N/A		i/A <1	<1	< 0.5		N/A	N/A	N/A
1,1,2,2-Tetrachloroethane	1	mg/kg	<1	< 1	< 0.5		N/A	N/A N/A	nt	nt	nt	N/A N/A		I/A < 1	< 1	< 0.5		N/A	N/A	N/A
1,2,3-Trichloropropane	1	mg/kg	<1	<1	< 0.5		N/A	N/A N/A	nt	nt	nt	N/A N/A		I/A < 1	<1	< 0.5		N/A	N/A	N/A
1,2-Dibromo-3-chloropropane	1	mg/kg	<1	< 1	< 0.5		N/A	N/A N/A	nt	nt	nt	N/A N/A		I/A < 1	<1	< 0.5		N/A	N/A N/A	N/A
Hexachlorobutadiene Bromocholoromethane	1	mg/kg	<1	<1	< 0.5 nt		N/A N/A	N/A N/A N/A N/A	nt nt	nt nt	nt nt	N/A N/A N/A N/A		I/A <1 I/A <1	<1	< 0.5		N/A N/A		N/A N/A
Chlombenzene	i	mg/kg mg/kg	<1	<1	< 0.5		N/A	N/A N/A	nt	nt	nt	N/A N/A		i/A <1	<1	< 0.5		N/A	N/A	N/A
Bromobenzene	1	mg/kg	<1	<1	< 0.5	N/A	N/A	N/A N/A	nt	nt	nt	N/A N/A	N/A	VA < 1	< 1	< 0.5	N/A	N/A	N/A	N/A
o-Chlorotoluene	1	mg/kg	<1	<1	< 0.5	N/A	N/A	N/A N/A	nt	nt	nt	N/A N/A		I/A < 1	< 1	< 0.5		N/A	N/A	N/A
4-chlorotoluene	1	mg/kg	<1	<1	< 0.5	N/A	N/A	N/A N/A	nt	nt	nt	N/A N/A		VA < 1	< 1	< 0.5		N/A	N/A	N/A
1,3-Dichlorobenzene 1,4-Dichlorobenzene	1	mg/kg	<1	<1	< 0.5 < 0.5		N/A N/A	N/A N/A N/A N/A	nt	nt	nt	N/A N/A N/A N/A		I/A <1 I/A <1	<1	< 0.5 < 0.5		N/A N/A	N/A N/A	N/A N/A
1,4-Dichlorobenzene 1.2-Dichlorobenzene	1	mg/kg mg/kg	<1	<1	< 0.5		N/A N/A	N/A N/A	nt nt	nt nt	nt nt	N/A N/A		I/A <1	<1	< 0.5		N/A N/A	N/A N/A	N/A N/A
1,2,4-trichlorobenzene	1	mg/kg	<1	<1	< 0.5	N/A	N/A	N/A N/A	nt	nt	nt	N/A N/A	N/A	VA < 1	<1	< 0.5	N/A	N/A	N/A	N/A
1,2,3-trichlorobenzene	1	mg/kg	<1	<1	< 0.5	N/A	N/A	N/A N/A	nt	nt	nt	N/A N/A	N/A	VA < 1	<1	< 0.5	N/A	N/A	N/A	N/A
Chloroform	1	mg/kg	<1	<1	< 0.5		N/A	N/A N/A	nt	nt	nt	N/A N/A		VA <1	<1	< 0.5		N/A	N/A	N/A
Bromodichloromethane Chlorodibromomethane	1	mg/kg	<1	<1	< 0.5		N/A N/A	N/A N/A N/A N/A	nt nt	nt nt	nt nt	N/A N/A N/A N/A		I/A <1	<1	< 0.5		N/A N/A	N/A N/A	N/A N/A
Bromoform	+ +	mg/kg mg/ke	<1	<1	< 0.5		N/A	N/A N/A	nt nt	nt nt	nt nt	N/A N/A		VA <1	<1	< 0.5		N/A	N/A N/A	N/A
PAAH		mg/Ag	~ .		~ 0.0							NA NA				~ 6.0	1025		13773	. 10.00
2,4-DB	100		< 100	< 100	< 100		N/A	N/A N/A	nt	nt	nt	N/A N/A		VA nt	nt	nt		N/A	N/A	N/A
Dicamba	100	ug/kg	< 100	< 100	< 100		N/A	N/A N/A	nt	nt	nt	N/A N/A		l/A nt	nt	nt		N/A	N/A	N/A
2-Methyl-4-chlorophenoxyacetic acid	100	ug/kg	< 100	< 100	< 100		N/A	N/A N/A	nt	nt	nt	N/A N/A		I/A nt	nt	nt		N/A	N/A	N/A
2.4-DP (Dichloroprop) 2.4-D	100	ug/kg	< 100 < 100	< 100 < 100	< 100 < 100		N/A N/A	N/A N/A N/A N/A	nt nt	nt nt	nt nt	N/A N/A N/A N/A		I/A nt	nt nt	nt nt		N/A N/A	N/A N/A	N/A N/A
Z;4-D Triclopyr	100	ug/kg ug/kg	< 100	< 100	< 100		N/A N/A	N/A N/A	nt nt	nt nt	nt nt	N/A N/A		I/A nt	nt nt	nt nt		N/A	N/A	N/A N/A
2-(2,4,5-Trichlorophenoxy) propionic acid	100	ug/kg	< 100	< 100	< 100	N/A	N/A	N/A N/A	nt	nt	nt	N/A N/A	N/A	I/A nt	nt	nt	N/A	N/A	N/A	N/A
2,4,5-T	100	ug/kg	< 100	< 100	< 100	N/A	N/A	N/A N/A	nt	nt	nt	N/A N/A	N/A !	i/A nt	nt	nt	N/A	N/A	N/A	N/A
Phenols																				
Total Phenols	5	mg/kg	< 5	< 5	< 5	N/A	N/A	N/A N/A	nt	nt	nt	N/A N/A	N/A	I/A < 5	< 5	<2	N/A	N/A	N/A	N/A
Nutrients	0.5		12	14	-20	1 12 1	164	12 800				NI/A NI/A	N/A I	I/A			N/A	N/A	NICA	N/A
Ammonia as N Total Kjeldahl Nitrogen	0.5	mg/kg mg/kg	1.2	1.4 200	<20 140	220	15%	1.2 N/A 190 53%	nt nt	nt nt	nt nt	N/A N/A		I/A nt	nt nt	nt nt		N/A N/A	N/A N/A	N/A N/A
Nitrite as N	0.1	mg/kg	< 0.1	< 0.1	0.199	N/A	N/A	0.199 N/A	nt nt	nt nt	nt nt	N/A N/A	N/A	I/A nt	nt nt	nt nt	N/A	N/A	N/A	N/A
Nitrate as N	0.5	mg/kg	0.6	0.7	<0.1	0.65	15%	0.6 N/A	nt	nt	nt	N/A N/A	N/A	I/A nt	nt	nt	N/A	N/A	N/A	N/A
Total Phosphorous	10	mg/kg	20	19	24	19.5	5%	22 18%	nt	nt	nt	N/A N/A	N/A !	i/A nt	nt	nt	N/A	N/A	N/A	N/A
NOTES:																				

nd - Result is below the laboratory Estimated Quantitation Limit. † EQL increased due to matrix interference

NA - not applicable.

Signifies RPD > 50% where the average concentration exceeds sen times the EQL, or where the RPD > 75% where the average concentration is between 5-10 times the EQL or where the RPD > 100% where the average concentration is between 2-5 times the EQL.

1												1		г				1		
Page		1		130508-286-KW	130508-287-KW	130508-288-KW			150508-352-KW	150508-353-KW	150508-354-KW	l		Ļ	150508-385-KW	150508-386-KW	150508-387-KW	l		
The field of the control of the con	Location				ABH275					ABH291		ĺ				ABH284		1		
Part	Depth				0.8-1.2					0.1-0.5		i				1.3-1.6		1		
Part	•				13 May 2008					15 May 2008				F		15 May 2008				
Mart												ł		F				ł		
The control of the property of	Laborator	r		Envirolab	Envirolab	ALS			Envirolab	Envirolab	ALS				Envirolab	Envirolab	ALS			
Second S	Parameter	PQ	L Units	Original Sample	Blind Replicate	Split Sample			Original Sample	Blind Replicate	Split Sample				Original Sample	Blind Replicate	Split Sample			
The color of the							Average RPD	Average RPD				Average	RPD	Average RPD				Average R	PD Av	erage RPD
Color																				
THE CASE IN 1985 IN 19	Arsenic	4						N/A N/A											/A I	N/A N/A
THE CALL STATE AND STATE A	Chromium	1						N/A N/A	2						2					3 67%
## Section 1		1	mg/kg				N/A N/A	N/A N/A												3.85
THE COLOR OF THE C		- 1																		1.65 144%
The column The	Zinc																,			
REAL OF STATE AND STATE AN	Mercury			< 0.1	< 0.1	< 0.1	N/A N/A	N/A N/A	< 0.1	< 0.1		N/A	N/A	N/A N/A		< 0.1	< 0.1	N/A N	/A 1	N/A N/A
Fig. 2																				
Marging 1964		25					N/A N/A	N/A N/A	< 25	< 25		N/A N/A	N/A N/A	N/A N/A				N/A N	/A 1	N/A N/A
March 19	TPH C15 - C28																			
The state of the s	TPH C29 - C36	10	00 mg/kg	nt	nt	nt	N/A N/A	N/A N/A	< 100	< 100	< 100	N/A	N/A	N/A N/A				N/A N	/A 1	N/A N/A
Scheener 1 95% 1 1 1 1 1 1 1 1 1	Benzene																			N/A N/A
The particle 1 1 1 1 1 1 1 1 1																				
The complement of a part of the complement of th	meta- & para-Xylene	2						N/A N/A												
Per	ortho-Xylene	1	mg/kg																	
Secondaries							V/4 V/4	I was I was				N	NU	wa I wa I				1 N/A 1 N		N. 1 N.
Control Cont			I mg/kg				N/A N/A	N/A N/A					N/A N/A	N/A N/A				N/A N	/A 1	
the transfer of a right of a righ							N/A N/A	N/A N/A										N/A N	/A 1	
untenome 10 914 91 91 91 91 91 91 9	Fluorene		l mg/kg	nt	nt	nt									nt	nt	nt			
March Marc																				
1	Fluoranthene																			N/A N/A
Marie Mari	Pyrene								< 0.1	< 0.1	< 0.5			N/A N/A						N/A N/A
Part	Benzo(a)anthracene		l mg/kg	nt	nt															
Second S																				N/A N/A
1																				
Second S	Indeno(1,2,3-cd)pyrene		l mg/kg		nt												nt			
							N/A N/A	N/A N/A				N/A	N/A	N/A N/A				N/A N	/A 1	N/A N/A
Second Column Second Colum	OCP	0.	1 mg/kg	nt	nt	nt	NA NA	N/A N/A	< 0.1	< 0.1	< 0.5	N/A	N/A	N/A N/A	nt	nt	nt	N/A N	A	NA NA
SHC	alpha-BCH	0.	l mg/kg	nt	nt	nt		N/A N/A	nt	nt	nt				nt	nt	nt			
Second Control Contr	Hexachlorobenzene																			
SHC																				
September O.1 mg/kg st st st NA NA NA SA SA SA SA SA	d-BHC						N/A N/A													
Separable O, 1 singlig sit	Heptachlor						N/A N/A	N/A N/A					N/A	N/A N/A				N/A N	/A 1	N/A N/A
Michagonestrans O.1 mpkg st st st st st st st s	Aldrin																			N/A N/A
Michaelen O, 1 mpkg st st st st st st st s	Heptachlor epoxide Chlordana - trans																			
10 10 10 10 10 10 10 10	Chlordane - cis																			N/A N/A
4.00E 0.1 mg/kg nt nt nt nt nt nA NA NA nA nt nt nt nt nA NA NA nA nt	Endosulfan alpha	0.	l mg/kg	nt					nt	nt	nt				nt		nt			N/A N/A
ADDO 0.1 mp3g st st st st NA NA NA st st st st st st st s																				
1	4,4-DDE 4,4-DDD																			
1	Endrin																	N/A N	/A 1	N/A N/A
10 10 10 10 10 10 10 10	Endosulfan II		l mg/kg																	
4.4DT 0.1 mg/kg nt nt nt nt nt NA NA NA nt nt nt nt NA NA NA nt nt nt nt nt nt NA NA NA nt nt nt nt nt nt NA NA NA nt nt nt nt nt nt NA NA NA nt nt nt nt nt nt nt NA NA NA nt nt nt nt nt NA NA NA nt																				
O O O O O O O O O O	Endosultan sulphate 4.4-DDT																			
Numerhouse O, 1 mg/kg st st st st NA NA NA NA st st st st st st st s	Methoxychlor																			
Nation N	OPP																			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Dimethoate			nt	nt					nt	nt				nt	nt	nt			N/A N/A
1				nt nt	nt nt	ant .				nt nt	nt nt				nt nt	nt nt	nt nt			
Columbia	Ronnel						N/A N/A	N/A N/A				N/A	N/A	N/A N/A				N/A N	/A 1	N/A N/A
	Fenitrothion		l mg/kg																	
CB Onl PCB																				
10TES:	Ethion PCB	0.	ı mg/kg	nt	nt	nt	NA NA	N/A N/A	nt	nt	nt	N/A	N/A	NA NA	nt	nt	nt	NA N	Α .	NA NA
10TES:	Total PCB	0.	l mg/kg	nt	nt	nt	N/A N/A	N/A N/A	nt	nt	nt	N/A	N/A	N/A N/A	nt	nt	nt	N/A N	/A 1	N/A N/A
Mative Percenting Difference (RPD) is calculated as the absolute value of the	NOTES:						•					•						•		

NOTES:
Relative Prevance (RPD) is calculated as the absolute value of the nd - Renti is below the laboratory Editated Quantitation Limit.

#EQL increased due to marks interference
NA - not applicable.

#ROLD

Signific RPD > 5% where the energy concentration is between 5-10 intent the EQL or where the BPD > 10% where the nergy concentration is between 5-10 intent the EQL or where the BPD > 10% where the nergy concentration is between 2-5 times the EQL.

Sample ID			130508-286-KW	130508-287-KW	130508-288-KW	7		150508-352-KW	150508-353-KW	150508-354-KW		150508-385-KW	150508-386-KW	150508-387-KW	1	
Location				ABH275					ABH291				ARH284			
				0.8-1.2		-			0.1-0.5		-		1.3-1.6			
Depth						4										
Date				13 May 2008		4			15 May 2008	_			15 May 2008			
Laboratory			Envirolab	Envirolab	ALS			Envirolab	Envirolab	ALS		Envirolab	Envirolab	ALS		
Parameter	PQL	Units	Original Sample	Blind Replicate	Split Sample	Blind R	eplicate Split Sample RPD Average RPD	Original Sample	Blind Replicate	Split Sample	Blind Replicate Split Sample Average RPD Average RPD	Original Sample	Blind Replicate	Split Sample	Blind Replicate Average RPD	Split Sample Average RPD
VOC Styrene	1	mg/kg	< 1	<1	< 0.5	N/A	N/A N/A N/A	nt	nt	nt	N/A N/A N/A N/A	nt	nt	nt	N/A N/A	N/A N/A
Cumene (isopropylbenzene)	1	mg/kg	<1	<1	< 0.5	N/A	N/A N/A N/A	nt	nt	nt	N/A N/A N/A N/A	nt	nt	nt	N/A N/A	N/A N/A
n-Propylbenzene 1,3,5-Trimethylbenzene	1	mg/kg mg/ke	<1	<1	< 0.5	N/A N/A	N/A N/A N/A N/A N/A N/A	nt nt	nt nt	nt nt	N/A N/A N/A N/A N/A N/A N/A N/A		nt nt	nt nt	N/A N/A N/A N/A	N/A N/A N/A N/A
sec-butylbenzene	i	mg/kg	<1	<1	< 0.5	N/A	N/A N/A N/A	nt	nt	nt	N/A N/A N/A N/A		nt	nt	N/A N/A	N/A N/A
1,2,4-Trimethylbenzene	1	mg/kg	<1	<1	< 0.5	N/A	N/A N/A N/A	nt	nt	nt	N/A N/A N/A N/A	nt	nt	nt	N/A N/A	N/A N/A
tert-Butylbenzene p-isopropyltoluene	1	mg/kg mg/kg	< 1	<1	< 0.5 < 0.5	N/A N/A	N/A N/A N/A N/A N/A N/A	nt nt	nt nt	nt nt	N/A N/A N/A N/A N/A N/A N/A N/A		nt nt	nt nt	N/A N/A N/A N/A	N/A N/A N/A N/A
n-Butylbenzene	i	mg/kg	<1	<1	< 0.5	N/A	N/A N/A N/A	nt	nt	nt	N/A N/A N/A N/A		nt	nt	N/A N/A	N/A N/A
2,2-Dichloropropane	1	mg/kg	<1	<1	< 0.5	N/A	N/A N/A N/A	nt	nt	nt	N/A N/A N/A N/A	nt	nt	nt	N/A N/A	N/A N/A
1,2-dichloropropane cis-1,3-Dichloropropene	1	mg/kg mg/kg	<1	<1	< 0.5	N/A N/A	N/A N/A N/A N/A N/A N/A	nt nt	nt nt	nt nt	N/A N/A N/A N/A N/A N/A N/A N/A		nt nt	nt nt	N/A N/A N/A N/A	N/A N/A
trans-1,3-Dichloropropene	1	mg/kg	<1	<1	< 0.5	N/A	N/A N/A N/A	nt nt	nt nt	nt	N/A N/A N/A N/A	nt	nt nt	nt nt	N/A N/A	N/A N/A
1,2-Dibromoethane	- 1	mg/kg	<1	<1	< 0.5	N/A	N/A N/A N/A	nt	nt	nt	N/A N/A N/A N/A		nt	nt	N/A N/A	N/A N/A
Dichlorodifluoromethane Chloromethane	10	mg/kg	< 10	< 10	<5	N/A N/A	N/A N/A N/A N/A N/A N/A	nt nt	nt nt	nt nt	N/A N/A N/A N/A N/A N/A N/A N/A		nt nt	nt nt	N/A N/A N/A N/A	N/A N/A N/A N/A
Vinyl chloride	10	mg/kg mg/kg	< 10 < 10	< 10 < 10	<5 <5	N/A	N/A N/A N/A	nt nt	nt nt	nt nt	N/A N/A N/A N/A	nt	nt nt	nt nt	N/A N/A	N/A N/A
Bromomethane	10	mg/kg	< 10	< 10	< 5	N/A	N/A N/A N/A	nt	nt	nt	N/A N/A N/A N/A	nt	nt	nt	N/A N/A	N/A N/A
Chloroethane Trichlorofluoromethane	10	mg/kg	< 10	< 10	< 5	N/A N/A	N/A N/A N/A N/A N/A N/A	nt nt	nt nt	nt nt	N/A N/A N/A N/A N/A N/A N/A N/A	nt nt	nt nt	nt nt	N/A N/A N/A N/A	N/A N/A
1,1-Dichloroethylene	10	mg/kg mg/kg	<10	<10	< 0.5	N/A N/A	N/A N/A N/A	nt nt	nt nt	nt nt	N/A N/A N/A N/A N/A		nt nt	nt nt	N/A N/A	N/A N/A
trans-1,2-Dichloroethylene	1	mg/kg	<1	<1	< 0.5	N/A	N/A N/A N/A	nt	nt	nt	N/A N/A N/A N/A		nt	nt	N/A N/A	N/A N/A
1,1-Dichloroethane	1	mg/kg	<1	<1	< 0.5	N/A	N/A N/A N/A	nt	nt	nt	N/A N/A N/A N/A N/A N/A N/A N/A	nt nt	nt	nt	N/A N/A N/A N/A	N/A N/A
cis-1,2-Dichloroethylene 1,1,1-Trichloroethane	1	mg/kg mg/kg	<1	<1	< 0.5 < 0.5	N/A N/A	N/A N/A N/A N/A N/A N/A	nt nt	nt nt	nt nt	N/A N/A N/A N/A N/A N/A N/A N/A		nt nt	nt nt	N/A N/A N/A N/A	N/A N/A N/A N/A
1,1-Dichloropropene	1	mg/kg	<1	<1	< 0.5	N/A	N/A N/A N/A	nt	nt	nt	N/A N/A N/A N/A	nt	nt	nt	N/A N/A	N/A N/A
Carbon tetrachloride	1	mg/kg	<1	<1	< 0.5	N/A	N/A N/A N/A	nt	nt	nt	N/A N/A N/A N/A		nt	nt	N/A N/A	N/A N/A
1,2-Dichloroethane Trichlomethene	+ +	mg/kg mg/kg	<1	<1	< 0.5	N/A N/A	N/A N/A N/A N/A N/A N/A	nt nt	nt nt	nt nt	N/A N/A N/A N/A N/A N/A N/A N/A		nt nt	nt nt	N/A N/A N/A N/A	N/A N/A
Dibromomethane	i	mg/kg	<1	<1	< 0.5	N/A	N/A N/A N/A	nt	nt	nt	N/A N/A N/A N/A	nt	nt	nt	N/A N/A	N/A N/A
1,1,2-trichloroethane	- 1	mg/kg	<1	<1	< 0.5	N/A	N/A N/A N/A	nt	nt	nt	N/A N/A N/A N/A		nt	nt	N/A N/A	N/A N/A
1,3-dichloropropane Tetrachlomethene	1	mg/kg mg/kg	<1	<1	< 0.5 < 0.5	N/A N/A	N/A N/A N/A N/A N/A N/A	nt nt	nt nt	nt nt	N/A N/A N/A N/A N/A N/A N/A N/A	nt nt	nt nt	nt nt	N/A N/A N/A N/A	N/A N/A N/A N/A
1,1,1,2-Tetrachloroethane	i	mg/kg	<1	<1	< 0.5	N/A	N/A N/A N/A	nt	nt	nt	N/A N/A N/A N/A	nt	nt	nt	N/A N/A	N/A N/A
1,1,2,2-Tetrachloroethane	- 1	mg/kg	<1	<1	< 0.5	N/A	N/A N/A N/A	nt	nt	nt	N/A N/A N/A N/A		nt	nt	N/A N/A	N/A N/A
1,2,3-Trichloropropane 1,2-Dibromo-3-chloropropane	1	mg/kg mg/kg	<1	<1	< 0.5 < 0.5	N/A N/A	N/A N/A N/A N/A N/A N/A	nt nt	nt nt	nt nt	N/A N/A N/A N/A N/A N/A N/A N/A	nt nt	nt nt	nt nt	N/A N/A N/A N/A	N/A N/A N/A N/A
Hexachlorobutadiene	i	mg/kg	<1	<1	< 0.5	N/A	N/A N/A N/A	nt	nt	nt	N/A N/A N/A N/A	nt	nt	nt	N/A N/A	N/A N/A
Bromocholoromethane	- 1	mg/kg	< 1	<1	nt	N/A	N/A N/A N/A	nt	nt	nt	N/A N/A N/A N/A		nt	nt	N/A N/A	N/A N/A
Chlorobenzene Bromobenzene	1	mg/kg	<1	<1	< 0.5 < 0.5	N/A N/A	N/A N/A N/A N/A N/A N/A	nt	nt	nt	N/A N/A N/A N/A N/A N/A N/A N/A		nt	nt	N/A N/A N/A N/A	N/A N/A N/A N/A
o-Chlorotoluene	i	mg/kg mg/kg	<1	<1	< 0.5	N/A	N/A N/A N/A	nt nt	nt nt	nt nt	N/A N/A N/A N/A		nt nt	nt nt	N/A N/A	N/A N/A
4-chlorotoluene	- 1	mg/kg	<1	<1	< 0.5	N/A	N/A N/A N/A	nt	nt	nt	N/A N/A N/A N/A	nt	nt	nt	N/A N/A	N/A N/A
1,3-Dichlorobenzene	1	mg/kg	<1	<1	< 0.5	N/A N/A	N/A N/A N/A N/A N/A N/A	nt nt	nt nt	nt nt	N/A N/A N/A N/A N/A N/A N/A N/A		nt nt	nt nt	N/A N/A N/A N/A	N/A N/A
1,4-Dichlorobenzene 1,2-Dichlorobenzene	1	mg/kg mg/kg	<1	<1	< 0.5	N/A N/A	N/A N/A N/A N/A N/A	nt nt	nt nt	nt nt	N/A N/A N/A N/A N/A N/A N/A N/A	nt nt	nt nt	nt nt	N/A N/A	N/A N/A
1,2,4-trichlorobenzene	i	mg/kg	<1	<1	< 0.5	N/A	N/A N/A N/A	nt	nt	nt	N/A N/A N/A N/A	nt	nt	nt	N/A N/A	N/A N/A
1,2,3-trichlorobenzene	1	mg/kg	<1	<1	< 0.5 < 0.5	N/A N/A	N/A N/A N/A N/A N/A N/A	nt	nt	nt	N/A N/A N/A N/A N/A N/A N/A N/A		nt	nt	N/A N/A N/A N/A	N/A N/A N/A N/A
Chloroform Bromodichloromethane	1	mg/kg mg/kg	<1	<1	< 0.5 < 0.5	N/A N/A	N/A N/A N/A N/A N/A N/A	nt nt	nt nt	nt nt	N/A N/A N/A N/A N/A N/A N/A N/A	nt nt	nt nt	nt nt	N/A N/A	N/A N/A
Chlorodibromomethane	i	mg/kg	<1	<1	< 0.5	N/A	N/A N/A N/A	nt	nt	nt	N/A N/A N/A N/A	nt	nt	nt	N/A N/A	N/A N/A
Bromoform	- 1		< 1	<1	< 0.5	N/A	N/A N/A N/A	nt	nt	nt	N/A N/A N/A N/A	nt	nt	nt	N/A N/A	N/A N/A
PAAH 2,4-DB	100	neke		nt		N/A	N/A N/A N/A		nt		N/A N/A N/A N/A		-		N/A N/A	N/A N/A
Z,4-DB Dicamba	100		nt nt	nt nt	nt nt	N/A N/A	N/A N/A N/A	nt nt	nt nt	nt nt	N/A N/A N/A N/A N/A		nt nt	nt nt	N/A N/A	N/A N/A
2-Methyl-4-chlorophenoxyacetic acid	100	ug/kg	nt	nt	nt	N/A	N/A N/A N/A	nt	nt	nt	N/A N/A N/A N/A	nt	nt	nt	N/A N/A	N/A N/A
2,4-DP (Dichloroprop)	100	ug/kg	nt	nt	nt	N/A N/A	N/A N/A N/A	nt	nt	nt	N/A N/A N/A N/A N/A N/A N/A N/A	nt	nt	nt	N/A N/A N/A N/A	N/A N/A N/A N/A
2,4-D Triclopyr	100	ug/kg ug/kg	nt nt	nt nt	nt nt	N/A N/A	N/A N/A N/A N/A N/A N/A	nt nt	nt nt	nt nt	N/A N/A N/A N/A N/A N/A N/A N/A	nt nt	nt nt	nt nt	N/A N/A N/A N/A	N/A N/A
2-(2,4,5-Trichlorophenoxy) propionic acid	100	ug/kg	nt	nt	nt	N/A	N/A N/A N/A	nt	nt	nt	N/A N/A N/A N/A	nt	nt	nt	N/A N/A	N/A N/A
2,4,5-T	100	ug/kg	nt	nt	nt	N/A	N/A N/A N/A	nt	nt	nt	N/A N/A N/A N/A	nt	nt	nt	N/A N/A	N/A N/A
Phenols Total Phenols	-	mg/kg	nt nt	nt	nt nt	N/A	N/A N/A N/A	nt	nt nt	nt nt	N/A N/A N/A N/A	nt nt	nt I	nt	N/A N/A	N/A N/A
Total Phenois Nutrients	1 3	mg/kg	nt	nt	nt	NA	NA NA NA	nt	nt	nt	NA NA NA	nt	nt	nt	AVA NA	AUA NA
Ammonia as N	0.5	mg/kg	nt	nt	nt	N/A	N/A N/A N/A	nt	nt	nt	N/A N/A N/A N/A	nt	nt	nt	N/A N/A	N/A N/A
Total Kjeldahl Nitrogen	30	mg/kg	nt	nt	nt	N/A	N/A N/A N/A	nt	nt	nt	N/A N/A N/A N/A		nt	nt	N/A N/A	N/A N/A
Nitrite as N Nitrate as N	0.1		nt nt	nt nt	nt nt	N/A N/A	N/A N/A N/A N/A N/A N/A	nt nt	nt nt	nt nt	N/A N/A N/A N/A N/A N/A N/A N/A	nt nt	nt nt	nt nt	N/A N/A N/A N/A	N/A N/A N/A N/A
Total Phosphorous	10	mg/kg	nt	nt	nt	N/A	N/A N/A N/A	nt	nt	nt	N/A N/A N/A N/A	nt	nt	nt	N/A N/A	N/A N/A
NOTES:																

NOTES:
Relative Percentage Difference (RPD) is calculated as the absolute value of the nd - Result is below the laboratory Estimated Quantitation Limit.

* EQL increased due to matrix interference

NA - not applicable.

Signifies RPD > 50% where the average concentration exceeds sen times the EQL, or where the RPD > 75% where the average concentration is between 5-10 times the EQL or where the RPD > 100% where the average concentration is between 2-5 times the EQL.

Sample III)		280408-19-KW	280408-20-KW			290408-32-KW	290508-33-KW	1		290408-51-KW	290408-52-KW		
Location			BBI	1413			BBF	1416			ВВІ	1408		
Depth			1.0				0.1-				1.2-			
Date			28-A				29-A ₁				29-A			
Laborator	у		Envi	rolab			Envi	rolab			Envi	rolab		
Parameter	PQL	Units	Original Sample	Blind Sample		Replicate	Original Sample	Blind Sample	Blind R		Original Sample	Blind Sample	Blind R	
<u> </u>					Average	RPD			Average	RPD			Average	RPD
Metals Arsenic	4	mg/kg	nt	nt	N/A	N/A	22	16	19	32%	4.8	6.5	5.65	30%
Cadmium	2	mg/kg	nt	nt	N/A	N/A	<1	< 1	N/A	N/A	<1	<1	N/A	N/A
Chromium	1	mg/kg	nt	nt	N/A	N/A	9.7	7.7	8.7	23%	2.1	2.5	2.3	17%
Copper	1	mg/kg	nt	nt	N/A	N/A	24	25	24.5	4%	< 1	< 1	N/A	N/A
Nickel Lead	1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	4.5 39	7.2 45	5.85 42	46% 14%	< 1 < 1	<1	N/A	N/A N/A
Zinc	i	mg/kg	nt	nt	N/A	N/A	59	65	62	10%	3.1	2.5	2.8	21%
Mercury	0.1	mg/kg	nt	nt	N/A	N/A	0.22	0.2	0.21	10%	< 0.1	< 0.1	N/A	N/A
TPH/BTEX														
TPH C6 - C9	25 50	mg/kg	< 25 < 50	< 25 < 50	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
TPH C10 - C14 TPH C15 - C28	50 100	mg/kg mg/kg	< 50 < 100	< 50 < 100	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
TPH C15 - C28 TPH C29 - C36	100	mg/kg mg/kg	< 100	< 100	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Benzene	0.5	mg/kg	< 0.5	< 0.5	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Toluene	0.5	mg/kg	< 0.5	< 0.5	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Ethylbenzene	1	mg/kg	<1	< 1	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
meta- & para-Xylene	2	mg/kg	< 2 < 1	< 2 < 1	N/A N/A	N/A	nt nt	nt nt	N/A N/A	N/A N/A	nt	nt	N/A N/A	N/A
ortho-Xylene PAHs	1	mg/kg	<1	< 1	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Naphthalene	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Acenaphthylene	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Acenaphthene	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Fluorene	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Phenanthrene	0.1	mg/kg	nt nt	nt	N/A	N/A	nt	nt nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Anthracene Fluoranthene	0.1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	< 0.1	< 0.1	N/A N/A	N/A N/A
Pyrene	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Benzo(a)anthracene	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Chrysene	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Benzo(b)&(k)fluoranthene	0.2	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 0.2	< 0.2 < 0.05	N/A	N/A
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	0.05	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	< 0.05 < 0.1	< 0.05	N/A N/A	N/A N/A
Dibenz(a,h)anthracene	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Benzo(g,h,i)perylene	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A
OCP														
alpha-BCH	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Hexachlorobenzene b-BHC	0.1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	< 0.1 < 0.1	< 0.1 < 0.1	N/A N/A	N/A N/A	< 0.1 < 0.1	< 0.1 < 0.1	N/A N/A	N/A N/A
gamma-BHC (Lindane)	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	< 0.1	< 0.1	N/A	N/A
d-BHC	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Heptachlor	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Aldrin	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Heptachlor epoxide	0.1	mg/kg	nt of	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Chlordane - trans	0.1 0.1	mg/kg	nt	nt	N/A N/A	N/A N/A	< 0.1 < 0.1	< 0.1 < 0.1	N/A N/A	N/A N/A	< 0.1	< 0.1	N/A N/A	N/A
	0.1 0.1 0.1 0.1				N/A N/A N/A N/A	N/A N/A N/A N/A	< 0.1	< 0.1	N/A N/A N/A N/A	N/A N/A N/A N/A			N/A	N/A N/A N/A N/A
Chlordane - trans Chlordane - cis Endosulfan alpha Dieldrin	0.1 0.1 0.1 0.1	mg/kg mg/kg mg/kg mg/kg	nt nt nt	nt nt nt nt	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	< 0.1 < 0.1 < 0.1 < 0.1	< 0.1 < 0.1 < 0.1 < 0.1	N/A N/A N/A N/A N/A	N/A N/A N/A N/A
Chlordane - trans Chlordane - cis Endosulfan alpha Dieldrin 4,4-DDE	0.1 0.1 0.1 0.1 0.1	mg/kg mg/kg mg/kg mg/kg mg/kg	nt nt nt nt	nt nt nt nt	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A
Chlordane - trans Chlordane - cis Endosulfan alpha Dieldrin 4,4-DDE 4,4-DDD	0.1 0.1 0.1 0.1 0.1 0.1 0.1	mg/kg mg/kg mg/kg mg/kg mg/kg	nt nt nt nt nt	nt nt nt nt nt	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A
Chlordane - trans Chlordane - cis Endosulfan alpha Dieldrin 4,4-DDE 4,4-DDD Endrin	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	nt nt nt nt nt nt	nt nt nt nt nt nt	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A
Chlordane - trans Chlordane - cis Endosulfan alpha Dieldrin 4,4-DDE 4,4-DDD	0.1 0.1 0.1 0.1 0.1 0.1 0.1	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	nt nt nt nt nt	nt nt nt nt nt	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A
Chlordane - trans Chlordane - cis Endosulfan alpha Dieldrin 4,4-DDE 4,4-DDD Endrin Endosulfan II	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	nd nd nd nd nd nd nd	nt	N/A	N/A N/A N/A N/A N/A N/A N/A N/A	< 0.1 < 0.1	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	N/A	N/A	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	N/A	N/A N/A N/A N/A N/A N/A N/A N/A
Chlordune - trans Chlordune - trans Chlordune - tis Endosulfun alpha Dieletin 4.4-DDE 4.4-DDB Endrin III Endosulfun II Endosulfun II Endrin alethyde Endosulfun sulphute 4.4-DDT	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	mg/kg	INT	nt n	N/A	N/A	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	N/A	N/A	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	N/A	N/A
Chlordune - trans Chlordune - trans Chlordune - cis Endosulfan alpha Dicledrin 4.4-DDE 4.4-DDD Endrin Endosulfan II Endosulfan II Endosulfan II Endosulfan II Endosulfan II Adobyde Hindosulfan II Adobyde Honosulfan II Adobyde Honosulfan II Endosulfan sulphate	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	mg/kg	INE	nt n	N/A	N/A	< 0.1 < 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	N/A	N/A	< 0.1 < 0.1	< 0.1 < 0.1	N/A	N/A
Chlordane - trans Chlordane - trans Chlordane - tes Endosulfan alpha Dickfrin 4,4-DDE 4,4-DDE 6,4-DDD 6,6-DDF	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	mg/kg	INT. INT. INT. INT. INT. INT. INT. INT.	nt int int int int int int int int int i	N/A	N/A	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	N/A	N/A	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	N/A	N/A
Chlordune - trans Chlordune - trans Chlordune - tos Endosulfun alpha Dicidrin 4.4-DDE 4.4-DDD Endrin Endosulfun III Endosulfun III Endosulfun III Endosulfun III Endosulfun III Dimosulfun	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	mg/kg	INT INT INT INT INT INT INT INT	nt n	N/A	N/A	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	N/A	N/A	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	N/A	N/A
Chlordane - trans Chlordane - trans Chlordane - tes Endosulfan alpha Dickfrin 4,4-DDE 4,4-DDE 6,4-DDD 6,6-DDF	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	mg/kg	INT. INT. INT. INT. INT. INT. INT. INT.	nt int int int int int int int int int i	N/A	N/A	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	N/A	N/A	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	N/A	N/A
Chlordune - trans Chlordune - trans Chlordune - cis Endosulfan alpha Dicidrin 44-DDE 44-DDD Endrin Endosulfan II Endosulfan II Endosulfan II Endosulfan salphate 44-DDT Methoxychlor OPP Dimethode Diazion Chloryprifos-methyl	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	mg/kg	TOT TOT TOT TOT TOT TOT TOT TOT	DE D	N/A	N/A	< 0.1 <	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	N/A	N/A	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	N/A	N/A
Chlordune - trans Chlordune - trans Chlordune - to Endosulfun alpha Dieldrin 4.4-DDE 4.4-DDD Endrin Endosulfun II Endosulfun III Endosulfun II	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	mg/kg	THE	DEL	N/A	N/A	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	N/A	N/A	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	N/A	N/A
Chlordane - trans Chlordane - trans Endosulfan alphs Deldrin 4.4-DDE 4.4-DDD 6.4-1-DDD 6.6-1-DDD	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	mg/kg mg/k	105 105 105 105 105 105 105 105 105 105	DE D	N/A	N/A	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	NI/A NI/A NI/A NI/A NI/A NI/A NI/A NI/A	N/A	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	N/A	N/A
Chlordune - trans Chlordune - trans Endosulfan alpha Diclefrin 44-DDE 44-DDD Endrin Endosulfan II Endosulfan II Endosulfan II Endosulfan Sulphute 44-DDT Methoxycholor OPP Dimethous Dimethous Dimethous Endosulfan Sulphute Endosulfan	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	mg/kg	THE	DEL	N/A	N/A	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	N/A	N/A	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	< 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	N/A	N/A

nd - Result is below the laboratory Estimated Quantitation Limit.

* EQL increased due to matrix interference
N/A - not applicable.

BOLD
Signifies RI

Sample ID Location Depth Date			280408-19-KW BBI	280408-20-KW I413			290408-32-KW BBE	290508-33-KW			290408-51-KW BBI	290408-52-KW		
Depth														
			1.0	1.2			0.1-	0.3	-		1.2-			
Date									-					
			28-A				29-A ₁				29-A			
Laboratory			Envi	rolab			Envir	rolab			Envi	rolab		
Parameter	PQL	Units	Original Sample	Blind Sample	Blind R	eplicate RPD	Original Sample	Blind Sample	Blind Re	eplicate RPD	Original Sample	Blind Sample	Blind Re	eplicate RPD
voc														
Styrene Cumene (isopropylbenzene)	1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	<1	<1	N/A N/A	N/A N/A
n-Propylbenzene	i	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	<1	<1	N/A	N/A
1,3,5-Trimethylbenzene	i	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 1	< 1	N/A	N/A
sec-butylbenzene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	<1	< 1	N/A	N/A
1,2,4-Trimethylbenzene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	<1	< 1	N/A	N/A
tert-Butylbenzene	1	mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	<1 <1	<1 <1	N/A N/A	N/A N/A
p-isopropyltoluene n-Butylbenzene	1	mg/kg mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	<1	<1	N/A N/A	N/A
2,2-Dichloropropane	i	mg/kg	nt	nt	N/A	N/A N/A	nt	nt	N/A	N/A	<1	<1	N/A	N/A
1,2-dichloropropane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 1	< 1	N/A	N/A
cis-1,3-Dichloropropene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	<1	< 1	N/A	N/A
trans-1,3-Dichloropropene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 1	<1	N/A	N/A
1,2-Dibromoethane Dichlorodifluoromethane	10	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	< 1 < 10	< 1 < 10	N/A N/A	N/A N/A
Chloromethane	10	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A	< 10	< 10	N/A N/A	N/A N/A
Vinyl chloride	10	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 10	< 10	N/A	N/A
Bromomethane	10	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 10	< 10	N/A	N/A
Chloroethane	10	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 10	< 10	N/A	N/A
Trichlorofluoromethane	10	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 10	< 10	N/A	N/A
1,1-Dichloroethylene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	<1	< 1	N/A	N/A
trans-1,2-Dichloroethylene 1.1-Dichloroethane	1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	< 1 nt	< 1 nt	N/A N/A	N/A N/A
cis-1,2-Dichloroethylene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 1	< 1	N/A	N/A
1,1,1-Trichloroethane	i	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	<1	<1	N/A	N/A
1,1-Dichloropropene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	<1	< 1	N/A	N/A
Carbon tetrachloride	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 1	< 1	N/A	N/A
1,2-Dichloroethane Trichloroethene	1	mg/kg	nt	nt nt	N/A	N/A	nt nt	nt nt	N/A	N/A	< 1 < 1	<1 <1	N/A	N/A
Dibromomethane	- i	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	<1	<1	N/A N/A	N/A N/A
1,1,2-trichloroethane	i	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	<1	<1	N/A	N/A
1,3-dichloropropane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	<1	< 1	N/A	N/A
Tetrachloroethene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	<1	<1	N/A	N/A
1,1,1,2-Tetrachloroethane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 1	< 1	N/A	N/A
1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane	1	mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	<1	<1	N/A N/A	N/A N/A
1,2-Dibromo-3-chloropropane	i	mg/kg mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	<1	<1	N/A N/A	N/A N/A
Hexachlorobutadiene	i	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	<1	<1	N/A	N/A
Bromocholoromethane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 1	< 1	N/A	N/A
Chlorobenzene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	<1	< 1	N/A	N/A
Bromobenzene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 1	< 1	N/A	N/A
o-Chlorotoluene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	<1	<1	N/A	N/A
4-chlorotoluene 1,3-Dichlorobenzene	1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	<1 <1	<1 <1	N/A N/A	N/A N/A
1,3-Dichlorobenzene 1.4-Dichlorobenzene	1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	<1	<1	N/A N/A	N/A N/A
1,2-Dichlorobenzene	i	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 1	< 1	N/A	N/A
1,2,4-trichlorobenzene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 1	< 1	N/A	N/A
1,2,3-trichlorobenzene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	<1	<1	N/A	N/A
Chloroform	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 1	<1	N/A	N/A
Bromodichloromethane Chlorodibromomethane	1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	<1 <1	<1 <1	N/A N/A	N/A N/A
Bromoform	1	mg/kg mg/kg	nt	nt	N/A	N/A	nt nt	nt	N/A	N/A	<1	<1	N/A N/A	N/A N/A
PAAH	•			-4										
2,4-DB	100	ug/kg	nt	nt	N/A	N/A	< 100	< 100	N/A	N/A	nt	nt	N/A	N/A
Dicamba	100	ug/kg	nt	nt	N/A	N/A	< 100	< 100	N/A	N/A	nt	nt	N/A	N/A
2-Methyl-4-chlorophenoxyacetic acid	100	ug/kg	nt	nt	N/A	N/A	< 100	< 100	N/A	N/A	nt	nt	N/A	N/A
2,4-DP (Dichloroprop)	100	ug/kg	nt	nt	N/A	N/A	< 100	< 100	N/A	N/A	nt	nt	N/A	N/A
2,4-D	100	ug/kg	nt	nt	N/A	N/A	< 100	< 100	N/A N/A	N/A	nt	nt	N/A	N/A
Triclopyr 2-(2,4,5-Trichlorophenoxy) propionic acid	100	ug/kg ug/kg	nt nt	nt nt	N/A N/A	N/A N/A	< 100 < 100	< 100 < 100	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
2-(2,4,5-1ricnioropnenoxy) propionic acid 2,4,5-T	100	ug/kg ug/kg	nt nt	nt nt	N/A N/A	N/A N/A	< 100 < 100	< 100	N/A N/A	N/A	nt nt	nt nt	N/A N/A	N/A N/A
Phenols		ug/Ag		-11	1 1/0	1970	- 100	- 100	14/2	11/0	at .	-M	rvA	4.004
Total Phenols	5	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Nutrients														
Ammonia as N	0.5	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Total Kjeldahl Nitrogen	30	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
							nt	nt	N/A	N/A	nt	nt	N/A	N/A
Nitrite as N	0.1	mg/kg	nt	nt	N/A	N/A								
	0.1 0.5 10	mg/kg mg/kg mg/kg	nt nt	nt nt	N/A N/A N/A	N/A N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A

a					Ī				1					
Sample ID			300408-89-KW	300408-90-KW			300408-101-KW	300408-102-KW			010508-156-KW	010508-157-KW		
Location			BBI	1443			BBH	1442			BBI	H433		
Depth			0.4	-0.5			0.1-	0.4			0.1	-0.3		
Date			30-A	pr-08			30-A _I	or-08			1-M:	ay-08		
Laboratory			Envi	rolab			Envir	rolab			Envi	rolab		
Parameter	POL	Units	Original Sample	Blind Sample	Blind F	Replicate	Original Sample	Blind Sample	Blind R	eplicate	Original Sample	Blind Sample	Blind R	Replicate
	rQL	Units	Original Sample	ыши запріє	Average	RPD	Original Sample	ъппи заприе	Average	RPD	Original Sample	ыши запріе	Average	RPD
Metals Arsenic	4	mg/kg	5.3	< 4	5.3	N/A	5	< 4	5	N/A	16	7.9	11.95	68%
Cadmium	2	mg/kg	<1	< 1	N/A	N/A	<1	<1	N/A	N/A	<1	<1	N/A	N/A
Chromium	1	mg/kg	8.8	4.6	6.7	63%	7.8	5.8	6.8	29%	19	14	16.5	30%
Copper	1	mg/kg	11	6.3	8.65	54%	86	40	63	73%	66	41	53.5	47%
Nickel	1	mg/kg	<1	1.2	1.2	N/A	2.4	1.8	2.1	29%	12	6.6	9.3	58%
ead	1	mg/kg	9.1	8.6	8.85	6%	48	30	39	46%	110	160	135	37%
Zinc Mercury	0.1	mg/kg mg/kg	2.1 < 0.1	8.4 < 0.1	5.25 N/A	120% N/A	86 0.22	61 0.12	73.5 0.17	34% 59%	190 0.4	180 0.35	185 0.375	5% 13%
TPH/BTEX	0.1	mg/kg		. 0.1	19/75	10/13	0.22	0.12	0.17	3970	0.4	0.55	0.373	1370
TPH C6 - C9	25	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
ГРН C10 - C14	50	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
TPH C15 - C28	100	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
TPH C29 - C36	100	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Benzene	0.5	mg/kg	nt	nt	N/A N/A	N/A N/A	nt	nt	N/A N/A	N/A N/A	nt	nt	N/A N/A	N/A N/A
Foluene Ethylbenzene	0.5	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
neta- & para-Xylene	2	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A N/A
ortho-Xylene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
PAHs														
Naphthalene	0.1	mg/kg	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Acenaphthylene	0.1	mg/kg	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Acenaphthene	0.1	mg/kg	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Phenanthrene	0.1	mg/kg mg/kg	< 0.1 < 0.1	< 0.1 < 0.1	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Anthracene	0.1	mg/kg	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A N/A
luoranthene	0.1	mg/kg	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Pyrene	0.1	mg/kg	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Benzo(a)anthracene	0.1	mg/kg	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Chrysene	0.1	mg/kg	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Benzo(b)&(k)fluoranthene	0.2	mg/kg	< 0.2	< 0.2	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	0.05	mg/kg mg/kg	< 0.05 < 0.1	< 0.05 < 0.1	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Dibenz(a,h)anthracene	0.1	mg/kg	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Benzo(g,h,i)pervlene	0.1	mg/kg	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
OCP														
alpha-BCH	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Hexachlorobenzene	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	< 0.1	< 0.1	N/A	N/A
-BHC	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	< 0.1	< 0.1	N/A	N/A
gamma-BHC (Lindane)	0.1	mg/kg mg/kg	nt nt	nt	N/A N/A	N/A N/A	< 0.1	< 0.1	N/A N/A	N/A N/A	< 0.1 < 0.1	< 0.1 < 0.1	N/A	N/A N/A
I-BHC Hentachlor	0.1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	< 0.1 < 0.1	< 0.1 < 0.1	N/A N/A	N/A N/A	< 0.1 < 0.1	< 0.1 < 0.1	N/A N/A	N/A N/A
Aldrin	0.1	mg/kg	nt	nt	N/A N/A	N/A	< 0.1	< 0.1	N/A	N/A	< 0.1	< 0.1	N/A	N/A N/A
Heptachlor epoxide	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Chlordane - trans	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Chlordane - cis	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Endosulfan alpha	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Dieldrin 14-DDE	0.1	mg/kg	nt nt	nt	N/A N/A	N/A N/A	< 0.1 < 0.1	< 0.1	N/A N/A	N/A N/A	< 0.1	< 0.1 < 0.1	N/A N/A	N/A N/A
I,4-DDE	0.1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	< 0.1 < 0.1	< 0.1 < 0.1	N/A N/A	N/A N/A	< 0.1 < 0.1	< 0.1 < 0.1	N/A N/A	N/A N/A
Endrin	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	< 0.1	< 0.1	N/A	N/A N/A
Endosulfan II	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	< 0.1	< 0.1	N/A	N/A
ndrin aldehyde	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Endosulfan sulphate	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	< 0.1	< 0.1	N/A	N/A
,4-DDT	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Methoxychlor DPP	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Omethoate	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Diazinon	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Chlorpyrifos-methyl	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Ronnel	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Penitrothion	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Chlorpyrifos	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Ethion	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	< 0.1	< 0.1	N/A	N/A
PCB														
Fotal PCB	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	< 0.1	< 0.1	N/A	N/A

nd - Result is below the laboratory Estimated Quantitation Limit.

* EQL increased due to matrix interference
N/A - not applicable.

BOLD
Signifies RI

Signifies RPD > 50% where the average concentration exceeds ten times the EQL, or where the RPD > 75% where the average concentration is between 5-10 times the EQL. or where the RPD > 100% where the average concentration is between 2-5 times the EQL.

Sample ID			300408-89-KW	300408-90-KW	Ī		300408-101-KW	300408-102-KW	1		010508-156-KW	010508-157-KW		
Location				H443				H442				1433		
									ł					
Depth			0.4					-0.4			0.1			
Date			30-A	pr-08			30-A	pr-08			1-M:	ay-08		
Laboratory			Envi	rolab			Envi	rolab			Envi	rolab		
Parameter	PQL	Units	Original Sample	Blind Sample	Blind R Average	RPD	Original Sample	Blind Sample	Blind R Average	eplicate RPD	Original Sample	Blind Sample	Blind R Average	RPD
VOC			I	I		I	1			I		l l		I
Styrene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Cumene (isopropylbenzene) n-Propylbenzene	1	mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
n-Propyibenzene 1,3,5-Trimethylbenzene	i	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
sec-butylbenzene	i	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,2,4-Trimethylbenzene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
tert-Butylbenzene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
p-isopropyltoluene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
n-Butylbenzene 2,2-Dichloropropane	1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
1,2-dichloropropane	i	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
cis-1,3-Dichloropropene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
trans-1,3-Dichloropropene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,2-Dibromoethane	10	mg/kg	nt nt	nt nt	N/A N/A	N/A	nt nt	nt est	N/A N/A	N/A	nt nt	nt	N/A	N/A
Dichlorodifluoromethane Chloromethane	10 10	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Vinyl chloride	10	mg/kg	nt	nt	N/A	N/A N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Bromomethane	10	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Chloroethane	10	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Trichlorofluoromethane 1,1-Dichloroethylene	10	mg/kg	nt	nt	N/A N/A	N/A N/A	nt	nt	N/A N/A	N/A N/A	nt	nt	N/A N/A	N/A N/A
1,1-Dichloroethylene trans-1,2-Dichloroethylene	1	mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
1.1-Dichloroethane	i	mg/kg mg/kg	nt nt	nt	N/A	N/A N/A	nt nt	nt	N/A	N/A	nt nt	nt nt	N/A	N/A
cis-1,2-Dichloroethylene	i	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,1,1-Trichloroethane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,1-Dichloropropene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Carbon tetrachloride	1	mg/kg	nt	nt	N/A N/A	N/A N/A	nt	nt	N/A N/A	N/A N/A	nt	nt	N/A N/A	N/A N/A
1,2-Dichloroethane Trichloroethene	1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Dibromomethane	i	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,1,2-trichloroethane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,3-dichloropropane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Tetrachloroethene	1	mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane	i	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
1,2,3-Trichloropropane	i	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,2-Dibromo-3-chloropropane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Hexachlorobutadiene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Bromocholoromethane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Chlorobenzene Bromobenzene	1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
o-Chlorotoluene	i	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
4-chlorotoluene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,3-Dichlorobenzene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,4-Dichlorobenzene 1,2-Dichlorobenzene	1	mg/kg	nt	nt	N/A N/A	N/A N/A	nt	nt	N/A N/A	N/A N/A	nt	nt	N/A N/A	N/A N/A
1,2-Dichlorobenzene 1 2 4-trichlorobenzene	1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
1,2,3-trichlorobenzene	i	mg/kg	nt	nt	N/A	N/A N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Chloroform	ì	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Bromodichloromethane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Chlorodibromomethane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Bromoform PAAH	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
2,4-DB	100		_		N/A	N/A	_		N/A	N/A	nt		N/A	N/A
2,4-DB Dicamba	100	ug/kg ug/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
2-Methyl-4-chlorophenoxyacetic acid	100	ug/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
2,4-DP (Dichloroprop)	100	ug/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
2,4-D	100	ug/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Triclopyr	100 100	ug/kg	nt	nt	N/A	N/A	nt nt	nt	N/A	N/A	nt nt	nt	N/A	N/A
2-(2,4,5-Trichlorophenoxy) propionic acid		ug/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
	100			III.	19/75	1975	1	1 111	1975	IVA		III.	WA	1975
2,4,5-T Phenols	100	ug/kg												
Phenols	100	ug/kg mg/kg	ব	্ব	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Phenols Total Phenols			্ত	্ব	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Phenols		mg/kg	<5 nt	<5 nt	N/A	N/A N/A	nt 1.8	nt 1.7	N/A 1.75	N/A 6%	nt nt	nt nt	N/A N/A	N/A N/A
Phenols Total Phenols Nutrients Ammonia as N Total Kjeldahl Nitrogen	5 0.5 30	mg/kg mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	1.8 830	1.7 1200	1.75 1015	6% 36%	nt nt	nt nt	N/A N/A	N/A N/A
Phenols Total Phenols Nutrients Ammonia as N Total Kjeldahl Nitrogen Nitrite as N	5 0.5 30 0.1	mg/kg mg/kg mg/kg mg/kg	nt nt nt	nt nt nt	N/A N/A N/A	N/A N/A N/A	1.8 830 < 0.1	1.7 1200 < 0.1	1.75 1015 N/A	6% 36% N/A	nt nt nt	nt nt nt	N/A N/A N/A	N/A N/A N/A
Phenols Total Phenols Nutrients Ammonia as N Total Kjeldahl Nitrogen	5 0.5 30	mg/kg mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	1.8 830	1.7 1200	1.75 1015	6% 36%	nt nt	nt nt	N/A N/A	N/A N/A

Sample ID			060508-37-KW	060508-38-KW	Ī		120508-229-KW	120508-230-KW	1		120508-215-KW	120508-216-KW		
Location			ABI	1215			AB	H265			ABI	1211		
Depth			0.7	-0.9			0.9	-1.1			1.0-	-1.2		
Date			6-M	ay-08			12-3	Iay-08			12-M	ov.08		
Laboratory			Envirolab	ALS			Envirolab	ALS			Envirolab	ALS		
Zaboratory			Lavironio	1110	Blind F	teplicate	Lavironio		Blind R	Replicate	Lavirono	ALO,	Blind Re	eplicate
Parameter	PQL	Units	Original Sample	Split Sample	Average	RPD	Original Sample	Split Sample	Average	RPD	Original Sample	Split Sample	Average	RPD
Metals Arsenic	4	mg/kg	6.5	্ত	6.5	N/A	< 4	< 5	N/A	N/A	< 4	< 5	N/A	N/A
Cadmium	2	mg/kg	< 1	<1	N/A	N/A	<1	<1	N/A	N/A	<1	<1	N/A	N/A
Chromium	1	mg/kg	2.7	3	2.85	11%	<1	< 2	N/A	N/A	1.6	2	1.8	22%
Copper	1	mg/kg	<1	<5	N/A	N/A	1.2	< 5	1.2	N/A	< 1	< 5	N/A	N/A
Nickel Lead	1	mg/kg mg/kg	1.6 1.4	<5 <2	1.6	N/A N/A	<1 <1	< 2 < 5	N/A N/A	N/A N/A	<1	< 2 < 5	N/A 1	N/A N/A
Zinc	i	mg/kg	3	- 5	3	N/A	2.1	< 5	2.1	N/A	2.1	< 5	2.1	N/A
Mercury	0.1	mg/kg	< 0.1	< 0.1	N/A	N/A	< 0.1	< 0.1	N/A	N/A	0.14	< 0.1	0.14	N/A
TPH/BTEX		,												
TPH C6 - C9 TPH C10 - C14	25 50	mg/kg mg/kg	nt nt	nt nt	nt nt	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
TPH C10 - C14 TPH C15 - C28	100	mg/kg mg/kg	nt nt	nt nt	nt nt	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
TPH C29 - C36	100	mg/kg	nt	nt	nt	nt	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Benzene	0.5	mg/kg	nt	nt	nt	nt	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Toluene	0.5	mg/kg	nt	nt	nt	nt	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Ethylbenzene	2	mg/kg	nt nt	nt nt	nt nt	nt	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
meta- & para-Xylene ortho-Xylene	1	mg/kg mg/kg	nt nt	nt nt	nt nt	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
PAHs		mg/ Ag							1071	1011				1071
Naphthalene	0.1	mg/kg	nt	nt	nt	nt	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Acenaphthylene	0.1	mg/kg	nt	nt	nt	nt	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Acenaphthene Fluorene	0.1	mg/kg	nt nt	nt nt	nt nt	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Phenanthrene	0.1	mg/kg mg/kg	nt	nt	nt	nt	nt	nt	N/A N/A	N/A	nt	nt nt	N/A	N/A
Anthracene	0.1	mg/kg	nt	nt	nt	nt	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Fluoranthene	0.1	mg/kg	nt	nt	nt	nt	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Pyrene	0.1	mg/kg	nt	nt	nt	nt	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Benzo(a)anthracene	0.1	mg/kg	nt	nt	nt	nt	nt nt	nt	N/A N/A	N/A N/A	nt nt	nt	N/A N/A	N/A N/A
Chrysene Benzo(b)&(k)fluoranthene	0.1	mg/kg mg/kg	nt nt	nt nt	nt nt	nt nt	nt	nt nt	N/A	N/A	nt	nt nt	N/A	N/A
Benzo(a)pyrene	0.05	mg/kg	nt	nt	nt	nt	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Indeno(1,2,3-cd)pyrene	0.1	mg/kg	nt	nt	nt	nt	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Dibenz(a,h)anthracene Benzo(g,h,i)perylene	0.1	mg/kg	nt nt	nt nt	nt nt	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
OCP	0.1	mg/kg	ш	m	п	п	III	m	N/A	N/A	m	ш	N/A	N/A
alpha-BCH	0.1	mg/kg	nt	nt	nt	nt	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Hexachlorobenzene	0.1	mg/kg	nt	nt	nt	nt	nt	nt	N/A	N/A	nt	nt	N/A	N/A
b-BHC	0.1	mg/kg	nt	nt	nt	nt	nt	nt	N/A	N/A	nt	nt	N/A	N/A
gamma-BHC (Lindane) d-BHC	0.1	mg/kg	nt nt	nt nt	nt nt	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
d-BHC Heptachlor	0.1	mg/kg mg/kg	nt nt	nt nt	nt nt	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Aldrin	0.1	mg/kg	nt	nt	nt	nt	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Heptachlor epoxide	0.1	mg/kg	nt	nt	nt	nt	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Chlordane - trans	0.1	mg/kg	nt	nt	nt	nt	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Chlordane - cis Endosulfan alpha	0.1	mg/kg mg/kg	nt nt	nt nt	nt nt	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Endosuiran aipna Dieldrin	0.1	mg/kg mg/kg	nt nt	nt nt	nt nt	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
4,4-DDE	0.1	mg/kg	nt	nt	nt	nt	nt	nt	N/A	N/A	nt	nt	N/A	N/A
4,4-DDD	0.1	mg/kg	nt	nt	nt	nt	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Endrin	0.1	mg/kg	nt	nt	nt	nt	nt	nt	N/A N/A	N/A N/A	nt	nt	N/A N/A	N/A N/A
Endosulfan II Endrin aldehyde	0.1	mg/kg mg/kg	nt nt	nt nt	nt nt	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Endosulfan sulphate	0.1	mg/kg	nt	nt	nt	nt	nt	nt	N/A	N/A	nt	nt	N/A	N/A
4,4-DDT	0.1	mg/kg	nt	nt	nt	nt	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Methoxychlor	0.1	mg/kg	nt	nt	nt	nt	nt	nt	N/A	N/A	nt	nt	N/A	N/A
OPP Dimethoate	0.1	ma/ka	nt	nt	l nf	l nf	nt	nt nt	N/A	N/A	nt	nf	N/A	N/A
Dimetnoate Diazinon	0.1	mg/kg mg/kg	nt nt	nt nt	nt nt	nt nt	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Chlorpyrifos-methyl	0.1	mg/kg	nt	nt	nt	nt	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Ronnel	0.1	mg/kg	nt	nt	nt	nt	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Fenitrothion	0.1	mg/kg	nt	nt	nt	nt	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Chlorpyrifos	0.1	mg/kg	nt nt	nt nt	nt nt	nt nt	nt nt	nt nt	N/A	N/A	nt nt	nt nt	N/A	N/A
Ethion PCB	0.1	mg/kg	ш	m	ш	ш	ш	III.	N/A	N/A	m	ш	N/A	N/A
Total PCB	0.1	mg/kg	nt	nt	nt	nt	nt	nt	N/A	N/A	nt	nt	N/A	N/A
NOTES:	•													

1.5 Sept.	Sample ID			060508-37-KW	060508-38-KW			120508-229-KW	120508-230-KW	Ī		120508-215-KW	120508-216-KW		
Page	Location			ABI	1215			AB	H265	1		ABI	1211		
Page										1					
Part										4		-			
Transfer Pro					i				1	4		l			
Promote Post Column Post Column Post	Laboratory		1	Envirolab	ALS	nr 1n		Envirolab	ALS	DV 17		Envirolab	ALS	Pr 1 P	
1 954		PQL	Units	Original Sample	Split Sample			Original Sample	Split Sample			Original Sample	Split Sample		
All						NI/A	NI/A			N/A	N/A			NIA	NI/A
		1				N/A	N/A				N/A			N/A	
set of printing 1 25 2 2 2 2 NA NA NA 2 2 NA NA	n-Propylbenzene	1		nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1.5 Teaching 1		1													
min dentalements 1		1													
1		1													
Planchemon		i													
2.54 Margroupe		i													
1	2,2-Dichloropropane			nt		N/A	N/A		nt	N/A	N/A		nt	N/A	N/A
Table Tabl	1,2-dichloropropane														
13 Demonstrate	cis-1,3-Dichloropropene	1													
District Continue		1													
Discontante						N/A				N/A					N/A
Variable 10	Chloromethane					N/A	N/A			N/A	N/A			N/A	N/A
File	Vinyl chloride	10	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Trible benefine	Bromomethane	10	mg/kg			N/A								N/A	
13 Deliberolity 1	Chloroethane														
Temp 1 Paging 1														N/A N/A	
13 13 13 14 15 15 15 15 15 15 15		-													
200 200															
1.1 Challesproproper 1	cis-1,2-Dichloroethylene	1		nt	nt	N/A	N/A	nt	nt		N/A	nt	nt		N/A
Carbon terms			mg/kg							N/A				N/A	
1.2 Dischordentes															
Timblemethes															
Differentembur 1 suglig st st st NA NA st st NA NA st st NA NA st st NA NA NA st st st st NA NA NA st st st st st st st s															
1							N/A			N/A				N/A	
Tenetheroschee 1 mg/sg at at N/A N/A at at N/A N/A at at N/A N/A N/A at at N/A N/A N/A N/A At at at N/A N/A N/A N/A N/A At at at N/A N/A N/A N/A N/A N/A N/A At at at N/A N/A N/A N/A N/A N/A N/A At at at N/A N/A N/A N/A At at at N/A N/A N/A N/A At at at N/A N/A N/A N/A N/A At at at At N/A N/A At at at N/A N/A N/A At at at At 1,1,2-trichloroethane	1	mg/kg	nt	nt			nt	nt			nt	nt			
1.11.2-Ternschondrunge 1	1,3-dichloropropane														
11.23-Firehbrorobane															
1.3-Prints/propropage		1													
1 mg/kg st st st N/A N/A st st st N/A N/A st st st N/A N/A st st st st N/A N/A st st st st N/A N/A st st st st st st N/A N/A st st st st st st st s		i				N/A	N/A			N/A	N/A			N/A N/A	
Houghbroundstandaries		1		nt	nt			nt	nt			nt	nt		N/A
1 mg/kg st rt N/A N/A N/A st rt N/A N/A st rt N/A N/A st rt N/A N/A N/A st rt N/A N/A N/A st rt rt N/A N/	Hexachlorobutadiene	1		nt		N/A	N/A	nt	nt	N/A	N/A	nt		N/A	
Brombenzee 1 mg/kg st st st N/A N/A st st st st N/A N/A st st st st st st st s	Bromocholoromethane	1													
1						N/A	N/A			N/A				N/A	N/A
4-blerotchenee															
1.3 Delichorbeannee		i													
1.4-Dichlorobeturene		1													
1.4 mg/kg st mt N/A N/A st st N/A N/A st st N/A N/A st st N/A N/A st st mt mt N/A N/A st st mt mt N/A N/A st st mt mt mt N/A N/A st st mt mt mt mt mt mt	1,4-Dichlorobenzene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1.2.3-inchlorobenzenee															
Chloroform															
Remodicidenomehane	1,2,3-trichlorobenzene Chloroform														
Chlorodifromomehane															
Pack	Chlorodibromomethane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
2.4-DB	Bromoform	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Dicamba 100 up/kg st st st N/A N/A st st st st st st st s															
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2,4-DB	100				N/A	N/A			N/A	N/A			N/A	N/A
2.45P (Infohroprop) 100 up/kg st st st N/A N/A st st st N/A N/A st st st N/A N/A st st st st N/A N/A st st st st st st st s															
2.4-5 100 ug/kg st st N/A N/A st st st st N/A st st st st st st st s	2wietnyi-4-cnioropnenoxyacetic acid 2.4-DP (Dichloroprop)					N/A N/A	N/A N/A			N/A N/A	N/A N/A			N/A N/A	N/A N/A
Triclopy 100															
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						N/A									
2.4.5 T 100 10 10 10 10 10 10 10 10 10 10 10 10	2-(2,4,5-Trichlorophenoxy) propionic acid		ug/kg												
Total Phenols 5 mg/kg nt nt N/A N/A nt nt N/A N/A nt nt N/A	2,4,5-T	100	ug/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Nutrients Nut															
Ammonia SN 0.5 mg/kg nt nt NA N/A nt nt nt N/A N/A N/A nt		5	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Total Kijeldahl Nitrogen 30 mykg at at at NiA NiA NiA NiA at niA NiA NiA at niA n		0.5	mø/kø	nt	nt	N/A	N/A	nt	nf	N/A	N/A	nt	nf	N/A	N/A
Nitrite as N 0.1 mg/kg at at the N/A N/A the N/A N/A N/A N/A the N/A N/A N/A the N/A N/A N/A the N/A N/A the N/A															
Nitrate as N 0.5 $\log \log n$ at nt N/A N/A at nt nt N/A N/A nt nt nt N/A N/A nt nt nt nt nt nt nt nt	Nitrite as N														
	Nitrate as N	0.5				N/A	N/A			N/A	N/A			N/A	N/A
	Total Phosphorous NOTES:	10	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A

NOTES:

Relative Percentage Difference (RPD) is calculated as the absolute value of the difference between original and replicate samples divided by the average and expressed as a percentage.

d. Result is below the laboratory Estimated Quantitation Linit.

FQL increased due to matrix interference

N/A - not applicable.

ROLD

Signifies RPD > 50% where the average concentration exceeds ten times the EQL.

or where the RPD > 75% where the average concentration is between 5-10 times the EQL.

or where the RPD > 10% where the average concentration is between 5-10 times the EQL.

Sample ID	1		060508-23-KW	060508-24-KW			070508-98-KW	070508-99-KW			080508-106-KW	080508-107-KW		
Location			ABH	238			ABI	1247			ABI	1248		
Depth			0.1-	0.5	1		0.1-	0.4	1		1.0	1.1		
Date			6-Ma	v-08			7-Ma	ıy-08			8-M:	ay-08		
Laboratory	7		Envir	olab			Envi	rolab			Envi	rolab		
					Blind R	teplicate			Blind Replicate				Blind R	Replicate
Parameter	PQL	Units	Original Sample	Blind Sample	Average	RPD	Original Sample	Blind Sample	Average	RPD	Original Sample	Blind Sample	Average	RPD
Metals	4		< 4	< 4	N/A	N/A			N/A	N/A	-4	< 4	N/A	N/A
Arsenic Cadmium	4	mg/kg mg/kg	< 4	< 4	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	< 4 < 1	< 4	N/A N/A	N/A N/A
Chromium	1	mg/kg	3.5	1.4	2.45	86%	nt	nt	N/A	N/A	1	<1	1	N/A
Copper	1	mg/kg	2.3	< 1	2.3	N/A	nt	nt	N/A	N/A	< 1	< 1	N/A	N/A
Nickel	1	mg/kg	1	< 1	1	N/A	nt	nt	N/A	N/A	<1	<1	N/A	N/A
Lead	1	mg/kg	3.3	1.7	2.5	64%	nt	nt	N/A	N/A	1.1	< 1 4 2	1.1	N/A
Zinc Mercury	0.1	mg/kg mg/kg	9.7 < 0.1	9.8 < 0.1	9.75 N/A	1% N/A	nt nt	nt nt	N/A N/A	N/A N/A	< 0.1	4.2 < 0.1	2.95 N/A	85% N/A
TPH/BTEX	0.1	ng/kg	. 0.1	~ 0.1	N/A	NA	III.	III.	N/A	19/7	~ 0.1	V 0.3	N/A	19/1
TPH C6 - C9	25	mg/kg	nt	nt	N/A	N/A	< 25	< 25	N/A	N/A	nt	nt	N/A	N/A
TPH C10 - C14	50	mg/kg	nt	nt	N/A	N/A	< 50	< 50	N/A	N/A	nt	nt	N/A	N/A
TPH C15 - C28	100	mg/kg	nt	nt	N/A	N/A	< 100	< 100	N/A	N/A	nt	nt	N/A	N/A
TPH C29 - C36	100	mg/kg	nt	nt	N/A	N/A	< 100	< 100	N/A	N/A	nt	nt	N/A	N/A
Benzene Toluene	0.5	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	< 0.5 < 0.5	< 0.5 < 0.5	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Ethylbenzene	0.3	mg/kg	nt	nt nt	N/A	N/A	< 1	< 1	N/A	N/A	nt	nt	N/A	N/A
meta- & para-Xylene	2	mg/kg	nt	nt	N/A	N/A	< 2	< 2	N/A	N/A	nt	nt	N/A	N/A
ortho-Xylene	1	mg/kg	nt	nt	N/A	N/A	< 1	< 1	N/A	N/A	nt	nt	N/A	N/A
PAHs														
Naphthalene	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1 < 0.1	N/A	N/A	nt	nt	N/A	N/A
Acenaphthylene Acenaphthene	0.1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	< 0.1 < 0.1	< 0.1	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Fluorene	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Phenanthrene	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Anthracene	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Fluoranthene	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Pyrene	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Benzo(a)anthracene	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Chrysene Benzo(b)&(k)fluoranthene	0.1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	< 0.1 < 0.2	< 0.1 < 0.2	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Benzo(a)pyrene	0.05	mg/kg	nt	nt	N/A	N/A	< 0.05	< 0.05	N/A	N/A	nt	nt	N/A	N/A
Indeno(1,2,3-cd)pyrene	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Dibenz(a,h)anthracene	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Benzo(g,h,i)perylene	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
OCP	0.1				27/4	27/1		-0.1	27/4	27/4			N. 1.1.1	
alpha-BCH Hexachlorobenzene	0.1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	< 0.1 < 0.1	< 0.1	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
b-BHC	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
gamma-BHC (Lindane)	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
d-BHC	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Heptachlor	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Aldrin	0.1	mg/kg	nt	nt	N/A	N/A N/A	< 0.1 < 0.1	< 0.1 < 0.1	N/A	N/A	nt nt	nt	N/A	N/A
Heptachlor epoxide Chlordane - trans	0.1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	< 0.1 < 0.1	< 0.1	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Chlordane - trans Chlordane - cis	0.1	mg/kg	nt nt	nt nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt nt	N/A	N/A
Endosulfan alpha	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Dieldrin	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
4,4-DDE	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
4,4-DDD	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Endrin	0.1	mg/kg	nt	nt	N/A N/A	N/A N/A	< 0.1 < 0.1	< 0.1 < 0.1	N/A N/A	N/A N/A	nt	nt	N/A	N/A
Endosulfan II Endrin aldehyde	0.1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	< 0.1	< 0.1	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Endosulfan sulphate	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
4,4-DDT	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Methoxychlor	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
OPP					27/1	****			27/1	27/1				
Dimethoate	0.1	mg/kg	nt	nt	N/A N/A	N/A N/A	< 0.1 < 0.1	< 0.1 < 0.1	N/A	N/A N/A	nt	nt	N/A	N/A
Diazinon Chlorpyrifos-methyl	0.1	mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	< 0.1	< 0.1	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Cniorpyritos-metnyi Ronnel	0.1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	< 0.1	< 0.1	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Fenitrothion	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Chlorpyrifos	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Ethion	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
PCB														
Total PCB	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A

nd - Result is below the laboratory Estimated Quantitation Limit.

* EQL increased due to matrix interference
N/A - not applicable.

BOLD
Signifies R

Signifies RPD > 50% where the average concentration exceeds ten times the EQL, or where the RPD > 75% where the average concentration is between 5-10 times the EQL or where the RPD > 100% where the average concentration is between 2-5 times the EQL.

Sample ID			060508-23-KW	060508-24-KW			070508-98-KW	070508-99-KW	1		080508-106-KW	080508-107-KW	1	
Location			ABH	238			ABH	1247			ABI	H248	1	
					-				-				+	
Depth			0.1-				0.1-		4		1.0			
Date			6-Ma	y-08			7-Ma	y-08			8-M	ay-08		
Laboratory			Envir	olab			Envir	rolab			Envi	irolab		
Parameter	PQL	Units	Original Sample	Blind Sample	Blind I Average	Replicate RPD	Original Sample Blind Sample		Blind Replicate Average RPD		Original Sample Blind Sample		Blind R Average	Replicate RPD
VOC	-				12.50.00			1	ge		1		age	
Styrene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Cumene (isopropylbenzene)	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
n-Propylbenzene 1,3,5-Trimethylbenzene	1	mg/kg	nt nt	nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A	N/A N/A
sec-butylbenzene	1	mg/kg mg/kg	nt	nt nt	N/A	N/A	nt nt	nt	N/A	N/A	nt	nt	N/A N/A	N/A
1,2,4-Trimethylbenzene	i	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
tert-Butylbenzene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
p-isopropyltoluene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
n-Butylbenzene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
2,2-Dichloropropane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,2-dichloropropane cis-1,3-Dichloropropene	1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
trans-1,3-Dichloropropene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,2-Dibromoethane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Dichlorodifluoromethane	10	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Chloromethane	10	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Vinyl chloride	10	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Bromomethane	10 10	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Chloroethane Trichlorofluoromethane	10	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
1,1-Dichloroethylene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
trans-1,2-Dichloroethylene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,1-Dichloroethane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
cis-1,2-Dichloroethylene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,1,1-Trichloroethane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,1-Dichloropropene Carbon tetrachloride	1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
1,2-Dichloroethane	i	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Trichloroethene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Dibromomethane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,1,2-trichloroethane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,3-dichloropropane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Tetrachloroethene 1.1.1.2-Tetrachloroethane	1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
1.1.2.2-Tetrachioroethane	i	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,2,3-Trichloropropane	i	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,2-Dibromo-3-chloropropane	- 1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Hexachlorobutadiene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Bromocholoromethane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Chlorobenzene Bromobenzene	1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
o-Chlorotoluene	i	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
4-chlorotoluene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,3-Dichlorobenzene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,4-Dichlorobenzene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,2-Dichlorobenzene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,2,4-trichlorobenzene 1,2,3-trichlorobenzene	1	mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
1,2,3-tricniorobenzene Chloroform	1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Bromodichloromethane	i	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Chlorodibromomethane	i	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Bromoform	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
PAAH														
2,4-DB	100	ug/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Dicamba	100	ug/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
2-Methyl-4-chlorophenoxyacetic acid 2,4-DP (Dichloroprop)	100	ug/kg	nt	nt est	N/A N/A	N/A N/A	nt	nt nt	N/A N/A	N/A N/A	nt nt	nt	N/A N/A	N/A N/A
2,4-DP (Dichioroprop)	100	ug/kg ug/kg	nt nt	nt nt	N/A N/A	N/A	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Triclopyr	100	ug/kg	nt nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
2-(2,4,5-Trichlorophenoxy) propionic acid	100	ug/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
2,4,5-T	100	ug/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Phenols														
	5	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Total Phenols	_													
Nutrients				,	_			,						
Nutrients Ammonia as N	0.5	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Nutrients Ammonia as N Total Kjeldahl Nitrogen	0.5	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Nutrients Ammonia as N Total Kjeldahl Nitrogen Nitrite as N	0.5 30 0.1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Nutrients Ammonia as N Total Kjeldahl Nitrogen	0.5	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A

Sample ID			080508-145-KW	080508-146-KW			080508-152-KW	080508-153-KW			090508-194-KW	090508-195-KW		
Location			ABH	1242			ABI	1231	Ī		ABH	2103		
Depth			0.5-	0.7			0.6-	0.7	İ		0.1-	0.2	Ť	
Date			8-Ma	ıy-08			8-Ma	ıy-08	İ		9-Ma	ıy-08	Ť	
Laboratory			Envir	rolab			Envi	rolab	İ		Envi	rolab	ŧ	
,					Blind R	eplicate			Blind Re	eplicate			Blind Re	eplicate
Parameter	PQL	Units	Original Sample	Blind Sample	Average	RPD	Original Sample	Blind Sample	Average	RPD	Original Sample	Blind Sample	Average	RPD
Metals														
Arsenic Cadmium	2	mg/kg mg/kg	< 4 < 1	6.7 < 1	6.7 N/A	N/A N/A	< 4 < 1	< 4 < 1	N/A N/A	N/A N/A	< 4 < 1	< 4 < 1	N/A N/A	N/A N/A
Chromium	1	mg/kg	7.2	12	9.6	50%	1.3	1.2	1.25	8%	9.7	4.2	6.95	79%
Copper	1	mg/kg	9.7	13	11.35	29%	1.6	1.8	1.7	12%	13	7.3	10.15	56%
Nickel	1	mg/kg	2.1	2.9	2.5	32%	< 1	< 1	N/A	N/A	12	4	8	100%
Lead Zinc	1	mg/kg mg/kg	26 32	26 23	26 27.5	0% 33%	7.8	9.1 12	8.45 10.5	15% 29%	950 41	1200 34	1075 37.5	23% 19%
Mercury	0.1	mg/kg	0.24	0.1	0.17	82%	< 0.1	< 0.1	N/A	N/A	< 0.1	< 0.1	N/A	N/A
TPH/BTEX														
TPH C6 - C9	25	mg/kg	nt	nt	N/A	N/A	< 25	< 25	N/A	N/A	nt	nt	N/A	N/A
TPH C10 - C14	50	mg/kg	nt	nt	N/A	N/A	< 50	< 50	N/A	N/A	nt	nt	N/A	N/A
TPH C15 - C28 TPH C29 - C36	100 100	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	< 100 < 100	< 100 < 100	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Benzene	0.5	mg/kg	nt	nt	N/A	N/A	< 0.5	< 0.5	N/A	N/A	nt	nt	N/A	N/A
Toluene	0.5	mg/kg	nt	nt	N/A	N/A	< 0.5	< 0.5	N/A	N/A	nt	nt	N/A	N/A
Ethylbenzene	1	mg/kg	nt	nt	N/A	N/A	< 1	< 1	N/A	N/A	nt	nt	N/A	N/A
meta- & para-Xylene	2	mg/kg	nt nt	nt nt	N/A	N/A	< 2 < 1	< 2 < 1	N/A	N/A	nt nt	nt nt	N/A	N/A
ortho-Xylene PAHs	- 1	mg/kg	ш	ш	N/A	N/A	< 1	< 1	N/A	N/A	m	m	N/A	N/A
Naphthalene	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Acenaphthylene	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Acenaphthene	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Fluorene	0.1	mg/kg	nt	nt	N/A N/A	N/A N/A	< 0.1 < 0.1	< 0.1 < 0.1	N/A N/A	N/A N/A	nt	nt	N/A N/A	N/A N/A
Phenanthrene Anthracene	0.1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	< 0.1	< 0.1	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Fluoranthene	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Pyrene	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Benzo(a)anthracene	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Chrysene	0.1	mg/kg	nt	nt	N/A N/A	N/A N/A	< 0.1 < 0.2	< 0.1 < 0.2	N/A N/A	N/A N/A	nt	nt	N/A N/A	N/A N/A
Benzo(b)&(k)fluoranthene Benzo(a)pyrene	0.2	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	< 0.2	< 0.2	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Indeno(1,2,3-cd)pyrene	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Dibenz(a,h)anthracene	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Benzo(g,h,i)perylene	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
OCP aloha-BCH	0.1		nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Hexachlorobenzene	0.1	mg/kg mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A
b-BHC	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A
gamma-BHC (Lindane)	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A
d-BHC	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Heptachlor Aldrin	0.1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	< 0.1 < 0.1	< 0.1 < 0.1	N/A N/A	N/A N/A
Heptachlor epoxide	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Chlordane - trans	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Chlordane - cis	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Endosulfan alpha	0.1	mg/kg	nt	nt	N/A	N/A	nt est	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A N/A
Dieldrin 4.4-DDE	0.1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	< 0.1 < 0.1	< 0.1 < 0.1	N/A N/A	N/A N/A
4,4-DDD	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Endrin	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Endosulfan II	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Endrin aldehyde Endosulfan sulohate	0.1	mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	< 0.1	< 0.1	N/A N/A	N/A N/A
4,4-DDT	0.1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	< 0.1	< 0.1	N/A N/A	N/A N/A
Methoxychlor	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A
OPP														
Dimethoate	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Diazinon Chlorpyrifos-methyl	0.1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	< 0.1 < 0.1	< 0.1	N/A N/A	N/A N/A
Cniorpyritos-metnyi Ronnel	0.1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	< 0.1	< 0.1	N/A N/A	N/A N/A
Fenitrothion	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Chlorpyrifos	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Ethion	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A
PCB Total PCB	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A
NOTES:	0.1	mg/kg	ш	III.	N/A	N/A	III.	III.	IN/A	IN/A	× 0.1	< 0.1	IN/A	IN/A

Signifies RPD > 50% where the average concentration exceeds ten times the EQL, or where the RPD > 75% where the average concentration is between 5-10 times the EQL or where the RPD > 100% where the average concentration is between 2-5 times the EQL.

Page Page	Sample ID			080508-145-KW	080508-146-KW			080508-152-KW	080508-153-KW			090508-194-KW	090508-195-KW	Ĩ	
Page	Location			ABI	1242			ABI	1231	Ī		ABH	2103		
Page	Depth			0.5	0.7			0.6	-0.7	Ī		0.1	-0.2		
Promise	Date			8-Ma	ıy-08	i		8-M:	ay-08	Ī		9-Ma	ay-08	Ť	
Primate Prim	Laboratory			Envi	rolab			Envi	rolab	İ		Envi	rolab	ŧ	
March	•					Blind R	teplicate			Blind Re	plicate			Blind Re	eplicate
Section	Parameter	PQL	Units	Original Sample	Blind Sample	Average	RPD	Original Sample	Blind Sample	Average	RPD	Original Sample	Blind Sample	Average	RPD
Communicacy 1										T					T
Propriessor		1													
Selegebone 1		1				N/A				N/A					N/A
23-Trendphones		1													
set Burghames 1 1 20 2 1 1 20 2 1 2 2 2 2 2 2 2 2		1													
Separations		1													
1 mg/s mg		1	mg/kg	nt	nt				<1			nt	nt		
3-decompange		1													
Section 1 Section 1	2,2-Dichloropropane	1								N/A N/A				N/A	
1															
Debtoombrower 10	trans-1,3-Dichloropropene	- 1		nt	nt	N/A	N/A			N/A	N/A	nt	nt	N/A	N/A
Observations		1													
Vigolate 10															
Bossenghas															
Till-Informerchape	Bromomethane	10		nt	nt	N/A	N/A	< 10	< 10	N/A	N/A	nt	nt	N/A	N/A
13-05-15-0															
1															
13-05-bit before the probability 15-05-bit befo															
11-Trickhoropeage		1													
11 Sept		1				N/A									
Carbon ternshronder															
23-Obdisorbatement															
Decomposition 1 mpkg mt mt NA NA < 1 < 1 NA NA mt mt NA NA NA		1													
1.1.2-01-01-01-01-01-01-01-01-01-01-01-01-01-		1													
3-discloropropose															
Ternschorocheme															
13.23-Trichloroptune		1													
1.3.5716000000000000000000000000000000000000		1	mg/kg												
12-Discorpospane		1													
Handbookstadiene	1,2,3-1ricnioropropane 1,2-Dibromo-3-chloropropane	1													
Bonnechaleonemane		1													
Brombetwee 1	Bromocholoromethane	1		nt	nt	N/A	N/A			N/A	N/A	nt	nt	N/A	N/A
1 mg/kg nt		1													
4-blorotolaree		1													
13-Dichlorobenzee		1													N/A
1.4-Dichlorobemene	1,3-Dichlorobenzene	- 1	mg/kg	nt	nt	N/A	N/A	< 1	<1	N/A	N/A		nt	N/A	N/A
1.2.4 richlorobenzene		1													N/A
1.3 mgkg nt		1													
Chloroform		1													
Chlorothronomethane	Chloroform	- 1	mg/kg	nt	nt	N/A	N/A			N/A	N/A	nt	nt	N/A	N/A
Bromsform 1 mg/kg nt nt N/A N/A < < < N/A N/A nt nt N/A		_				N/A					N/A				N/A
PAME		1													
24-DB		1 1	mg/kg	ш	m	IV/A	IN/A	< 1	< 1	N/A	IN/A	m	III.	N/A	N/A
Dicamba 100 ugkg <100 <100 N/A N/A nt nt N/A N/A nt nt N/A N		100	ug/kg	< 100	< 100	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dicamba	100	ug/kg	< 100	< 100	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$															
24.5T 100 ug/kg < 100 <100 NA NA nt nt NA NA NA NA NA NA NA N															
Total Phenols 5 mg/kg nt nt N/A N/A <5 <5 N/A N/A nt nt N/A	2,4,5-T	100	ug/kg	< 100	< 100	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Nutrients															
Ammonia s N 0.5 mgkg 2.5 2.5 2.5 0% nt nt N/A N/A nt nt N/A		5	mg/kg	nt	nt	N/A	N/A	< 5	< 5	N/A	N/A	nt	nt	N/A	N/A
Total Kylchidal Nitrogens 30 mg/kg 320 220 270 37% nt nt N/A N/A nt nt 1 nt N/A N/A N/A Nitrite as N 0.1 mg/kg < 0.1 < 0.1 N/A N/A nt nt nt N/A N/A Nitrite as N 0.5 mg/kg < 0.8 0.5 0.7 0.15 13% nt nt N/A N/A nt nt N/A N/A nt nt nt N/A N/A N/A Nitrite as N 0.5 mg/kg 0.8 0.7 0.75 13% nt nt N/A N/A N/A nt nt nt N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A		0.5	ma/k a	2.5	2.5	2.5	006	nt	est	N/A	N/A	nt nt	nd nd	N/A	NI/A
Nitrie as N 0.1 mg/kg < 0.1 < 0.1 N/A N/A nt nt N/A N/A nt nt N/A										N/A					
Mirata 8N 0.5 mg/kg 0.8 0.7 0.75 13% nt nt N/A N/A nt nt N/A															
	Nitrate as N	0.5	mg/kg	0.8	0.7	0.75	13%	nt	nt	N/A	N/A	nt	nt	N/A	N/A
	Total Phosphorous NOTES:	10	mg/kg	120	72	96	50%	nt	nt	N/A	N/A	nt	nt	N/A	N/A

NOTES:
Relative Percentage Difference (RPD) is calculated as the absolute value of the difference between original and replicate samples divided by the average and expressed as a percentage.

A Result is below the laboratory Estimated Quantitation Limit.

* EQL increased due to matrix interference

NA - not applicable.

BOLD

Signifies RPD > 50% where the average concentration exceeds ten times the EQL,

or whose the RPD > 75% where the average concentration is between 5-10 times the EQL.

Sample ID	120508-239-KW	120508-240-KW			120508-245-KW	120508-246-KW	Ī			
Location			ABH	1262			ABI	1260	ŧ	
Depth			1.7-	19			0.6-	0.8	ŧ	
									ł	
Date			12-M:				12-M		ļ	
Laboratory		1	Envir	rolab			Envi	rolab		
Parameter	POL	Units	Original Sample	Blind Sample	Blind Re	eplicate	Original Sample	Blind Sample	Blind Re	plicate
rarameter	rQL	Units	Original Sample	Billiu Sample	Average	RPD	Original Sample	binu Sampie	Average	RPD
Metals Arsenic	4		< 4	< 4	N/A	N/A	< 4	< 4	27/1	N/A
Arsenc	2	mg/kg mg/kg	< 4	< 4	N/A N/A	N/A N/A	< 4	< 4	N/A N/A	N/A N/A
Chromium	1	mg/kg	1.5	1.6	1.55	6%	<1	<1	N/A	N/A
Copper	1	mg/kg	2.9	3.2	3.05	10%	<1	1.1	1.1	N/A
Nickel	1	mg/kg	<1	<1	N/A	N/A	<1	<1	N/A	N/A
Lead Zinc	1	mg/kg mg/kg	4.5 12	2.4	3.45 19	61% 74%	< 1 1.9	1.3	1.3 2.65	N/A 57%
Mercury	0.1	mg/kg	< 0.1	< 0.1	N/A	N/A	< 0.1	< 0.1	N/A	N/A
TPH/BTEX									•	
TPH C6 - C9	25	mg/kg	nt	nt	N/A	N/A	< 25	< 25	N/A	N/A
TPH C10 - C14	50	mg/kg	nt	nt	N/A	N/A	< 50	< 50	N/A	N/A
TPH C15 - C28 TPH C29 - C36	100	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	< 100 < 100	< 100 < 100	N/A N/A	N/A N/A
Benzene	0.5	mg/kg	nt	nt	N/A	N/A	< 0.5	< 0.5	N/A	N/A
Toluene	0.5	mg/kg	nt	nt	N/A	N/A	< 0.5	< 0.5	N/A	N/A
Ethylbenzene	1	mg/kg	nt	nt	N/A	N/A	< 1	< 1	N/A	N/A
meta- & para-Xylene	2	mg/kg	nt	nt	N/A	N/A	< 2	< 2	N/A	N/A
ortho-Xylene PAHs	1	mg/kg	nt	nt	N/A	N/A	< 1	< 1	N/A	N/A
Naphthalene	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Acenaphthylene	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Acenaphthene	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Fluorene	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Phenanthrene	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Anthracene Fluoranthene	0.1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	< 0.1 < 0.1	< 0.1 < 0.1	N/A N/A	N/A N/A
Pyrene	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Benzo(a)anthracene	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Chrysene	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Benzo(b)&(k)fluoranthene	0.2	mg/kg	nt	nt	N/A	N/A	< 0.2	< 0.2	N/A	N/A
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	0.05 0.1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	< 0.05 < 0.1	< 0.05 < 0.1	N/A N/A	N/A N/A
Dibenz(a,h)anthracene	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A
Benzo(g,h,i)perylene	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A
OCP				•				•		
alpha-BCH	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Hexachlorobenzene b-BHC	0.1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
gamma-BHC (Lindane)	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
d-BHC	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Heptachlor	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Aldrin	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Heptachlor epoxide Chlordane - trans	0.1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Chlordane - trans Chlordane - cis	0.1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Endosulfan alpha	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Dieldrin	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
4,4-DDE	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
4,4-DDD Endrin	0.1	mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt	nt nt	N/A N/A	N/A N/A
Endrin Endosulfan II	0.1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Endrin aldehyde	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Endosulfan sulphate	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
4,4-DDT	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Methoxychlor	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
OPP Dimethoate	0.1	ma/ka	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Diazinon Diazinon	0.1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Chlorpyrifos-methyl	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Ronnel	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Fenitrothion	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Chlorpyrifos	0.1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A
Ethion DCB										N/A
		mg/kg	in.	iii.	N/A	19/75		in.	N/A	.071
PCB Total PCB	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A

Signifies RPD > 50% where the average concentration exceeds ten times the EQL, or where the RPD > 75% where the average concentration is between 5-10 times the EQL or where the RPD > 100% where the average concentration is between 2-5 times the EQL.

BOLD

Sample ID			120508-239-KW	120508-240-KW			120508-245-KW	120508-246-KW		
Location			ABI	1262			ABI	1260	Ť	
Depth			1.7-	-1.9			0.6-	-0.8	İ	
Date			12-M	av-08			12-M	av-08		
Laboratory			Envi	-			Envi		ł	
Laboratory	_	1	Elivi	lotab	Blind Re		Elivi	lotab	Blind Re	
Parameter	PQL	Units	Original Sample	Blind Sample	Average	RPD	Original Sample	Blind Sample	Average	RPD
VOC					Average	KFD			Average	KFD
Styrene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Cumene (isopropylbenzene)	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
n-Propylbenzene 1,3,5-Trimethylbenzene	1 1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
sec-butylbenzene	i	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,2,4-Trimethylbenzene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
tert-Butylbenzene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
p-isopropyltoluene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A N/A	N/A N/A
n-Butylbenzene 2,2-Dichloropropane	1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A	N/A
1,2-dichloropropane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
cis-1,3-Dichloropropene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
trans-1,3-Dichloropropene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,2-Dibromoethane Dichlorodifluoromethane	10	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Chloromethane	10	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Vinyl chloride	10	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Bromomethane	10	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Chloroethane Trichlorofluoromethane	10 10	mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
1,1-Dichloroethylene	10	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
trans-1,2-Dichloroethylene	i	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,1-Dichloroethane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
cis-1,2-Dichloroethylene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,1,1-Trichloroethane	1	mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
1,1-Dichloropropene Carbon tetrachloride	1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
1,2-Dichloroethane	i	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Trichloroethene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Dibromomethane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,1,2-trichloroethane	1	mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
1,3-dichloropropane Tetrachloroethene	- i	mg/kg mg/kg	nt nt	nt nt	N/A	N/A	nt nt	nt	N/A	N/A
1,1,1,2-Tetrachloroethane	i	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,1,2,2-Tetrachloroethane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,2,3-Trichloropropane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,2-Dibromo-3-chloropropane Hexachlorobutadiene	1	mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Bromocholoromethane	- i	mg/kg mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Chlorobenzene	î	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Bromobenzene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
o-Chlorotoluene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
4-chlorotoluene	1	mg/kg	nt	nt	N/A N/A	N/A N/A	nt	nt	N/A N/A	N/A N/A
1,3-Dichlorobenzene 1,4-Dichlorobenzene	1	mg/kg mg/kg	nt nt	nt nt	N/A	N/A	nt nt	nt nt	N/A	N/A
1,2-Dichlorobenzene	i	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,2,4-trichlorobenzene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,2,3-trichlorobenzene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Chloroform Bromodichloromethane	1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Chlorodibromomethane	i	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Bromoform	i	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
PAAH			•				•			
2,4-DB	100	ug/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Dicamba	100	ug/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
2-Methyl-4-chlorophenoxyacetic acid 2,4-DP (Dichloroprop)	100	ug/kg ug/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
2,4-Dr (Dictioroprop) 2,4-D	100	ug/kg ug/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Triclopyr	100	ug/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
2-(2,4,5-Trichlorophenoxy) propionic acid	100	ug/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
2,4,5-T	100	ug/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Phenols					****	27/4			27/4	27/1
Total Phenols	5	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Nutrients Ammonia as N	0.5	ma/kc	nt	nt	N/A	N/A	nt	nt	N/A	N/A
гиниялия аз 13		mg/kg	III							IN/A
Total Kieldahl Nitrogen	30	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	
Total Kjeldahl Nitrogen Nitrite as N	30 0.1	mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A

Signifies RPD > 50% where the average concentration exceeds ten times the EQL, or where the RPD > 75% where the average concentration is between 5-10 times the EQL, or where the RPD > 100% where the average concentration is between 2-5 times the EQL.

Sample ID			130508-304-KW 130508-305-KW				130508-323-KW	130508-324-KW	Ĩ	
Location			ABI	1272			ABI	1295	ŧ	
Depth			0.1-	-0.5			1.2-	-1.4	ŧ	
Date			13-M				13-M			
				•	-			•		
Laboratory	1	1	Envi	rolab			Envi	rolab		
Parameter	PQL	Units	Original Sample Blind Sample		Blind Ro	RPD	Original Sample Blind Samp		Blind Re	eplicate RPD
Metals	1	1				l .				l
Arsenic	4	mg/kg	< 4	< 4	N/A	N/A	< 4	< 4	N/A	N/A
Cadmium Chromium	1	mg/kg mg/kg	< 1 4.1	< 1 4.8	N/A 4.45	N/A 16%	<1 <1	< 1 1.6	N/A 1.6	N/A N/A
Copper	i	mg/kg	13	17	15	27%	<1	1.1	1.1	N/A
Nickel	1	mg/kg	2	2.2	2.1	10%	< 1	< 1	N/A	N/A
Lead	1	mg/kg	72	81	76.5	12%	<1	1.1	1.1	N/A
Zinc	0.1	mg/kg	120 0.12	110 0.18	115	9%	< 1 < 0.1	1.5	1.5	N/A
Mercury TPH/BTEX	0.1	mg/kg	0.12	0.18	0.15	40%	< 0.1	< 0.1	N/A	N/A
TPH C6 - C9	25	mg/kg	nt	nt	N/A	N/A	< 25	< 25	N/A	N/A
TPH C10 - C14	50	mg/kg	nt	nt	N/A	N/A	< 50	< 50	N/A	N/A
TPH C15 - C28	100	mg/kg	nt	nt	N/A	N/A	< 100	< 100	N/A	N/A
TPH C29 - C36	100	mg/kg	nt	nt	N/A	N/A	< 100	< 100	N/A	N/A
Benzene	0.5	mg/kg	nt	nt	N/A	N/A	< 0.5	< 0.5	N/A	N/A
Toluene Ethylbenzene	0.5	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	< 0.5 < 1	< 0.5 < 1	N/A N/A	N/A N/A
meta- & para-Xylene	2	mg/kg	nt	nt	N/A	N/A	< 2	< 2	N/A	N/A
ortho-Xylene	Ĩ	mg/kg	nt	nt	N/A	N/A	<1	<1	N/A	N/A
PAHs			•				•			
Naphthalene	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Acenaphthylene	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Acenaphthene Fluorene	0.1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Phenanthrene	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Anthracene	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Fluoranthene	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Pyrene	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Benzo(a)anthracene	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Chrysene Benzo(b)&(k)fluoranthene	0.1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Benzo(a)pyrene	0.05	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Indeno(1,2,3-cd)pyrene	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Dibenz(a,h)anthracene	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Benzo(g,h,i)perylene	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
OCP	0.1		< 0.1	< 0.1	N/A	N/A			N/A	N/A
alpha-BCH Hexachlorobenzene	0.1	mg/kg mg/kg	< 0.1	< 0.1	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
b-BHC	0.1	mg/kg	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
gamma-BHC (Lindane)	0.1	mg/kg	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
d-BHC	0.1	mg/kg	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Heptachlor	0.1	mg/kg	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Aldrin Heptachlor epoxide	0.1	mg/kg mg/kg	< 0.1 < 0.1	< 0.1 < 0.1	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Chlordane - trans	0.1	mg/kg	< 0.1	< 0.1	N/A	N/A	nt nt	nt	N/A	N/A
Chlordane - cis	0.1	mg/kg	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Endosulfan alpha	0.1	mg/kg	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Dieldrin	0.1	mg/kg	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
4,4-DDE	0.1	mg/kg	< 0.1 < 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
4,4-DDD Endrin	0.1	mg/kg mg/kg	< 0.1	< 0.1 < 0.1	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Endosulfan II	0.1	mg/kg	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Endrin aldehyde	0.1	mg/kg	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Endosulfan sulphate	0.1	mg/kg	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
4,4-DDT	0.1	mg/kg	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Methoxychlor OPP	0.1	mg/kg	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Dimethoate	0.1	mg/kg	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Diazinon	0.1	mg/kg	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Chlorpyrifos-methyl	0.1	mg/kg	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Ronnel	0.1	mg/kg	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Fenitrothion	0.1	mg/kg	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Chlorpyrifos	0.1	mg/kg	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Ethion PCB	0.1	mg/kg	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Total PCB	0.1	mg/kg	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
NOTES:	0.1	шуку	N 0.1	< 0.1	19/74	1975	***		IVA	13/73

[|] Float PCB | NOTES: | Relative Percentage Difference (RPD) is calculated as the absolute value of the difference between original and replicate samples divided by the average and expressed as a percentage. and - Result is below the laboratory Estimated Quantitation Limit.

* EQL increased due to matrix interference
NA - not applicable.

BOLD

Signifies RPD > 59% where the average concentration is between 5-10 times the EQL or where the RPD > 75% where the average concentration is between 5-10 times the EQL.

Signifies RPD > 50% where the average concentration exceeds ten times the EQL, or where the RPD > 75% where the average concentration is between 5-10 times the EQL. or where the RPD > 100% where the average concentration is between 2-5 times the EQL.

Location Depth Date Laboratory Parameter VOC Styrene Lumen(stopropylbenzene) 2.3-Fininehnjbenzene 2.3-Fininehnjbenzene 2.4-Fininehnjbenzene et-studypenzene) 3-siopropylbutzene) 3-siopropylbutzene	PQL 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	ABE 0.1- 13-M Envir Original Sample nt nt nt	0.5 ay-08 rolab Blind Sample	Blind Re	plicate RPD	ABI 1.2- 13-M Envi Original Sample	-1.4 ay-08	Blind Re	plicate
Date Laboratory Parameter VOC Styrene L'Propylbenzene 3,3-5-Trinnethylbenzene ex-butylbenzene 2,2-4-Trinnethylbenzene ert-Butylbenzene ert-Butylbenzene ert-Butylbenzene	1 1 1 1 1 1 1	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	13-M. Envir Original Sample nt nt nt	ay-08 rolab Blind Sample nt nt			13-M Envi	ay-08 rolab		plicate
Date Laboratory Parameter VOC Styrene L'Propylbenzene 3,3-5-Trinnethylbenzene ex-butylbenzene 2,2-4-Trinnethylbenzene ert-Butylbenzene ert-Butylbenzene ert-Butylbenzene	1 1 1 1 1 1 1	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	13-M. Envir Original Sample nt nt nt	ay-08 rolab Blind Sample nt nt			13-M Envi	ay-08 rolab		plicate
Laboratory Parameter VOC Styrene	1 1 1 1 1 1 1	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Envir	Blind Sample			Envi	rolab		plicate
Parameter VOC Styrene Arroyshemzene (sopropythemzene) Arroyshemzene Arroyshe	1 1 1 1 1 1 1	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Original Sample nt nt nt	Blind Sample nt nt						plicate
VOC Styrene Propythenzene) Propythenzene J.3-Trimethylbenzene se-butylbenzene se-butylbenzene (2.4-Trimethylbenzene ert-Butylbenzene ert-Butylbenzene	1 1 1 1 1 1 1	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	nt nt nt	nt nt			Original Sample	Blind Sample		plicate
Styrene Lumene (isopropylbenzene) Propylbenzene 3.3-Frinnethylbenzene ce-butylbenzene 2.4-Trimethylbenzene ert-Butylbenzene in-Butylbenzene in-Butylbenzene	1 1 1 1	mg/kg mg/kg mg/kg mg/kg mg/kg	nt nt	nt			Original Sample Blind Sample		Average RPD	
Lument (isopropythenzene) -Propythenzene -Propythenzene -S-1Trinenthylbenzene -S-butylbenzene -S-butylbenzene -S-HTMINGHENERE -S-HTMINGHENERE -S-HTMINGHENERE -S-SUPPOPYTHOLOGE -SUPPOPYTHOLOGE -SUPPOP	1 1 1 1	mg/kg mg/kg mg/kg mg/kg mg/kg	nt nt	nt						
»Propylbenzene 1,3-5-Trimethylbenzene ec-butylbenzene 1,2,4-Trimethylbenzene ert-Butylbenzene b-isopropyloluene	1 1 1	mg/kg mg/kg mg/kg mg/kg	nt		N/A	N/A	nt	nt	N/A	N/A
.3,5-Trimethylbenzene ec-butylbenzene [2,2,4-Trimethylbenzene ert-Butylbenzene b-isopropyltoluene	1 1	mg/kg mg/kg mg/kg		nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
ee-butylbenzene ,2,4-Trimethylbenzene ert-Butylbenzene >-isopropyltoluene	1	mg/kg mg/kg		nt	N/A	N/A	nt	nt	N/A	N/A
ert-Butylbenzene o-isopropyltoluene		mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
p-isopropyltoluene	1 1		nt	nt	N/A	N/A	nt	nt	N/A	N/A
n-isopropyltoluene Putulbanyana	1 1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1-Butytbenzene 2,2-Dichloropropane	1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
,2-dichloropropane	i	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
ris-1,3-Dichloropropene	i	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
rans-1,3-Dichloropropene	1_	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
,2-Dibromoethane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Dichlorodifluoromethane	10	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Chloromethane	10	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Vinyl chloride Bromomethane	10	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Chloroethane	10	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Frichlorofluoromethane	10	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
,1-Dichloroethylene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
rans-1,2-Dichloroethylene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,1-Dichloroethane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
:is-1,2-Dichloroethylene	1	mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
,1-Dichloropropene	1	mg/kg mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Carbon tetrachloride	i	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
,2-Dichloroethane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Frichloroethene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Dibromomethane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,1,2-trichloroethane	1	mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
1,3-dichloropropane Fetrachloroethene	i	mg/kg mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,1,2-Tetrachloroethane	i	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,1,2,2-Tetrachloroethane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,2,3-Trichloropropane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
,2-Dibromo-3-chloropropane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Hexachlorobutadiene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Bromocholoromethane Chlorobenzene	+	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
3romobenzene	1	mg/kg	nt	nt	N/A	N/A	nt nt	nt	N/A	N/A
o-Chlorotoluene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1-chlorotoluene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,3-Dichlorobenzene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
,4-Dichlorobenzene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
,2-Dichlorobenzene	1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
,2,3-trichlorobenzene	i	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Chloroform	i	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Bromodichloromethane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Chlorodibromomethane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Bromoform	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A
PAAH										
2,4-DB Disamba	100	ug/kg	< 100 < 100	< 100 < 100	N/A N/A	N/A	nt	nt nt	N/A N/A	N/A
Dicamba 2-Methyl-4-chlorophenoxyacetic acid	100	ug/kg ug/kg	< 100	< 100	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
2,4-DP (Dichloroprop)	100	ug/kg ug/kg	< 100	< 100	N/A	N/A	nt	nt	N/A	N/A
2,4-D	100	ug/kg	< 100	< 100	N/A	N/A	nt	nt	N/A	N/A
Friclopyr	100	ug/kg	< 100	< 100	N/A	N/A	nt	nt	N/A	N/A
2-(2,4,5-Trichlorophenoxy) propionic acid	100	ug/kg	< 100	< 100	N/A	N/A	nt	nt	N/A	N/A
2,4,5-T	100	ug/kg	< 100	< 100	N/A	N/A	nt	nt	N/A	N/A
Phenols										
Total Phenols	5	mg/kg	nt	nt	N/A	N/A	< 5	< 5	N/A	N/A
Nutrients	0.5		- 0.5	0.6	0.6	NI/A	_		NT/A	NT/A
Ammonia as N Fotal Kjeldahl Nitrogen	0.5	mg/kg	< 0.5 480	0.6 560	0.6 520	N/A 15%	nt nt	nt nt	N/A N/A	N/A N/A
Nitrite as N	0.1	mg/kg mg/kg	480 < 0.1	< 0.1	520 N/A	N/A	nt nt	nt nt	N/A N/A	N/A N/A
Nitrate as N	0.5	mg/kg	< 0.5	< 0.5	N/A	N/A	nt	nt	N/A	N/A
Total Phosphorous	10	mg/kg	340	340	340	0%	nt	nt	N/A	N/A

NOTES:
Relative Percentage Difference (RPD) is calculated as the absolute value of the difference between original and replicate samples divided by the average and expressed as a percentage.

1. Real five Percentage Difference (RPD) is calculated as the absolute value of the difference between original and replicate samples divided by the average and expressed as a percentage.

1. Real five Percentage Difference (RPD) is calculated as the absolute value of the difference between original and replicate samples divided by the average and expressed as a percentage.

1. Fig. 1. Real five Percentage Difference (RPD) is calculated as the absolute value of the difference between original and replicate samples divided by the average and expressed as a percentage.

1. Fig. 1. Real five Percentage Difference (RPD) is calculated as the absolute value of the difference between original and replicate samples divided by the average and expressed as a percentage.

1. Fig. 1. Real five Percentage Difference (RPD) is calculated as the absolute value of the difference between original and replicate samples divided by the average and expressed as a percentage.

1. Fig. 1. Real five Percentage Difference (RPD) is calculated as the absolute value of the difference between original and replicate samples divided by the average and expressed as a percentage.

1. Fig. 1. Real five Percentage Difference Percentage Difference Percentage Difference Percentage Difference Percentage Difference Percentage Difference Percentage Difference Difference Percentage Difference Percentage Difference Percentage Difference Percentage Difference Percentage Difference Difference Percentage Difference Percentage Difference Percentage Difference Percentage Difference Percentage Difference Percentage Difference Percentage Difference Difference Percentage Difference Percentage Difference Percentage Difference Difference Percentage Difference Percentage Difference Percentage Difference Difference Difference Difference Difference Difference Difference Differe

Sample ID			150508-370-KW	150508-371-KW	1		150508-378-KW	150508-379-KW			150508-393-KW	150508-394-KW	1	
Location			ABH	289	ŧ		ABI	1287			ABF	I286		
Depth			0.0-0		ł		0.0				2.3-			
									-					
Date			15-Ma		ļ		15-M				15-M			
Laboratory		1	Envir	olab			Envi	rolab			Envi	rolab		
Parameter	PQL	Units	Original Sample	Blind Sample	Blind Re	eplicate RPD	Original Sample	Blind Sample	Blind Re	plicate RPD	Original Sample	Blind Sample	Blind Re	eplicate RPD
Metals	1	1							1					
Arsenic Cadmium	4	mg/kg	22	25	23.5	13%	4.5	< 4	4.5	N/A	< 4	< 4	N/A	N/A
Cadmium	2	mg/kg mg/kg	< 1 42	< 1 53	N/A 47.5	N/A 23%	< 1 7.4	< 1 5.9	N/A 6.65	N/A 23%	< 1 4.2	< 1 4.1	N/A 4.15	N/A 2%
Copper	i	mg/kg	28	40	34	35%	5.4	5.7	5.55	5%	<1	<1	N/A	N/A
Nickel	1	mg/kg	8.5	9.5	9	11%	2.3	1.8	2.05	24%	< 1	1	1	N/A
Lead	1	mg/kg	65	77	71	17%	14	18	16	25%	2.1	1.8	1.95	15%
Zinc	1	mg/kg	88	100	94	13%	31	26	28.5	18%	1.9	1.2	1.55	45%
Mercury TPH/BTEX	0.1	mg/kg	0.3	0.44	0.37	38%	< 0.1	< 0.1	N/A	N/A	< 0.1	< 0.1	N/A	N/A
TPH C6 - C9	25	mg/kg	< 25	< 25	N/A	N/A	< 25	< 25	N/A	N/A	nt	nt	N/A	N/A
TPH C10 - C14	50	mg/kg	< 50	< 50	N/A	N/A	< 50	< 50	N/A	N/A	nt	nt	N/A	N/A
TPH C15 - C28	100	mg/kg	< 100	< 100	N/A	N/A	< 100	< 100	N/A	N/A	nt	nt	N/A	N/A
TPH C29 - C36	100	mg/kg	< 100	< 100	N/A	N/A	< 100	< 100	N/A	N/A	nt	nt	N/A	N/A
Benzene	0.5	mg/kg	< 0.5	< 0.5	N/A	N/A	< 0.5	< 0.5	N/A	N/A	nt	nt	N/A	N/A
Toluene Ethylbenzene	0.5	mg/kg	< 0.5 < 1	< 0.5 < 1	N/A N/A	N/A N/A	< 0.5 < 1	< 0.5 < 1	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
meta- & para-Xylene	2	mg/kg mg/kg	< 2	< 2	N/A	N/A	< 2	< 2	N/A	N/A	nt nt	nt	N/A	N/A
ortho-Xylene	ī	mg/kg	<1	< 1	N/A	N/A	<1	<1	N/A	N/A	nt	nt	N/A	N/A
PAHs														
Naphthalene	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Acenaphthylene	0.1	mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Acenaphthene Fluorene	0.1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Phenanthrene	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Anthracene	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Fluoranthene	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Pyrene	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Benzo(a)anthracene	0.1	mg/kg	nt	nt	N/A N/A	N/A N/A	nt	nt	N/A N/A	N/A N/A	nt	nt	N/A N/A	N/A N/A
Chrysene Benzo(b)&(k)fluoranthene	0.1	mg/kg mg/kg	nt nt	nt nt	N/A	N/A	nt nt	nt nt	N/A	N/A	nt nt	nt nt	N/A	N/A
Benzo(a)pyrene	0.05	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Indeno(1,2,3-cd)pyrene	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Dibenz(a,h)anthracene	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Benzo(g,h,i)perylene OCP	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
alpha-BCH	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Hexachlorobenzene	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt nt	nt nt	N/A	N/A
b-BHC	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
gamma-BHC (Lindane)	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
d-BHC	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Heptachlor Aldrin	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1 < 0.1	N/A	N/A N/A	nt	nt	N/A	N/A
Aldrin Heptachlor epoxide	0.1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	< 0.1 < 0.1	< 0.1 < 0.1	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Chlordane - trans	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Chlordane - cis	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Endosulfan alpha	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Dieldrin	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
4,4-DDE 4,4-DDD	0.1	mg/kg	nt	nt nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt nt	nt	N/A	N/A
4,4-DDD Endrin	0.1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	< 0.1	< 0.1	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Endosulfan II	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A N/A	N/A	nt nt	nt	N/A	N/A
Endrin aldehyde	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Endosulfan sulphate	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
4,4-DDT	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Methoxychlor OPP	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Dimethoate	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Diazinon	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Chlorpyrifos-methyl	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Ronnel	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Fenitrothion	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
Chlorpyrifos Ethion	0.1	mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	< 0.1 < 0.1	< 0.1 < 0.1	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Ethion PCB	0.1	mg/kg	ш	ш	N/A	N/A	< 0.1	< 0.1	N/A	N/A	ш	III	N/A	N/A
Total PCB	0.1	mg/kg	nt	nt	N/A	N/A	< 0.1	< 0.1	N/A	N/A	nt	nt	N/A	N/A
NOTES:														

NOTES:

Relative Percentage Difference (RPD) is calculated as the absolute value of the difference between original and replicate samples divided by the average and expressed as a percentage.

nd - Result is below the laboratory Estimated Quantitation Limit.

EQL increased due to matrix interference

NA - not applicable.

BOLD

Signifies RPD > 50% where the average concentration exceeds ten times the EQL, or where the RPD > 75% where the average concentration is between 5-10 times the EQL or where the RPD > 100% where the average concentration is between 2-5 times the EQL.

Sample ID			150508-370-KW	150508-371-KW			150508-378-KW	150508-379-KW			150508-393-KW	150508-394-KW		
Location			ABH	289	t			H287			ABH	1286		
			0.0-0					-0.4	1		2.3-			
Depth			0.0-0	1.3	1									
Date			15-Ma	y-08			15-M	Iay-08			15-M:	ay-08		
Laboratory			Envir	olab			Envi	rolab			Envir	olab		
Parameter	PQL	Units	Original Sample Blind Sample		Blind Re	eplicate RPD	Original Sample	Blind Sample	Blind R	plicate RPD	Original Sample	Blind Sample	Blind Re	eplicate RPD
VOC					Average	KPD			Average	RPD			Average	KPD
Styrene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Cumene (isopropylbenzene)	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
n-Propylbenzene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,3,5-Trimethylbenzene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
sec-butylbenzene	1	mg/kg	nt	nt	N/A N/A	N/A N/A	nt	nt	N/A N/A	N/A N/A	nt	nt nt	N/A N/A	N/A N/A
1,2,4-Trimethylbenzene tert-Butylbenzene	1	mg/kg mg/kg	nt nt	nt nt	N/A	N/A	nt nt	nt nt	N/A	N/A	nt nt	nt	N/A	N/A
p-isopropyltoluene	i	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
n-Butylbenzene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
2,2-Dichloropropane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,2-dichloropropane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
cis-1,3-Dichloropropene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
trans-1,3-Dichloropropene 1,2-Dibromoethane	1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
1,2-Dioromoethane Dichlorodifluoromethane	10	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Chloromethane	10	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Vinyl chloride	10	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Bromomethane	10	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Chloroethane	10	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Trichlorofluoromethane 1,1-Dichloroethylene	10	mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
trans-1,2-Dichloroethylene	1	mg/kg mg/kg	nt	nt	N/A	N/A	nt nt	nt	N/A	N/A	nt	nt	N/A	N/A
1.1-Dichloroethane	i	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
cis-1,2-Dichloroethylene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,1,1-Trichloroethane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,1-Dichloropropene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Carbon tetrachloride 1,2-Dichloroethane	1	mg/kg	nt	nt nt	N/A N/A	N/A N/A	nt	nt	N/A N/A	N/A N/A	nt	nt	N/A N/A	N/A N/A
Trichloroethene	1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Dibromomethane	i	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,1,2-trichloroethane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,3-dichloropropane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Tetrachloroethene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,1,1,2-Tetrachloroethane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane	1	mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
1,2-Dibromo-3-chloropropane	1	mg/kg mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Hexachlorobutadiene	i	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Bromocholoromethane	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Chlorobenzene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Bromobenzene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
o-Chlorotoluene 4-chlorotoluene	1	mg/kg	nt	nt	N/A	N/A	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
4-cniorototuene 1,3-Dichlorobenzene	1	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
1.4-Dichlorobenzene	i	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,2-Dichlorobenzene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,2,4-trichlorobenzene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
1,2,3-trichlorobenzene	1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Chloroform	1	mg/kg	nt	nt	N/A N/A	N/A N/A	nt	nt	N/A N/A	N/A N/A	nt	nt	N/A N/A	N/A N/A
Bromodichloromethane Chlorodibromomethane	1	mg/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Bromoform	1	mg/kg mg/kg	nt nt	nt	N/A	N/A	nt nt	nt	N/A	N/A	nt	nt	N/A	N/A
PAAH	· ·			-4										
2.4-DB	100	ug/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Dicamba	100	ug/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
2-Methyl-4-chlorophenoxyacetic acid	100	ug/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
2,4-DP (Dichloroprop)	100	ug/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
2,4-D	100	ug/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Triclopyr 2-(2,4,5-Trichlorophenoxy) propionic acid	100 100	ug/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
2-(2,4,5-1richtorophenoxy) propionic acid 2.4.5-T	100	ug/kg ug/kg	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A	nt nt	nt nt	N/A N/A	N/A N/A
Phenols		Wg/ Pg			1971				1				1 1971	1 1071
Total Phenols	5	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Nutrients														
Ammonia as N	0.5	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Total Kjeldahl Nitrogen	30	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
Nitrite as N	0.1	mg/kg	nt	nt	N/A	N/A	nt	nt	N/A	N/A	nt	nt	N/A	N/A
						N/A	nt	nt		N/A				N/A
Nitrate as N Total Phosphorous	0.5	mg/kg mg/kg	nt nt	nt nt	N/A N/A	N/A	nt nt	nt	N/A N/A	N/A	nt nt	nt nt	N/A N/A	N/A

NOTES:
Relative Percentage Difference (RPD) is calculated as the absolute value of the difference between original and replicate samples divided by the average and expressed as a percentage.

1. Real tils below the laboratory Estimated Quantitation Limit.

2. EQL increased due to matrix interference

N/A - not applicable.

BOLD

Signifies RPD > 50% where the average concentration is between 5-10 times the EQL, or where the RPD > 100% where the average concentration is between 2-5 times the EQL.

Split Replicate RPE	Results - Groundwater
---------------------	-----------------------

Split Replicate RPD Results - G Sample I			170608-03-KW	170685-04-KW	1	300505-10-KW	300508-11-KW	1		290508-05-KW	258508-06-KW	290585-07-KW	Ī	AMW203	QAQCI	QAQC2	1		
Location	n			N 404			9915	1			вшес				AMW263				
Date Laborato	urv		17 Jun Egyirolah	as 2008 ALS		30 Ma	ay 2008 Irotah	-		Envirolab	29 May 2005 Envirolab	ALS		Envirolab	17 February 2017 Envirolab	ALS			
Parameter	PQL	Units	Original Sample	Split Sample	Blind Replicate	Original Sample	Blind Sample	Blied B	Replicate	Original Sample	Blind Replicate	Split Sample	Blind Replicate Split Sample	Original Sample	Blind Replicate	Split Sample	Blad Re		lit Sample
Chloride	20	mg L	5900	6140	Average RPD 6030 4%	2000	2100	Average 2050	RPD 5%	210	230	234	Average RPD Average RPD 220 9% 222 11%	и		ш	Awrage N/A	RPD Average N/A N/A	P RPD N/A N/A N/A
Sulphase Total Dissolved Solids	5 5	ngt ngt	830 11000	696 11000	763 18% 11000 0%	2300 9900	2400 7600	2350 8250	4% 16%	140 800	130 900	129 726	135 7% 134.5 8% 850 12% 763 10%	и		и	N/A N/A N/A	N/A N/A N/A N/A N/A N/A	N/A N/A
Salinity Carbonate Alkalinity as	0.1	ngt ngt	-0.1 280	9350 at	9675 7% N/A N/A 290 N/A	6.2 -0.1 810	6.1 -0.1 810	6.15 N/A	N/A	<0.1 -0.1 150	<0.1 -0.1 150	0.62 <1	N/A N/A 0.62 N/A N/A N/A N/A N/A 150 0% 151.5 2%	и	11	M M	NA NA NA	N/A N/A N/A N/A N/A N/A	NA NA NA
Total Alkalisity Calcium (III) Ion	0.1 0.03	ngt ngt	280 12 170	272 163	272 N/A 166.5 4%	M 610	81 81 610	N/A 620	N/A 0%	150 H	150 at 76	153 153 76	NA NA 153 NA 79.5 4% 78.5 6%	u.		u.	NA NA	NA NA	N/A N/A
Potassium (I) Ion Sodium (Na)	0.03	ngt tgg	130 3500	130 3160	130 0%	93 1900	92 1500	92.5 1550	1% 6%	19 120	19 120	20 122	19 0% 19.5 5% 120 0% 121 2%	ш	at at	ш	N/A	N/A N/A N/A N/A	N/A N/A N/A
Magnesium (II) Ion Metals	0.03	ngt	30	336	183 10%	330	320	325	2%	24	24	24	24 0% 24 0%	и	-	и	N/A	N/A N/A	
Anunic Cadmium	0.1	ug1 ug1	1.6 0.2	<0.01	1.6 N/A 0.2 N/A 23.5 4%	5.7 0.2	5.5 0.1	5.6 0.15	67%	-0.1	40.1	- 10 0.1	11 0% 10.5 10% NA NA NA NA	-32 -01	32 -0.1	- 22 - 08.1	NA NA	0% 27 N/A N/A	37% N/A
Copper Nickel		agt agt tgu	6.6	2 4	23.5 4% 4.3 937% 4 N/A	d	- d - d	N/A N/A	NA NA	d	d	-0.1 -0.1	1.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	d	d	d	N/A N/A N/A	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A
Lead Zinc		fgu fgu	-05 2.5	<1 6	N/A N/A 4.25 82%	5.9	5.7	5.8	2%	1.1 d	- 7	-0.1 -0.5	1.05 10% 1.1 N/A N/A N/A N/A N/A	-0.05	-0.05	@I	N/A N/A	N/A N/A	N/A N/A
Mocary IPBBIEX IPRC6 - C9	0.5	Iga Iga	4.1	<0.1	4.1 N/A N/A N/A	-0.5	-0.5	N/A	N/A	-0.5	-0.5	-0.01	NA NA NA NA	-0.05	-0.05	-0.1	N/A	N/A N/A	N/A
TPH CIO - CI4 TPH CIS - CIS	50 100	ug1 ug1	<50 <100	<50 <100	N/A N/A	-50 -50	<50 <50 <100	N/A N/A N/A N/A N/A N/A	N/A N/A N/A		<50 <100	<50 <50	NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA	<10 <50 <100	<50 <50	<50 <100	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
TPH C29 - C36 Benzens	100	ugi ugi ugi ugi	<100 <1	<50 <1	N/A N/A N/A N/A	<100	<100 <1	N/A N/A	NA NA NA NA	<000 <1	<100 <1	- 50 - Cl	NA NA NA NA NA NA NA NA	<100 <1	<100 <1	<50 <1	N'A N'A	N/A N/A N/A N/A	N/A N/A
Tokene Dhybenome			1.5	- d - d	1.5 N/A N/A N/A	d d	d d	N/A N/A	N/A N/A	d d	d d	9 9	NA NA NA NA NA NA	d d	d d	9	NA NA	N/A N/A N/A N/A	N/A N/A
into-ac para-xyane unho-Xylene PAIIs	Ĺ	ug1 ug1	4	- 2	NA NA	- 4	4	N/A	N/A	d d	4	4	NA NA NA NA	d	4	3	NA NA	N/A N/A	N/A N/A
Naphthalene Acenaphthylene		ng1	d	- d - d	N/A N/A N/A N/A	d	d d	N/A N/A	N/A N/A	d d	d d	d d	NA NA NA NA NA NA NA NA	d d	d d	<1 <1	N/A N/A	N/A N/A N/A N/A	N/A N/A
Acousphilione Placeme		ug1 ug1	- d - d	<1 <1	N/A N/A N/A N/A	d d	<1 <1	N/A N/A N/A	N/A N/A N/A	4	- cl - cl	d	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	d d	- d - d	<1	NA NA NA	N/A N/A N/A N/A N/A N/A	N/A N/A
Antraone Borontone		ug1 ug1 lgu	d d	- cl - cl	N/A N/A N/A N/A N/A N/A	d d	d d	N/A N/A N/A	N/A N/A N/A	d d	d d	d d	NA NA NA NA NA NA NA NA NA NA NA NA	d d	d d	<1 <1	N/A		N/A N/A
Pyrene Benzo(a)unthracene	<u>L</u> i	ug1 ug1	d d	- d - d	N/A N/A N/A N/A	d d	- cl - cl	N/A N/A	N/A N/A	d d	d d	d	NA NA NA NA NA	d d	- d - d	<1	N/A N/A N/A	N/A N/A N/A N/A	N/A N/A
Chrysene Benzo(h)dojk)flaoranthene	1 1	Iga Iga	d -2	cl -cl	N/A N/A N/A N/A	d 2	- d -2	N/A N/A	N/A N/A	d d	- d - d	d).5	NA NA NA NA NA	d d	4	c1 c1	N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Indexe(1,2,3 of)pyrese Distance Numbercone		lgu lgu	d	-0.5 -(1	N/A N/A N/A N/A	d d	- d - d	N/A N/A	N/A N/A		- d - d	d d	NA NA NA NA NA NA NA NA NA NA NA NA	d d	d d	<0.5 <1	N/A N/A	N/A N/A N/A N/A	NA NA
Beno(gh.iperykne OCP	-	1gu 1gu	d	d	N/A N/A	d	d	N/A N/A	N/A N/A	ď	d	d	N/A N/A N/A N/A	d	4	- či	N/A N/A	NA NA	N/A N/A
alpha-BCH Harachlorobenome	0.2 0.2	1ga 1ga	-02 -02	-02 -02	N/A N/A N/A N/A N/A N/A	-0.2 -0.2	<0.2 <0.2	N/A N/A N/A	N/A N/A N/A	-0.2 -0.2	-0.2 -0.2	at -0.5	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	-0.2 -0.2	<0.2 <0.2	-02 -02	N/A N/A N/A	N/A N/A N/A N/A N/A N/A	N/A N/A N/A
b-BIC games-BIC (Lindon)	0.2 0.2	ugil ugil	-02 -02	-02 -02	NA NA NA NA	-0.2 -0.2	<0.2 <0.2	N/A N/A N/A	NA NA NA	-0.2 -0.2	-0.2 -0.2	-0.5 -0.5	NA NA NA NA NA NA NA NA	d0.2 d0.2	<0.2 <0.2	-0.5 -0.5	NA NA NA	N/A N/A N/A N/A N/A N/A	NA NA
Huptachlor Aldrin	0.2 0.2	ug1 ug1	-02 -02	-0.2 -0.2	N/A N/A N/A N/A	-0.2 -0.2	-0.2 -0.2	NA NA	N/A N/A	-0.2 -0.2	-0.2 -0.2	-0.5 -0.5	NA NA NA NA NA NA NA NA	- u -0.2	# c0.2	и -0.5	NA NA	NA NA	NA NA
Heptachlor oposide Chlordane - trans	0.2 0.2	ng1 ng1	-09.2 -09.2	-0.2 -0.2	N/A N/A N/A N/A	-0.2 -0.2	-0.2 -0.2	N/A N/A	N/A N/A	-0.2 -0.2	-0.2 -0.2	-0.5 -0.5	NA NA NA NA NA	-0.2 -0.2	<0.2 <0.2	-0.5 #	NA NA	N/A N/A N/A N/A	N/A N/A
Chlordate - cis Endosofian alpha	0.2 0.2	lga lga	-02 -02	-0.2 -0.2	N/A N/A N/A N/A	-0.2 -0.2	-0.2 -0.2	N/A N/A	N/A N/A	-0.2 -0.2	-0.2 -0.2	-0.5	NA NA NA NA NA NA NA NA NA NA NA NA NA N	-0.2 -0.2	-0.2 -0.2	- u - u.5	NA NA NA	N/A N/A N/A N/A	N/A N/A
0.687m 4.4-000 4.4-000	0.2 0.2	ug1 ug1 ug1	-02 -02	-0.2 -0.2	N/A N/A N/A N/A	-0.2 -0.2	-0.2 -0.2	N/A N/A	N/A N/A	-0.2 -0.2	-0.2 -0.2	-0.5 -0.5	N/A N/A	-02 -02	-0.2 -0.2	-015 -015	N/A N/A N/A N/A	NIA NIA NIA NIA NIA NIA NIA NIA NIA NIA NIA NIA NIA NIA	NA NA
Endrin Endoculfan II	0.2 0.2	liga Pga	-02 -02	-0.2 -0.2	N/A N/A N/A N/A	-0.2 -0.2	<0.2 <0.2	N/A N/A	N/A N/A	-0.2 -0.2	-0.2 -0.2	-0.5 -0.5		-012 -012	<0.2 <0.2	-015 -015	NA NA	N/A N/A	N/A N/A
Endrin akkebyde Endovalfan sulphate	0.2 0.2	ug1 ug1	-02 -02	-0.2 -0.2	N/A N/A N/A N/A	-0.2 -0.2	<0.2 <0.2	N/A N/A	N/A N/A	-0.2 -0.2	-0.2 -0.2	-2 -0.5	NA NA NA NA	-0.2 -0.2	<0.2 <0.2	-01.5 -01.5	N/A	N/A N/A	NYA NYA NYA NYA NYA NYA NYA NYA NYA NYA
Methosychior OPP	0.2	ug1	-92	-02	N/A N/A	-0.2	-0.2 -0.2	N/A	N/A	-0.2	-0.2	- di 5 - c2	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	-0.2	-0.2 -0.2	- 015 - 015	NA.	NA NA	NA.
Directions Directions	0.2 0.2	ng1	-02 -02	-0.5 -0.5	N/A N/A N/A N/A	-0.2 -0.2	<0.2 <0.2	N/A N/A	N/A N/A	-0.2 -0.2	-0.2 -0.2	-0.5 -0.5	NA NA NA NA NA NA NA NA	-0.2 -0.2	<0.2 <0.2	-01.5 -01.5	N/A N/A	N/A N/A	N/A N/A
Chlosyriphos-methyl Rosnel	0.2 0.2	lgu lgu lgu	-02 -02	-0.5 at	N/A N/A N/A N/A N/A N/A	-0.2 -0.2	-0.2 -0.2	N/A N/A N/A	N/A N/A N/A	-0.2 -0.2	-0.2 -0.2	-0.5 H	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	-0.2 -0.2	-0.2 -0.2	-0.5 -0.5	N/A N/A	N/A N/A N/A N/A N/A N/A	N/A N/A N/A
Featrothios Bromophos ethyl	0.2 0.2	ng1	-02 -02	-0.5	N/A N/A N/A N/A N/A N/A	-0.2 -0.2	-0.2 -0.2	N/A N/A N/A	N/A N/A N/A	-0.2 -0.2	-0.2 -0.2	at -0.5	N/A N/A N/A N/A N/A N/A N/A N/A	-0.2 -0.2	-0.2 -0.2	-01.5 -01.5	NA NA NA	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A
Dhise PCB Total PCB	0.2	ag1	-02	-0.5	N/A N/A	-0.2	<0.2	N/A N/A	N/A N/A	-0.2	-0.2	-0.5	NA NA NA NA	-022	<0.2	-02.5		NA NA	
YOC Dichlorodifuoromehano	2	ug1	-10	-10	N/A N/A	-10	-10	N/A N/A	N/A N/A	- 40	-2	- 40	NA NA NA NA	-10	-10	-to		N/A N/A	N/A N/A
Chloromethate Vinyl Chloride	50 50	fgu fgu	<10 <10	<10 <10	N/A N/A	<10 <10	<10 <10	N/A N/A N/A	N/A N/A	<20 <20	<10	-30 -30	NA NA NA NA	<10 <10	<10 <10	-50 -50	N/A N/A N/A	N/A N/A N/A N/A	N/A N/A
Bromomethane Chierothane	50 50	ng1 ng1	<10 <10	<10 <10	N/A N/A N/A N/A	<10 <10	<10 <10	N/A N/A	N/A N/A	<10 <10	<10 <10	-50 -50	NA NA NA NA NA NA NA NA	<10 <10	<10 <10	-50 -50	NA NA	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A
1,1-Dichloroethene Trans-1,2-dichloroethene	5 50	ug1 ug1	- d - d	- cl - cl	N/A N/A N/A N/A N/A N/A	- cl - cl	- cl	N/A N/A N/A	N/A N/A	d d	d d	- d - d	NA NA NA NA NA NA NA NA NA NA NA NA NA N	d d	d d	- d - d	NA NA NA NA	NA NA NA NA NA NA	NA NA
1,1-dichlorochane Cic-1,2-dichlorochene	50	ng1	d	d d	N/A N/A N/A N/A	d	d d	N/A N/A	N/A N/A	d d	d d	- d - d	NA NA NA NA NA NA NA NA	d d	d d	- d - d	NA NA	N/A N/A N/A N/A	N/A N/A
Bromechloromethane Chloroform	50	lgu lgu lgu	d	<1 <1	N/A N/A N/A N/A	d	- cl - cl	N/A N/A N/A	N/A N/A	4	d d	- d - d	NA NA NA NA NA NA NA NA NA NA NA NA NA N	d d	d d	- d - d	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N
1,2-dichloroethane 1,1,1-nichloroethane	5 5	ag1 ag1	d	- d - d	N/A N/A N/A N/A	d	- cl - cl	N/A N/A	NA NA	d d	d	20	NA NA NA NA	d	d d	20	NA NA	NA NA	NA NA
1,1-dichloropropene Carbon tetrachloride	5	1ga 1ga	d d	<1 <1	N/A N/A N/A N/A	d d	<1 <1	NA NA NA	N/A N/A	d d	d d	- d - d	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	d d	d d	и -d	N/A N/A N/A	N/A N/A N/A N/A	N/A N/A
Dhromomethane 1,2-dichloropropuse Trichlorophese	5 1 5	ug1 ug1 lgu	d d	<1 <1 <1	N/A N/A N/A N/A	d d	- cl - cl - cl	N/A N/A N/A	N/A N/A N/A	d d	d d		NA NA NA NA NA NA NA NA NA	d d	d d	- d - d	NA NA NA	NA NA NA NA	NA NA
Bromodichloromethane trans-1,3-dichloropropens	5 5	1gu 1gu	d	- d - d	N/A N/A N/A N/A	d		N/A	N/A N/A	d d	d d	- 5	NA NA NA NA	d d	d d	3	NA	N/A N/A	NA NA
cis-1,3-dichloropropens 1,1,2-richloroethane	5 5	ng1 ng1	d d	<1 <1	N/A N/A N/A N/A	d d	- cl - cl	N/A N/A N/A	N/A N/A	d d	d d	3	NA NA NA NA NA NA NA NA NA NA NA NA NA N	d d	d	M.	N/A N/A N/A	N/A N/A N/A N/A N/A N/A	N/A N/A
1,3-dichloropopuse Dhromochloromethase 1,2-dhromochloro		lgu lgu	d	- d - d	N/A N/A N/A N/A N/A N/A	d d	- d - d	N/A N/A	N/A N/A N/A		- d - d	- d	NA NA NA NA NA NA NA NA NA NA NA NA	d d	d d	- d - d	NA NA NA	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	NA NA
Tetrachieroethene	5 5	ng1	d	d d	N/A N/A N/A N/A	d	d d	N/A N/A	N/A N/A	d	d	20	N/A N/A N/A N/A N/A N/A N/A N/A	d	d	3	NA NA	NA NA	NA NA
Chlorobenzene Bromeform	5 50	Egg Eggs	d d	<1 <1	N/A N/A N/A N/A	d	d d	N/A N/A	N/A N/A	d d	d d	0	NA NA NA NA NA NA NA NA	d d	d d	d d	N/A	NA NA	N/A N/A
3rymne 1,1,2,2-terachlorosthane 1,2 Lorichlorosthane	5 5	ug1 ug1	d d	- cl - cl	N/A N/A N/A N/A N/A N/A	d d	- cl - cl	N/A N/A N/A	N/A N/A N/A	d d	d d	- B - S	NA NA NA NA NA NA NA NA NA NA NA NA	d d	d d	- d - d	N/A N/A N/A	N/A N/A N/A N/A N/A N/A	NA NA NA
1,2,3-trichkropropuse* Isopropy/bezzese Bromobenome	5 5	ag1	d	<1 <1	N/A N/A N/A N/A	d	d 	N/A N/A	N/A N/A	d d	d d	0 11 0	NA NA NA NA NA NA NA NA	d d	d d	2 2 2	N/A N/A	NA NA NA NA NA NA	NA NA
a-gropyl benzene 3-chlorotolasne	5 5	ng1	d d	<1 <1	N/A N/A N/A N/A	d d	- cl - cl	N/A N/A	N/A N/A	d d	d d	3	NA NA NA NA NA NA NA NA	d d	d	3	NA NA NA NA NA	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A
t-cracerolarne 1,3,5-minethyl benzene Tert-hard benzene	2 2	ag1 ag1	d	- d - d	N/A N/A N/A N/A	d d	- d - d	N/A N/A	N/A N/A		- d - d	- d	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	d d	d d	- d - d	NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA
1,2,4-minuthy1benome 1,3-dichlorobenome	5 5	ag1 ag1	d	- d - d	N/A N/A N/A N/A	d	- cl - cl	N/A N/A	NA NA	d d	d	8 3	NA NA NA NA NA NA NA NA NA NA NA NA NA N	d	d d	20	NA NA NA NA	NA NA	NA NA
Sec-butyl bensene L4-dichlorobensene	2 5	Egg Eggs	d d	- cl - cl	N/A N/A N/A N/A	d d	d d	N/A N/A	N/A N/A	d d	d	- B	NA NA NA NA	d d	d d	- d - d	N/A N/A	N/A N/A	N/A N/A
4-isopropyl tokene 1,2-dichlorobenzene	5 5	ug1 ug1	- cl - cl	<1 <1	N/A N/A N/A N/A	d d	<1 <1	N/A N/A	N/A N/A	d d	- cl - cl	# -3	NA NA NA NA NA NA NA NA	d d	- d - d	и -3	N/A N/A	N/A N/A N/A N/A N/A N/A	N/A N/A
n-butyl homone 1,2-dibromo-3-chkospropane 1,2,4-richkosbenzene	5 5 5	ug1 ug1 ug1	d d	<1 <1 <1	N/A N/A N/A N/A N/A N/A	d d	- cl - cl - cl	N/A N/A	NA NA NA	- d - d	d d	8 5	NA NA NA NA	d d	d d	- d - d	NA NA NA	N/A N/A	N/A
Heuchkeobstudiese 1,2,3-michkeobstusse	5 5	ngt ngt	d d	- cl - cl	N/A N/A N/A N/A	d d	- cl - cl	N/A N/A	N/A N/A N/A	d d	d d	- d - d	NA NA NA NA NA NA NA NA NA NA NA NA	d d	d d	් ජ	N/A N/A N/A	N/A N/A N/A N/A	N/A N/A
Nutricuts Ammonia as N	0.1	ngt ngt	4.4	4.09	4.545 6%	3.1	3.1	3.1	0%	2	2.1	0.971	2.05 5% 1.4855 6926 3.4 0% 3.05 2.3%	1.1	LI.	0.56	1.1	9% 1.03 20 1.03	14%
Total Phosphorous NOTES:	0.05	ngt ngt	3.0	0.76	0.88 27%	1.1	1.3	1.2	17%	13	1.1	2.7	1.2 17% 2 20%	1A M	13	0.62	N/A	NA 0.62	NA NA

4 - Statish blank for binarry Februard Quantized June.

**TQC Second as a reach statistics.

**TQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach statistics.

**SQC Second as a reach stati

Trip Blank and Trip Spike Results

Laboratory: Envirolab
Laboratory Report Number: 19069

Parameter	PQL	Trip Blank	Trip Spike
Sample ID:		Trip Blank	Trip Spike
Total Petroleum Hydrocarbons			
TPH 6-9	25	< 25	
Benzene, Toluene, Ethylbenzene and T	otal Xylenes		
Benzene	0.5	< 0.5	87%
Toluene	0.5	< 0.5	89%
Ethylbenzene	1	< 1	93%
meta- & para Xylene	2	< 2	92%
ortho-Xylene	1	< 1	95%

Laboratory: Envirolab Laboratory Report Number: 19035

Parameter	PQL	Trip Blank	Trip Spike
Sample ID:		Trip Blank	Trip Spike
Total Petroleum Hydrocarbons			
TPH 6-9	25	< 25	
Benzene, Toluene, Ethylbenzene and T	otal Xylenes		
Benzene	0.5	< 0.5	86%
Toluene	0.5	< 0.5	83%
Ethylbenzene	1	< 1	88%
meta- & para Xylene	2	< 2	87%
ortho-Xylene	1	< 1	85%

Laboratory: Envirolab Laboratory Report Number: 18941

Parameter	PQL	Trip Blank	Trip Spike
Sample ID:		Trip Blank	Trip Spike
Total Petroleum Hydrocarbons			
TPH 6-9	25	< 25	
Benzene, Toluene, Ethylbenzene and T	otal Xylenes		
Benzene	0.5	< 0.5	103%
Toluene	0.5	< 0.5	109%
Ethylbenzene	1	< 1	115%
meta- & para Xylene	2	< 2	114%
ortho-Xylene	1	< 1	115%

NOTES:

Trip Blank and Trip Spike units are mg kg⁻¹

limit or trip spike recovery outside the range 70%-130%

Trip Blank and Trip Spike Results - Soil

Laboratory: Envirolab Laboratory Report Number: 19177

Parameter	PQL	Trip Blank	Trip Spike			
Sample ID:		Trip Blank	Trip Spike			
Total Petroleum Hydrocarbon	ns					
TPH 6-9	25	< 25				
Benzene, Toluene, Ethylbenze	Benzene, Toluene, Ethylbenzene and Total Xylenes					
Benzene	0.5	< 0.5	69%			
Toluene	0.5	< 0.5	64%			
Ethylbenzene	1	< 1	64%			
meta- & para Xylene	2	< 2	65%			
ortho-Xylene	1	< 1	63%			

Laboratory: Envirolab Laboratory Report Number: 19222

Parameter	PQL	Trip Blank	Trip Spike
Sample ID:		Trip Blank	Trip Spike
Total Petroleum Hydrocarbon			
TPH 6-9	25	< 25	
Benzene, Toluene, Ethylbenze	ne and Total Xylenes		
Benzene	0.5	< 0.5	82%
Toluene	0.5	< 0.5	104%
Ethylbenzene	1	< 1	90%
meta- & para Xylene	2	< 2	85%
ortho-Xylene	1	< 1	95%

Laboratory: Envirolab and ALS
Laboratory Report Number: 19257 and ES0807086

Parameter	PQL	Trip Blank	Trip Spike
Sample ID:		Trip Blank	Trip Spike
Total Petroleum Hydrocarbon	ns		
TPH 6-9	25	< 25	
Benzene, Toluene, Ethylbenze	ne and Total Xylenes		
Benzene	0.5	< 0.5	100%
Toluene	0.5	< 0.5	121%
Ethylbenzene	1	< 1	100%
meta- & para Xylene	2	< 2	133%
ortho-Xylene	1	< 1	129%

Note: Trip spike was provided by ALS and sent to Envirolab, ALS control was analysed to provide **NOTES:**

Trip Blank and Trip Spike units are mg kg⁻¹

Trip Blank and Trip Spike Results - Soil

Laboratory: Envirolab Laboratory Report Number: 19282

Parameter	PQL	Trip Blank	Trip Spike		
Sample ID:		Trip Blank	Trip Spike		
Total Petroleum Hydrocarbon					
TPH 6-9	25	< 25			
Benzene, Toluene, Ethylbenze	Benzene, Toluene, Ethylbenzene and Total Xylenes				
Benzene	0.5	< 0.5	76%		
Toluene	0.5	< 0.5	73%		
Ethylbenzene	1	< 1	84%		
meta- & para Xylene	2	< 2	98%		
ortho-Xylene	1	< 1	117%		

Laboratory: Envirolab Laboratory Report Number: 19325

Parameter	PQL	Trip Blank	Trip Spike			
Sample ID:		Trip Blank	Trip Spike			
Total Petroleum Hydrocarbon						
TPH 6-9	25	< 25				
Benzene, Toluene, Ethylbenze	Benzene, Toluene, Ethylbenzene and Total Xylenes					
Benzene	0.5	< 0.5	80%			
Toluene	0.5	< 0.5	73%			
Ethylbenzene	1	< 1	65%			
meta- & para Xylene	2	< 2	65%			
ortho-Xylene	1	< 1	60%			

Laboratory: Envirolab Laboratory Report Number: 19432

Parameter	PQL	Trip Blank	Trip Spike			
Sample ID:		Trip Blank	Trip Spike			
Total Petroleum Hydrocarbon						
TPH 6-9	25	< 25				
Benzene, Toluene, Ethylbenze	Benzene, Toluene, Ethylbenzene and Total Xylenes					
Benzene	0.5	< 0.5	83%			
Toluene	0.5	< 0.5	119%			
Ethylbenzene	1	< 1	95%			
meta- & para Xylene	2	< 2	99%			
ortho-Xylene	1	< 1	100%			

NOTES:

Trip Blank and Trip Spike units are mg kg⁻¹

Trip Blank and Trip Spike Results - Groundwater

Laboratory: Envirolab
Laboratory Report Number: 20315

Parameter	PQL	Trip Blank	Trip Spike
Sample ID:		Trip Blank	Trip Spike
Total Petroleum Hydrocarbons			
TPH 6-9	10	< 10	
Benzene, Toluene, Ethylbenzene and Total Xyl			
Benzene	1	< 1	104%
Toluene	1	< 1	90%
Ethylbenzene	1	< 1	91%
meta- & para Xylene	2	< 2	89%
ortho-Xylene	1	< 1	89%

NOTES:

Trip Blank and Trip Spike units are $\mu g \; L^{\text{--}1}$

BOLD

Indicates detection of analyte in trip blank above detection limit or trip spike recovery outside the range 70%-130%

Trip Blank and Trip Spike Results - Groundwater

Laboratory: Envirolab
Laboratory Report Number: 19834

Parameter	PQL	Trip Blank	Trip Spike
Sample ID:		Trip Blank	Trip Spike
Total Petroleum Hydrocarbons			
TPH 6-9	10	< 10	
Benzene, Toluene, Ethylbenzene and Total Xy	lenes		
Benzene	1	< 1	89%
Toluene	1	< 1	121%
Ethylbenzene	1	< 1	123%
meta- & para Xylene	2	< 2	122%
ortho-Xylene	1	< 1	123%

NOTES:

Trip Blank and Trip Spike units are $\mu g \: L^{\text{--}1}$

BOLD

Indicates detection of analyte in trip blank above detection

Trip Blank and Trip Spike Results - Groundwater

Laboratory: Envirolab
Laboratory Report Number: 162123

Parameter	PQL	Trip Blank	Trip Spike
Sample ID:		Trip Blank	Trip Spike
Total Petroleum Hydrocarbons			
TPH 6-9	10	< 10	
Benzene, Toluene, Ethylbenzene and Total Xylenes			
Benzene	1	< 1	82%
Toluene	1	< 1	92%
Ethylbenzene	1	< 1	94%
meta- & para Xylene	2	< 2	94%
ortho-Xylene	1	< 1	96%

NOTES:

Trip Blank and Trip Spike units are $\mu g \; L^{\text{-}1}$

BOLD

Indicates detection of analyte in trip blank above detection limit or trip spike recovery outside

Appendix 3 Laboratory Certificates of Analysis

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 18941-A

Client:

Consulting Earth Scientists

Suite 121, 26-32 Pirrama Rd Pyrmont NSW 2009

Attention: Michael Petrozzi / Kelly Weir / Luke Jenkins

Sample log in details:

Your Reference: CES050706-BCC, Area B
No. of samples: Additional Testing on 4 Soils

Date samples received: 30/04/08
Date completed instructions received: 27/05/08

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: 3/06/08

Date of Preliminary Report: Not Issued Issue Date: 2/06/08

NATA accreditation number 2901. This document shall not be reproduced except in full.

This document is issued in accordance with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst Operations Manager

sTPH in Soil (C10-C36)			
Our Reference:	UNITS	18941-A-54	18941-A-63
Your Reference		290408-56-K	290408-65-K
		W	W
Date Sampled		29/04/2008	29/04/2008
Type of sample		Soil	Soil
Sample Matrix Code		SO	SO
Time Sampled		00:00	00:00
Date extracted	-	28/05/2008	28/05/2008
Date analysed	-	29/05/2008	29/05/2008
TPH C ₁₀ - C ₁₄	mg/kg	<50	<50
TPH C ₁₅ - C ₂₈	mg/kg	<100	<100
TPH C29 - C36	mg/kg	<100	<100
Surrogate o-Terphenyl	%	93	95

Acid Extractable metals in soil					
Our Reference:	UNITS	18941-A-27	18941-A-52	18941-A-54	18941-A-63
Your Reference		280408-28-K W	290408-54-K W	290408-56-K W	290408-65-K W
Date Sampled		28/04/2008	29/04/2008	29/04/2008	29/04/2008
Type of sample		Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00
Date digested	-	30/05/2008	30/05/2008	30/05/2008	30/05/2008
Date analysed	-	30/05/2008	30/05/2008	30/05/2008	30/05/2008
Lead	mg/kg	<1.0	77	1.5	3.2

Moisture					
Our Reference:	UNITS	18941-A-27	18941-A-52	18941-A-54	18941-A-63
Your Reference		280408-28-K W	290408-54-K W	290408-56-K W	290408-65-K W
Date Sampled		28/04/2008	29/04/2008	29/04/2008	29/04/2008
Type of sample		Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00
Date prepared	-	28/05/2008	28/05/2008	28/05/2008	28/05/2008
Date analysed	-	28/05/2008	28/05/2008	28/05/2008	28/05/2008
Moisture	%	17	27	20	26

Method ID	Methodology Summary
GC.3	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
Metals.20 ICP-AES	Determination of various metals by ICP-AES.
LAB.8	Moisture content determined by heating at 105 deg C for a minimum of 4 hours.

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
sTPH in Soil (C10-C36)						Base II Duplicate II %RPD		Recovery
Date extracted	-			28/5/08	[NT]	[NT]	LCS-6	28/5/08%
Date analysed	-			29/5/08	[NT]	[NT]	LCS-6	29/5/08%
TPH C10 - C14	mg/kg	50	GC.3	<50	[NT]	[NT]	LCS-6	96%
TPH C15 - C28	mg/kg	100	GC.3	<100	[NT]	[NT]	LCS-6	94%
TPH C29 - C36	mg/kg	100	GC.3	<100	[NT]	[NT]	LCS-6	109%
Surrogate o-Terphenyl	%		GC.3	100	[NT]	[NT]	LCS-6	99%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil						Base II Duplicate II %RPD		-
Date digested	-			30/5/08	[NT]	[NT]	LCS-9	30/5/08%
Date analysed	-			30/5/08	[NT]	[NT]	LCS-9	30/5/08%
Lead	mg/kg	1	Metals.20 ICP-AES	<1.0	[NT]	[NT]	LCS-9	96%
QUALITY CONTROL Moisture	UNITS	PQL	METHOD	Blank				
Date prepared	-			28/5/08	1			
Date analysed	-			28/5/08				
Moisture	%	0.1	LAB.8	[NT]				

Report Comments:

Samples analysed out of holding time for TPH C10-C36 analysis.

Asbestos was analysed by Approved Identifier: Not applicable for this job

selected should be one where the analyte concentration is easily measurable.

INS: Insufficient sample for this test NT: Not tested PQL: Practical Quantitation Limit RPD: Relative Percent Difference NA: Test not required LCS: Laboratory Control Sample

NR: Not requested <: Less than >: Greater than

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria:

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for

SVOC and speciated phenols is acceptable. Surrogates: 60-140% is acceptable for general organics and 10-140% for

SVOC and speciated phenols.

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 19072

Client:

Consulting Earth Scientists

Suite 121, 26-32 Pirrama Rd Pyrmont NSW 2009

Attention: Kelly Weir / Luke Jenkins

Sample log in details:

Your Reference: CES050706-BCC, Area B

No. of samples:19 SoilsDate samples received:05/05/08Date completed instructions received:05/05/08

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: 12/05/08

Date of Preliminary Report: Not issued Issue Date: 12/05/08

NATA accreditation number 2901. This document shall not be reproduced except in full.

This document is issued in accordance with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Tests not covered by NATA are denoted with *.

Results Approved By:

Joshua Lim Chemist

Envirolab Reference: 19072 Revision No: R 00

Page 1 of 5

Asbestos ID - soils						
Our Reference:	UNITS	19072-1	19072-2	19072-3	19072-4	19072-5
Your Reference		010508-120-	300408-106-	010508-133-	290408-72-K	300408-78-1
		KW	KW	KW	W	W
Date Sampled		1/05/2008	30/04/2008	1/05/2008	29/04/2008	30/04/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Sample Description	-	40g soil	40g soil	40g soil	40g soil	40g soil
Asbestos ID in soil	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Trace Analysis	-	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected
Ashastas ID. saila						
Asbestos ID - soils Our Reference:	UNITS	19072-6	19072-7	19072-8	19072-9	19072-10
Your Reference		290408-43-K	010508-146-	300408-96-K	010508-160-	010508-162
		W	KWK	W	KW	KW
Date Sampled		29/04/2008	1/05/2008	30/04/2008	1/05/2008	1/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Sample Description	-	40g soil	40g soil	40g soil	40g soil	40g soil
Asbestos ID in soil	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Trace Analysis	-	Respirable fibres not	Respirable fibres not	Respirable fibres not	Respirable fibres not	Respirable fibres not
		detected	detected	detected	detected	detected
Asbestos ID - soils						
Our Reference:	UNITS	19072-11	19072-12	19072-13	19072-14	19072-15
Your Reference		010508-131- KW	010508-126- KW	300408-92-K W	280408-21-K W	290408-32- W
Date Sampled		1/05/2008	1/05/2008	30/04/2008	29/04/2008	29/04/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Sample Description	-	40g soil	40g soil	40g soil	40g soil	40g soil
Asbestos ID in soil	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbesto detected
Trace Analysis	-	Respirable	Respirable	Respirable	Respirable	Respirable
- ,		fibres not				
		detected	detected	detected	detected	detected

Asbestos ID - soils Our Reference: Your Reference Date Sampled Type of sample	UNITS	19072-16 300408-110- KW 30/04/2008 Soil	19072-17 290408-50-K W 29/04/2008 Soil	19072-18 300408-101- KW 30/04/2008 Soil	19072-19 010508-116- KW 1/05/2008 Soil
Date analysed	-	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Sample Description	-	40g soil	40g soil	40g soil	40g soil
Asbestos ID in soil	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Trace Analysis	-	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected

Method ID	Methodology Summary
	Qualitative identification of asbestos type fibres in bulk using Polarised Light Microscopy and Dispersion Staining Techniques.

Report Comments:

Asbestos: A portion of the supplied sample was sub-sampled for asbestos according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample.

Envirolab recommends supplying 30-40g of sample in it's own container.

Asbestos was analysed by Approved Identifier: Joshua Lim

INS: Insufficient sample for this test NT: Not tested PQL: Practical Quantitation Limit RPD: Relative Percent Difference NA: Test not required LCS: Laboratory Control Sample

NR: Not requested <: Less than >: Greater than

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria:

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for

SVOC and speciated phenols is acceptable. Surrogates: 60-140% is acceptable for general organics and 10-140% for

SVOC and speciated phenols.

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 19222

Client:

Consulting Earth Scientists

Suite 121, 26-32 Pirrama Rd Pyrmont NSW 2009

Attention: Kelly Weir / Luke Jenkins

Sample log in details:

Your Reference: CES050706-BCC Area A

No. of samples:63 SoilsDate samples received:09/05/08Date completed instructions received:09/05/08

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: 20/05/08

Date of Preliminary Report: Not Issued Issue Date: 22/05/08

NATA accreditation number 2901. This document shall not be reproduced except in full.

This document is issued in accordance with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Tests not covered by NATA are denoted with *.

Results Approved By:

David Springer

Business Development & Quality Manager

VOC's in soil						
Our Reference:	UNITS	19222-9	19222-24	19222-49	19222-50	19222-58
Your Reference		080508-110	080508-126	080508-152	080508-153	080508-161
		-KW	-KW	-KW	-KW	-KW
Date Sampled		8/05/2008	8/05/2008	8/05/2008	8/05/2008	8/05/2008
Type of sample Sample Matrix Code		Soil SO	Soil SO	Soil SO	Soil SO	Soil SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Date analysed	<u>-</u>	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Dichlorodifluoromethane	mg/kg	<10	<10	<10	<10	<10
Chloromethane	mg/kg	<10	<10	<10	<10	<10
Vinyl Chloride	mg/kg	<10	<10	<10	<10	<10
Bromomethane	mg/kg	<10	<10	<10	<10	<10
Chloroethane	mg/kg	<10	<10	<10	<10	<10
Trichlorofluoromethane	mg/kg	<10	<10	<10	<10	<10
1,1-Dichloroethene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,2-dichloroethene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-dichloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,2-dichloroethene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
bromochloromethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
chloroform	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
2,2-dichloropropane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1-trichloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-dichloropropene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
carbon tetrachloride	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Benzene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
dibromomethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichloropropane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
trichloroethene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
bromodichloromethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,3-dichloropropene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,3-dichloropropene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-trichloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
1,3-dichloropropane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
dibromochloromethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dibromoethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
tetrachloroethene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1,2-tetrachloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
chlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Ethylbenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
bromoform	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
m+p-xylene	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0

VOC's in soil Our Reference: Your Reference Date Sampled Type of sample Sample Matrix Code Time Sampled	UNITS	19222-9 080508-110 -KW 8/05/2008 Soil SO 00:00	19222-24 080508-126 -KW 8/05/2008 Soil SO 00:00	19222-49 080508-152 -KW 8/05/2008 Soil SO 00:00	19222-50 080508-153 -KW 8/05/2008 Soil SO 00:00	19222-58 080508-161 -KW 8/05/2008 Soil SO 00:00
styrene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-tetrachloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
o-Xylene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-trichloropropane*	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
isopropylbenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
bromobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
n-propyl benzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
2-chlorotoluene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
4-chlorotoluene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,3,5-trimethyl benzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
tert-butyl benzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-trimethyl benzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-dichlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
sec-butyl benzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,4-dichlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
4-isopropyl toluene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
n-butyl benzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dibromo-3-chloropropane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-trichlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
hexachlorobutadiene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-trichlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Surrogate Dibromofluorometha	%	88	84	88	88	94
Surrogate aaa-Trifluorotoluene	%	96	89	98	94	90
Surrogate Toluene-ds	%	98	94	98	95	93
Surrogate 4-Bromofluorobenzene	%	75	74	73	74	80

VOC's in soil	LINUTO	40000 04
Our Reference: Your Reference	UNITS	19222-61 Trip Blank
Date Sampled		8/05/2008
Type of sample		Soil
Sample Matrix Code		so
Time Sampled		00:00
Date extracted	-	12/05/2008
Date analysed	-	12/05/2008
Dichlorodifluoromethane	mg/kg	<10
Chloromethane	mg/kg	<10
Vinyl Chloride	mg/kg	<10
Bromomethane	mg/kg	<10
Chloroethane	mg/kg	<10
Trichlorofluoromethane	mg/kg	<10
1,1-Dichloroethene	mg/kg	<1.0
trans-1,2-dichloroethene	mg/kg	<1.0
1,1-dichloroethane	mg/kg	<1.0
cis-1,2-dichloroethene	mg/kg	<1.0
bromochloromethane	mg/kg	<1.0
chloroform	mg/kg	<1.0
2,2-dichloropropane	mg/kg	<1.0
1,2-dichloroethane	mg/kg	<1.0
1,1,1-trichloroethane	mg/kg	<1.0
1,1-dichloropropene	mg/kg	<1.0
carbon tetrachloride	mg/kg	<1.0
Benzene	mg/kg	<0.5
dibromomethane	mg/kg	<1.0
1,2-dichloropropane	mg/kg	<1.0
trichloroethene	mg/kg	<1.0
bromodichloromethane	mg/kg	<1.0
trans-1,3-dichloropropene	mg/kg	<1.0
cis-1,3-dichloropropene	mg/kg	<1.0
1,1,2-trichloroethane	mg/kg	<1.0
Toluene	mg/kg	<0.5
1,3-dichloropropane	mg/kg	<1.0
dibromochloromethane	mg/kg	<1.0
1,2-dibromoethane	mg/kg	<1.0
tetrachloroethene	mg/kg	<1.0
1,1,1,2-tetrachloroethane	mg/kg	<1.0
chlorobenzene	mg/kg	<1.0
Ethylbenzene	mg/kg	<1.0
bromoform	mg/kg	<1.0
m+p-xylene	mg/kg	<2.0
styrene	mg/kg	<1.0

VOC's in soil Our Reference: Your Reference Date Sampled Type of sample Sample Matrix Code Time Sampled	UNITS	19222-61 Trip Blank 8/05/2008 Soil SO 00:00
1,1,2,2-tetrachloroethane	mg/kg	<1.0
o-Xylene	mg/kg	<1.0
1,2,3-trichloropropane*	mg/kg	<1.0
isopropylbenzene	mg/kg	<1.0
bromobenzene	mg/kg	<1.0
n-propyl benzene	mg/kg	<1.0
2-chlorotoluene	mg/kg	<1.0
4-chlorotoluene	mg/kg	<1.0
1,3,5-trimethyl benzene	mg/kg	<1.0
tert-butyl benzene	mg/kg	<1.0
1,2,4-trimethyl benzene	mg/kg	<1.0
1,3-dichlorobenzene	mg/kg	<1.0
sec-butyl benzene	mg/kg	<1.0
1,4-dichlorobenzene	mg/kg	<1.0
4-isopropyl toluene	mg/kg	<1.0
1,2-dichlorobenzene	mg/kg	<1.0
n-butyl benzene	mg/kg	<1.0
1,2-dibromo-3-chloropropane	mg/kg	<1.0
1,2,4-trichlorobenzene	mg/kg	<1.0
hexachlorobutadiene	mg/kg	<1.0
1,2,3-trichlorobenzene	mg/kg	<1.0
Surrogate Dibromofluorometha	%	81
Surrogate aaa-Trifluorotoluene	%	113
Surrogate Toluene-d₃	%	95
Surrogate 4-Bromofluorobenzene	%	72

19222-7 080508-108 -KW 8/05/2008 Soil SO 00:00 12/05/2008 12/05/2008 <25 <0.5 <0.5	19222-9 080508-110 -KW 8/05/2008 Soil SO 00:00 12/05/2008 12/05/2008 <25 <0.5	19222-13 080508-114 -KW 8/05/2008 Soil SO 00:00 12/05/2008 12/05/2008 <25 <0.5	19222-19 080508-120 -KW 8/05/2008 Soil SO 00:00 12/05/2008 12/05/2008 <25 <0.5	19222-22 080508-12 -KW 8/05/2003 Soil SO 00:00 12/05/200 <25
-KW 8/05/2008 Soil SO 00:00 12/05/2008 12/05/2008 <25 <0.5	-KW 8/05/2008 Soil SO 00:00 12/05/2008 12/05/2008 <25	-KW 8/05/2008 Soil SO 00:00 12/05/2008 12/05/2008 <25	-KW 8/05/2008 Soil SO 00:00 12/05/2008 12/05/2008 <25	-KW 8/05/200 Soil SO 00:00 12/05/200 12/05/200 <25
8/05/2008 Soil SO 00:00 12/05/2008 12/05/2008 <25 <0.5	8/05/2008 Soil SO 00:00 12/05/2008 12/05/2008 <25	8/05/2008 Soil SO 00:00 12/05/2008 12/05/2008 <25	8/05/2008 Soil SO 00:00 12/05/2008 12/05/2008 <25	8/05/200 Soil SO 00:00 12/05/200 12/05/200 <25
Soil SO 00:00 12/05/2008 12/05/2008 <25 <0.5	Soil SO 00:00 12/05/2008 12/05/2008 <25	Soil SO 00:00 12/05/2008 12/05/2008 <25	Soil SO 00:00 12/05/2008 12/05/2008 <25	Soil SO 00:00 12/05/200 12/05/200 <25
SO 00:00 12/05/2008 12/05/2008 <25 <0.5	SO 00:00 12/05/2008 12/05/2008 <25	SO 00:00 12/05/2008 12/05/2008 <25	SO 00:00 12/05/2008 12/05/2008 <25	SO 00:00 12/05/200 12/05/200 <25
00:00 12/05/2008 12/05/2008 <25 <0.5	00:00 12/05/2008 12/05/2008 <25	00:00 12/05/2008 12/05/2008 <25	00:00 12/05/2008 12/05/2008 <25	00:00 12/05/200 12/05/200 <25
12/05/2008 12/05/2008 <25 <0.5	12/05/2008 12/05/2008 <25	12/05/2008 12/05/2008 <25	12/05/2008 12/05/2008 <25	12/05/200 12/05/200 <25
12/05/2008 <25 <0.5	12/05/2008 <25	12/05/2008 <25	12/05/2008 <25	12/05/200
<25 <0.5	<25	<25	<25	<25
<0.5				
	<0.5	<0.5	-0.5	.0.5
-05		10.0	<0.5	<0.5
\0.5	<0.5	<0.5	<0.5	<0.5
<1.0	<1.0	<1.0	<1.0	<1.0
<2.0	<2.0	<2.0	<2.0	<2.0
<1.0	<1.0	<1.0	<1.0	<1.0
90	96	97	85	104
	<2.0 <1.0	<2.0 <2.0 <1.0 <1.0	<2.0 <2.0 <2.0 <2.0 <1.0 <1.0	<2.0

vTPH & BTEX in Soil						
Our Reference:	UNITS	19222-23	19222-26	19222-32	19222-33	19222-37
Your Reference		080508-124	080508-128	080508-135	080508-136	080508-140
		-KW	-KW	-KW	-KW	-KW
Date Sampled		8/05/2008	8/05/2008	8/05/2008	8/05/2008	8/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Date analysed	-	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
vTPH C6 - C9	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
m+p-xylene	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0
o-Xylene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Surrogate aaa-Trifluorotoluene	%	99	106	73	101	97

vTPH & BTEX in Soil Our Reference: Your Reference Date Sampled Type of sample Sample Matrix Code Time Sampled	UNITS	19222-39 080508-142 -KW 8/05/2008 Soil SO 00:00	19222-46 080508-149 -KW 8/05/2008 Soil SO 00:00	19222-49 080508-152 -KW 8/05/2008 Soil SO 00:00	19222-50 080508-153 -KW 8/05/2008 Soil SO 00:00	19222-54 080508-157 -KW 8/05/2008 Soil SO 00:00
Date extracted	-	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Date analysed	-	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
vTPH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
m+p-xylene	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0
o-Xylene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Surrogate aaa-Trifluorotoluene	%	83	106	98	94	98
vTPH & BTEX in Soil						
Our Reference:	UNITS	19222-56	19222-58	19222-61	19222-62	19222-63
Your Reference		080508-159 -KW	080508-161 -KW	Trip Blank	Trip Spike	080508-13 -KW
Date Sampled		8/05/2008	8/05/2008	8/05/2008	8/05/2008	8/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code Time Sampled		SO 00:00	SO 00:00	SO 00:00	SO 00:00	SO 00:00
Date extracted	-	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Date analysed	-	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
vTPH C6 - C9	mg/kg	<25	<25	<25	[NA]	<25
Benzene	mg/kg	<0.5	<0.5	<0.5	82%	<0.5
Toluene	mg/kg	<0.5	<0.5	<0.5	104%	<0.5
Ethylbenzene	mg/kg	<1.0	<1.0	<1.0	90%	<1.0
m+p-xylene	mg/kg	<2.0	<2.0	<2.0	85%	<2.0

<1.0

106

<1.0

96

<1.0

113

Envirolab Reference: 19222 Revision No: R 00

o-Xylene

Surrogate aaa-Trifluorotoluene

mg/kg

%

<1.0

89

95%

80

sTPH in Soil (C10-C36)						
Our Reference:	UNITS	19222-7	19222-9	19222-13	19222-19	19222-22
Your Reference		080508-108	080508-110	080508-114	080508-120	080508-12
		-KW	-KW	-KW	-KW	-KW
Date Sampled		8/05/2008	8/05/2008	8/05/2008	8/05/2008	8/05/2008
Type of sample Sample Matrix Code		Soil SO	Soil SO	Soil SO	Soil SO	Soil SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	_	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/200
	-					
Date analysed	-	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
TPH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TPH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TPH C29 - C36	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	130	135	102	97	101
sTPH in Soil (C10-C36)						
Our Reference:	UNITS	19222-23	19222-26	19222-32	19222-33	19222-37
Your Reference		080508-124	080508-128	080508-135	080508-136	080508-14
Date Sampled		-KW 8/05/2008	-KW 8/05/2008	-KW 8/05/2008	-KW 8/05/2008	-KW 8/05/200
Type of sample		6/05/2006 Soil	80il	80il	80il	8/05/2006 Soil
Sample Matrix Code		SO	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/200
Date analysed	_	12/05/2008	13/05/2008	13/05/2008	13/05/2008	13/05/200
TPH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TPH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TPH C29 - C36	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	98	100	96	100	95
sTPH in Soil (C10-C36)						
Our Reference:	UNITS	19222-39	19222-46	19222-49	19222-50	19222-54
Your Reference		080508-142	080508-149	080508-152	080508-153	080508-1
		-KW	-KW	-KW	-KW	-KW
Date Sampled		8/05/2008	8/05/2008	8/05/2008	8/05/2008	8/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil

sTPH in Soil (C10-C36)						
Our Reference:	UNITS	19222-39	19222-46	19222-49	19222-50	19222-54
Your Reference		080508-142 -KW	080508-149 -KW	080508-152 -KW	080508-153 -KW	080508-157 -KW
Date Sampled		8/05/2008	8/05/2008	8/05/2008	8/05/2008	8/05/2008
Type of sample Sample Matrix Code Time Sampled		Soil SO 00:00	Soil SO 00:00	Soil SO 00:00	Soil SO 00:00	Soil SO 00:00
Date extracted	-	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Date analysed	-	13/05/2008	13/05/2008	13/05/2008	13/05/2008	13/05/2008
TPH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TPH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TPH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	99	103	98	98	100

sTPH in Soil (C10-C36) Our Reference:	UNITS	19222-56	19222-58	19222-63
Your Reference		080508-159 -KW	080508-161 -KW	080508-131 -KW
Date Sampled		8/05/2008	8/05/2008	8/05/2008
Type of sample		Soil	Soil	Soil
Sample Matrix Code		so	so	so
Time Sampled		00:00	00:00	00:00
Date extracted	-	12/05/2008	12/05/2008	12/05/2008
Date analysed	-	13/05/2008	13/05/2008	13/05/2008
TPH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50
TPH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100
TPH C29 - C36	mg/kg	<100	<100	<100
Surrogate o-Terphenyl	%	100	101	95

PAHs in Soil						
Our Reference:	UNITS	19222-7	19222-9	19222-10	19222-13	19222-14
Your Reference		080508-108 -KW	080508-110 -KW	080508-111 -KW	080508-114 -KW	080508-115 -KW
Date Sampled		8/05/2008	8/05/2008	8/05/2008	8/05/2008	8/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO 00:00	SO	SO 00:00	SO 00:00	SO 00:00
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Date analysed	-	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	91	96	101	95	99

PAHs in Soil Our Reference: Your Reference Date Sampled Type of sample Sample Matrix Code Time Sampled	UNITS 	19222-19 080508-120 -KW 8/05/2008 Soil SO 00:00	19222-21 080508-122 -KW 8/05/2008 Soil SO 00:00	19222-22 080508-123 -KW 8/05/2008 Soil SO 00:00	19222-23 080508-124 -KW 8/05/2008 Soil SO 00:00	19222-34 080508-137 -KW 8/05/2008 Soil SO 00:00
Date extracted	-	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Date analysed	-	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.3
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.8
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	1.0
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.3
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.4
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	0.9
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	0.5
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.3
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.3
Surrogate p-Terphenyl-d ₁₄	%	91	98	99	104	99

PAHs in Soil Our Reference:	UNITS	19222-39	19222-49	19222-50	19222-54	19222-56
Your Reference		080508-142 -KW	080508-152 -KW	080508-153 -KW	080508-157 -KW	080508-159 -KW
Date Sampled		8/05/2008	8/05/2008	8/05/2008	8/05/2008	8/05/2008
Type of sample Sample Matrix Code		Soil SO	Soil SO	Soil SO	Soil SO	Soil SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Date analysed	-	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.6	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.6	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.3	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.4	<0.1	<0.1	<0.1	<0.1
Benzo(b+k)fluoranthene	mg/kg	0.9	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.5	<0.05	<0.05	<0.05	<0.05
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	mg/kg	0.4	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.4	<0.1	<0.1	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	100	100	100	100	102

PAHs in Soil		
Our Reference: Your Reference	UNITS	19222-58 080508-161
Tour Reference		-KW
Date Sampled		8/05/2008
Type of sample		Soil
Sample Matrix Code Time Sampled		SO 00:00
Date extracted		12/05/2008
Date extracted Date analysed	-	12/05/2008
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Dibenzo(a,h)anthracene	mg/kg	<0.1
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Surrogate p-Terphenyl-d ₁₄	%	97

Organochlorine Pesticides in soil						
Our Reference:	UNITS	19222-15	19222-20	19222-22	19222-23	19222-30
Your Reference		080508-116 -KW	080508-121 -KW	080508-123 -KW	080508-124 -KW	080508-133 -KW
Date Sampled		8/05/2008	8/05/2008	8/05/2008	8/05/2008	8/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code Time Sampled		SO 00:00	SO 00:00	SO 00:00	SO 00:00	SO 00:00
<u>'</u>						
Date extracted	-	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Date analysed	-	13/05/2008	13/05/2008	13/05/2008	13/05/2008	13/05/2008
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	90	79	78	77	78

Organochlorine Pesticides in soil Our Reference: Your Reference Date Sampled Type of sample Sample Matrix Code Time Sampled	UNITS	19222-36 080508-139 -KW 8/05/2008 Soil SO 00:00	19222-38 080508-141 -KW 8/05/2008 Soil SO 00:00	19222-45 080508-148 -KW 8/05/2008 Soil SO 00:00	19222-52 080508-155 -KW 8/05/2008 Soil SO 00:00	19222-55 080508-158 -KW 8/05/2008 Soil SO 00:00
Date extracted	-	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Date analysed	-	13/05/2008	13/05/2008	13/05/2008	13/05/2008	13/05/2008
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	79	77	78	78	83

Organophosphorus Pesticides						
Our Reference:	UNITS	19222-15	19222-20	19222-22	19222-23	19222-30
Your Reference		080508-116 -KW	080508-121 -KW	080508-123 -KW	080508-124 -KW	080508-133 -KW
Date Sampled		8/05/2008	8/05/2008	8/05/2008	8/05/2008	8/05/2008
Type of sample Sample Matrix Code Time Sampled		Soil SO 00:00	Soil SO 00:00	Soil SO 00:00	Soil SO 00:00	Soil SO 00:00
Date extracted	-	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Date analysed	-	13/05/2008	13/05/2008	13/05/2008	13/05/2008	13/05/2008
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	90	79	78	77	78

Organophosphorus Pesticides						
Our Reference:	UNITS	19222-36	19222-38	19222-45	19222-52	19222-55
Your Reference		080508-139 -KW	080508-141 -KW	080508-148 -KW	080508-155 -KW	080508-158 -KW
Date Sampled		8/05/2008	8/05/2008	8/05/2008	8/05/2008	8/05/2008
Type of sample Sample Matrix Code		Soil SO	Soil SO	Soil SO	Soil SO	Soil SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Date analysed	-	13/05/2008	13/05/2008	13/05/2008	13/05/2008	13/05/2008
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	79	77	78	78	83

PCBs in Soil						
Our Reference:	UNITS	19222-15	19222-20	19222-22	19222-23	19222-30
Your Reference		080508-116	080508-121	080508-123	080508-124	080508-13
		-KW	-KW	-KW	-KW	-KW
Date Sampled		8/05/2008	8/05/2008	8/05/2008	8/05/2008	8/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Date analysed	-	13/05/2008	13/05/2008	13/05/2008	13/05/2008	13/05/2008
Arochlor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	90	79	78	77	78
PCBs in Soil						
Our Reference:	UNITS	19222-36	19222-38	19222-45	19222-52	19222-55
Your Reference		080508-139	080508-141	080508-148	080508-155	080508-15
		-KW	-KW	-KW	-KW	-KW
Date Sampled		8/05/2008	8/05/2008	8/05/2008	8/05/2008	8/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/200
Date analysed	-	13/05/2008	13/05/2008	13/05/2008	13/05/2008	13/05/200
Arochlor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
4 11 40=4		1 .	l		1 .	1

<0.1

<0.1

79

<0.1

<0.1

77

<0.1

<0.1

78

<0.1

<0.1

78

Envirolab Reference: 19222 Revision No: R 00

Arochlor 1254

Arochlor 1260

Surrogate TCLMX

mg/kg

mg/kg

%

<0.1

<0.1

83

Total Phenolics in Soil						
Our Reference:	UNITS	19222-9	19222-21	19222-24	19222-39	19222-49
Your Reference		080508-110 -KW	080508-122 -KW	080508-126 -KW	080508-142 -KW	080508-152 -KW
Date Sampled		8/05/2008	8/05/2008	8/05/2008	8/05/2008	8/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Total Phenolics (as Phenol)	mg/kg	<5.0	<5.0	<5.0	<5.0	<5.0

Total Phenolics in Soil			
Our Reference:	UNITS	19222-50	19222-58
Your Reference		080508-153 -KW	080508-161 -KW
Date Sampled		8/05/2008	8/05/2008
Type of sample		Soil	Soil
Sample Matrix Code		SO	SO
Time Sampled		00:00	00:00
Date extracted	-	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008
Total Phenolics (as Phenol)	mg/kg	<5.0	<5.0

Herbicides in Soil						
Our Reference:	UNITS	19222-15	19222-30	19222-42	19222-43	19222-45
Your Reference		080508-116	080508-133	080508-145	080508-146	080508-148
		-KW	-KW	-KW	-KW	-KW
Date Sampled		8/05/2008	8/05/2008	8/05/2008	8/05/2008	8/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date analysed	-	20/05/2008	20/05/2008	20/05/2008	20/05/2008	20/05/2008
Date Extracted	-	22/05/2008	22/05/2008	22/05/2008	22/05/2008	22/05/2008
Dicamba	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
MCPA	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorprop	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
2,4-D	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
2,4,5-T	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
2,4,5-TP	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
2,4-DB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
MCPP	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Triclopyr	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1

Herbicides in Soil		
Our Reference:	UNITS	19222-55
Your Reference		080508-158 -KW
Date Sampled		8/05/2008
Type of sample		Soil
Sample Matrix Code		SO
Time Sampled		00:00
Date analysed	-	20/05/2008
Date Extracted	-	22/05/2008
Dicamba	mg/kg	<0.1
MCPA	mg/kg	<0.1
Dichlorprop	mg/kg	<0.1
2,4-D	mg/kg	<0.1
2,4,5-T	mg/kg	<0.1
2,4,5-TP	mg/kg	<0.1
2,4-DB	mg/kg	<0.1
MCPP	mg/kg	<0.1
Triclopyr	mg/kg	<0.1

Acid Extractable metals in soil						
Our Reference:	UNITS	19222-1	19222-5	19222-6	19222-9	19222-10
Your Reference		080508-102	080508-106	080508-107	080508-110	080508-111
		-KW	-KW	-KW	-KW	-KW
Date Sampled		8/05/2008	8/05/2008	8/05/2008	8/05/2008	8/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date digested	-	13/05/2008	13/05/2008	13/05/2008	13/05/2008	13/05/2008
Date analysed	-	14/05/2008	14/05/2008	14/05/2008	14/05/2008	14/05/2008
Arsenic	mg/kg	<4.0	<4.0	<4.0	<4.0	<4.0
Cadmium	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Chromium	mg/kg	4.3	1.0	<1.0	1.9	1.6
Copper	mg/kg	7.9	<1.0	<1.0	8.5	<1.0
Lead	mg/kg	32	1.1	<1.0	2.7	<1.0
Mercury	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Nickel	mg/kg	2.3	<1.0	<1.0	6.3	<1.0
Zinc	mg/kg	38	1.7	4.2	49	4.5

Acid Extractable metals in soil						
Our Reference:	UNITS	19222-13	19222-14	19222-15	19222-18	19222-19
Your Reference		080508-114	080508-115	080508-116	080508-119	080508-120
		-KW	-KW	-KW	-KW	-KW
Date Sampled		8/05/2008	8/05/2008	8/05/2008	8/05/2008	8/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date digested	-	13/05/2008	13/05/2008	13/05/2008	13/05/2008	13/05/2008
Date analysed	-	14/05/2008	14/05/2008	14/05/2008	14/05/2008	14/05/2008
Arsenic	mg/kg	<4.0	8.3	<4.0	19	22
Cadmium	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Chromium	mg/kg	3.2	5.6	3.0	27	6.7
Copper	mg/kg	6.3	1.5	6.3	8.1	<1.0
Lead	mg/kg	2.6	8.5	20	20	2.6
Mercury	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Nickel	mg/kg	9.1	1.1	1.5	9.8	5.1
Zinc	mg/kg	14	12	32	29	3.2

Acid Extractable metals in soil Our Reference: Your Reference Date Sampled Type of sample Sample Matrix Code Time Sampled	UNITS	19222-20 080508-121 -KW 8/05/2008 Soil SO 00:00	19222-22 080508-123 -KW 8/05/2008 Soil SO 00:00	19222-23 080508-124 -KW 8/05/2008 Soil SO 00:00	19222-25 080508-127 -KW 8/05/2008 Soil SO 00:00	19222-30 080508-13: -KW 8/05/2008 Soil SO 00:00
Date digested	-	13/05/2008	13/05/2008	13/05/2008	13/05/2008	13/05/2008
Date analysed	-	14/05/2008	14/05/2008	14/05/2008	14/05/2008	14/05/2008
Arsenic	mg/kg	<4.0	<4.0	<4.0	<4.0	<4.0
Cadmium	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Chromium	mg/kg	6.2	2.0	2.6	3.1	5.2
Copper	mg/kg	7.7	1.8	1.6	12	18
Lead	mg/kg	35	3.5	2.0	27	50
Mercury	mg/kg	0.12	<0.10	<0.10	<0.10	<0.10
Nickel	mg/kg	1.9	<1.0	1.1	3.0	2.6
Zinc	mg/kg	34	5.3	3.3	48	73
Phosphorus	mg/kg	[NA]	[NA]	[NA]	550	[NA]
Acid Extractable metals in soil Our Reference: Your Reference	UNITS	19222-33 080508-136 -KW	19222-34 080508-137 -KW	19222-36 080508-139 -KW	19222-38 080508-141 -KW	19222-39 080508-14 -KW
Date Sampled Type of sample Sample Matrix Code Time Sampled		8/05/2008 Soil SO 00:00	8/05/2008 Soil SO 00:00	8/05/2008 Soil SO 00:00	8/05/2008 Soil SO 00:00	8/05/2008 Soil SO 00:00
Date digested	-	13/05/2008	13/05/2008	13/05/2008	13/05/2008	13/05/200
Date analysed	-	14/05/2008	14/05/2008	14/05/2008	14/05/2008	14/05/200
Arsenic	mg/kg	4.9	28	6.3	[NA]	8.1
Cadmium	mg/kg	<1.0	2.0	<1.0	[NA]	1.8
Chromium	mg/kg	7.3	48	7.8	[NA]	20
Copper	mg/kg	16	36	9.7	[NA]	110
Lead	mg/kg	35	40	21	[NA]	180
Mercury	mg/kg	<0.10	0.29	0.15	[NA]	0.71
Wichdary						

Envirolab Reference: 19222 Revision No: R 00

Zinc

Phosphorus

48

[NA]

mg/kg

mg/kg

150

[NA]

36

[NA]

[NA]

430

320

[NA]

Our Reference: Your Reference Date Sampled Type of sample Sample Matrix Code Time Sampled	UNITS	19222-42 080508-145 -KW 8/05/2008 Soil SO 00:00	19222-43 080508-146 -KW 8/05/2008 Soil SO 00:00	19222-44 080508-147 -KW 8/05/2008 Soil SO 00:00	19222-46 080508-149 -KW 8/05/2008 Soil SO 00:00	19222-48 080508-151 -KW 8/05/2008 Soil SO 00:00
Date digested	-	13/05/2008	13/05/2008	13/05/2008	13/05/2008	13/05/2008
Date analysed	-	14/05/2008	14/05/2008	14/05/2008	14/05/2008	14/05/2008
Arsenic	mg/kg	<4.0	6.7	<4.0	4.9	<4.0
Cadmium	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Chromium	mg/kg	7.2	12	<1.0	7.3	<1.0
Copper	mg/kg	9.7	13	<1.0	11	3.4
Lead	mg/kg	26	26	<1.0	26	18
Mercury	mg/kg	0.24	0.10	<0.10	<0.10	<0.10
Nickel	mg/kg	2.1	2.9	<1.0	5.4	<1.0
Zinc	mg/kg	32	23	<1.0	29	18
Phosphorus	mg/kg	120	72	[NA]	[NA]	[NA]
Acid Extractable metals in soil						
Our Reference:	UNITS	19222-49	19222-50	19222-52	19222-54	19222-55
Your Reference		080508-152 -KW	080508-153 -KW	080508-155 -KW	080508-157 -KW	080508-15 -KW
Date Sampled		8/05/2008	8/05/2008	8/05/2008	8/05/2008	8/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code Time Sampled		SO 00:00	SO 00:00	SO 00:00	SO 00:00	SO 00:00
Date digested	-	13/05/2008	13/05/2008	13/05/2008	13/05/2008	13/05/200
Date analysed	-	14/05/2008	14/05/2008	14/05/2008	14/05/2008	14/05/2008

<4.0

<1.0

1.3

1.6

7.8

<0.10

<1.0

9.0

[NA]

<4.0

<1.0

1.2

1.8

9.1

<0.10

<1.0

12

[NA]

<4.0

<1.0

1.5

<1.0

5.8

<0.10

<1.0

16

[NA]

<4.0

<1.0

2.4

<1.0

1.1

<0.10

1.3

10

[NA]

<4.0

<1.0

1.9

7.6

34

0.29

1.5

67

160

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

Envirolab Reference: 19222 Revision No: R 00

Arsenic

Cadmium

Chromium

Copper

Lead

Mercury

Nickel

Zinc

Phosphorus

Acid Extractable metals in soil Our Reference: Your Reference Date Sampled Type of sample Sample Matrix Code Time Sampled	UNITS	19222-58 080508-161 -KW 8/05/2008 Soil SO 00:00	19222-63 080508-131 -KW 8/05/2008 Soil SO 00:00
Date digested	-	13/05/2008	13/05/2008
Date analysed	-	14/05/2008	14/05/2008
Arsenic	mg/kg	6.3	11
Cadmium	mg/kg	<1.0	<1.0
Chromium	mg/kg	7.2	14
Copper	mg/kg	240	9.6
Lead	mg/kg	33	22
Mercury	mg/kg	<0.10	<0.10
Nickel	mg/kg	8.6	5.5
Zinc	mg/kg	340	43

Miscellaneous Inorg - soil						
Our Reference:	UNITS	19222-25	19222-28	19222-38	19222-42	19222-43
Your Reference		080508-127 -KW	080508-130 -KW	080508-141 -KW	080508-145 -KW	080508-146 -KW
Date Sampled		8/05/2008	8/05/2008	8/05/2008	8/05/2008	8/05/2008
Type of sample Sample Matrix Code Time Sampled		Soil SO 00:00	Soil SO 00:00	Soil SO 00:00	Soil SO 00:00	Soil SO 00:00
Date analysed	-	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Ammonia as N in soil	mg/kg	14	[NA]	5.2	2.5	2.5
Nitrate as N in soil	mg/kg	1.8	[NA]	2.5	0.8	0.7
Nitrite as N in soil	mg/kg	0.5	[NA]	<0.1	<0.1	<0.1
Total Kjeldahl Nitrogen	mg/kg	2,000	[NA]	4,100	320	220
Total Nitrogen in soil	mg/kg	2,000	[NA]	4,100	320	220
pH 1:5 soil:water	pH Units	[NA]	8.1	[NA]	[NA]	[NA]
Electrical Conductivity 1:5 soil:water	μS/cm	[NA]	290	[NA]	[NA]	[NA]
Salinity as NACL *	mg/kg	[NA]	190	[NA]	[NA]	[NA]
Resistivity in soil*	ohm m	[NA]	35	[NA]	[NA]	[NA]
Chloride 1:5 soil:water	mg/kg	[NA]	380	[NA]	[NA]	[NA]
Sulphate, SO4 1:5 soil:water	mg/kg	[NA]	31	[NA]	[NA]	[NA]

Miscellaneous Inorg - soil		
Our Reference:	UNITS	19222-55
Your Reference		080508-158 -KW
Date Sampled		8/05/2008
Type of sample		Soil
Sample Matrix Code		SO
Time Sampled		00:00
Date analysed	-	12/05/2008
Ammonia as N in soil	mg/kg	3.5
Nitrate as N in soil	mg/kg	0.8
Nitrite as N in soil	mg/kg	<0.1
Total Kjeldahl Nitrogen	mg/kg	1,500
Total Nitrogen in soil	mg/kg	1,500
pH 1:5 soil:water	pH Units	7.8
Electrical Conductivity 1:5 soil:water	μS/cm	61
Salinity as NACL *	mg/kg	39
Resistivity in soil*	ohm m	160
Chloride 1:5 soil:water	mg/kg	<100
Sulphate, SO4 1:5 soil:water	mg/kg	29

Moisture						
Our Reference:	UNITS	19222-1	19222-5	19222-6	19222-7	19222-9
Your Reference	UNITS	080508-102	080508-106	080508-107	080508-108	080508-110
Tour Reference		-KW	-KW	-KW	-KW	-KW
Date Sampled		8/05/2008	8/05/2008	8/05/2008	8/05/2008	8/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date prepared	_	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Date analysed		12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Moisture	%	27	16	12/03/2008	17	
Moisture	70	21	16	14	17	25
Moisture						
Our Reference:	UNITS	19222-10	19222-13	19222-14	19222-15	19222-18
Your Reference		080508-111	080508-114	080508-115	080508-116	080508-119
		-KW	-KW	-KW	-KW	-KW
Date Sampled		8/05/2008	8/05/2008	8/05/2008	8/05/2008	8/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		so	so	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date prepared	-	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Date analysed	-	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Moisture	%	25	27	39	22	38
Moisture						
Our Reference:	UNITS	19222-19	19222-20	19222-21	19222-22	19222-23
Your Reference		080508-120 -KW	080508-121 -KW	080508-122 -KW	080508-123 -KW	080508-124 -KW
Date Sampled		8/05/2008	8/05/2008	8/05/2008	8/05/2008	8/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date prepared	-	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Date analysed	-	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Moisture	%	26	27	27	17	18
				1	1	
Moisture						
Our Reference:	UNITS	19222-24	19222-25	19222-26	19222-30	19222-32
Your Reference		080508-126 -KW	080508-127 -KW	080508-128 -KW	080508-133 -KW	080508-135 -KW
Date Sampled		8/05/2008	8/05/2008	8/05/2008	8/05/2008	8/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		so	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date prepared	-	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Date analysed	_	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
2 410 411419004						

Moisture						
Our Reference:	UNITS	19222-33	19222-34	19222-36	19222-37	19222-38
Your Reference		080508-136 -KW	080508-137 -KW	080508-139 -KW	080508-140 -KW	080508-141 -KW
Date Sampled		8/05/2008	8/05/2008	8/05/2008	8/05/2008	8/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO 00:00	SO 00:00	SO 00:00	SO 00:00	SO 00:00
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date prepared	-	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Date analysed	-	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Moisture	%	24	44	23	27	29
			I			
Moisture Our Reference:	UNITS	19222-39	19222-42	19222-43	19222-44	19222-45
Your Reference	UNITS	080508-142	080508-145	080508-146	080508-147	080508-148
Tour Reference		-KW	-KW	-KW	-KW	-KW
Date Sampled		8/05/2008	8/05/2008	8/05/2008	8/05/2008	8/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date prepared	-	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Date analysed	-	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Moisture	%	20	30	15	19	19
			I			I
Moisture	LINITO	40000 40	10000 10	10000 40	40000 50	10000 50
Our Reference: Your Reference	UNITS	19222-46 080508-149	19222-48 080508-151	19222-49 080508-152	19222-50 080508-153	19222-52 080508-155
Tour Reference		-KW	-KW	-KW	-KW	-KW
Date Sampled		8/05/2008	8/05/2008	8/05/2008	8/05/2008	8/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		so	so	SO	so	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date prepared	-	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Date analysed	-	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Moisture	%	9.7	6.4	14	15	14
		I	I			Ι
Moisture	LINUTO	10000 54	10000 55	40000 50	40000 50	10000 01
Our Reference:	UNITS	19222-54	19222-55	19222-56	19222-58	19222-61
Your Reference		080508-157 -KW	080508-158 -KW	080508-159 -KW	080508-161 -KW	Trip Blank
Date Sampled		8/05/2008	8/05/2008	8/05/2008	8/05/2008	8/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date prepared	-	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Date analysed	-	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Moisture	%	21	5.0	12	14	0.10

Moisture		
Our Reference:	UNITS	19222-63
Your Reference		080508-131
		-KW
Date Sampled		8/05/2008
Type of sample		Soil
Sample Matrix Code		so
Time Sampled		00:00
Date prepared	-	12/05/2008
Date analysed	-	12/05/2008
Moisture	%	23

Method ID	Methodology Summary
GC.14	Soil samples extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
GC.16	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS.
GC.3	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
GC.12 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
GC-5	Soil samples are extracted with hexane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
GC.8	Soil samples are extracted with hexane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
GC-6	Soil samples are extracted with hexane/acetone and waters with dichloromethane and analysed by GC-ECD.
LAB.30	Total Phenolics - determined colorimetrically following disitillation.
Ext-020	Analysis subcontracted to Australian Government - National Measurement Institute. NATA Accreditation No: 198
Metals.20 ICP- AES	Determination of various metals by ICP-AES.
Metals.21 CV- AAS	Determination of Mercury by Cold Vapour AAS.
LAB.57	Ammonia water extractable - determined colourimetrically based on EPA103A.
LAB.55	Nitrate water extractable - determined colourimetrically based on EPA114A.
LAB.56	Nitrite water extractable - determined colourimetrically based on EPA116A.
LAB.66	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen.
LAB.1	pH - Measured using pH meter and electrode in accordance with APHA 20th ED, 4500-H+.
LAB.2	Conductivity and Salinity - measured using a conductivity cell and dedicated meter, in accordance with APHA2510 20th ED and Rayment & Higginson.
LAB.11	Chloride determined by argentometric titration.
LAB.9	Sulphate determined turbidimetrically.
LAB.8	Moisture content determined by heating at 105 deg C for a minimum of 4 hours.

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
VOC's in soil						Base II Duplicate II %RPD		recovery
Date extracted	-			12/5/08	19222-9	12/05/2008 12/05/2008	LCS-6	12/5/08%
Date analysed	-			12/5/08	19222-9	12/05/2008 12/05/2008	LCS-6	12/5/08%
Dichlorodifluoromethane	mg/kg	10	GC.14	<10	19222-9	<10 <10	[NR]	[NR]
Chloromethane	mg/kg	10	GC.14	<10	19222-9	<10 <10	[NR]	[NR]
Vinyl Chloride	mg/kg	10	GC.14	<10	19222-9	<10 <10	[NR]	[NR]
Bromomethane	mg/kg	10	GC.14	<10	19222-9	<10 <10	[NR]	[NR]
Chloroethane	mg/kg	10	GC.14	<10	19222-9	<10 <10	[NR]	[NR]
Trichlorofluoromethane	mg/kg	10	GC.14	<10	19222-9	<10 <10	[NR]	[NR]
1,1-Dichloroethene	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	[NR]	[NR]
trans-1,2-dichloroethene	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	[NR]	[NR]
1,1-dichloroethane	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	LCS-6	102%
cis-1,2-dichloroethene	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	[NR]	[NR]
bromochloromethane	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	[NR]	[NR]
chloroform	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	LCS-6	94%
2,2-dichloropropane	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	[NR]	[NR]
1,2-dichloroethane	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	LCS-6	98%
1,1,1-trichloroethane	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	LCS-6	89%
1,1-dichloropropene	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	[NR]	[NR]
carbon tetrachloride	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	[NR]	[NR]
Benzene	mg/kg	0.5	GC.14	<0.5	19222-9	<0.5 <0.5	[NR]	[NR]
dibromomethane	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	[NR]	[NR]
1,2-dichloropropane	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	[NR]	[NR]
trichloroethene	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	LCS-6	113%
bromodichloromethane	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	LCS-6	121%
trans-1,3- dichloropropene	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	[NR]	[NR]
cis-1,3-dichloropropene	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	[NR]	[NR]
1,1,2-trichloroethane	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	[NR]	[NR]
Toluene	mg/kg	0.5	GC.14	<0.5	19222-9	<0.5 <0.5	[NR]	[NR]
1,3-dichloropropane	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	[NR]	[NR]
dibromochloromethane	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	LCS-6	121%
1,2-dibromoethane	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	[NR]	[NR]
tetrachloroethene	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	LCS-6	115%
1,1,1,2- tetrachloroethane	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	[NR]	[NR]
chlorobenzene	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	[NR]	[NR]
Ethylbenzene	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	[NR]	[NR]
bromoform	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	[NR]	[NR]
m+p-xylene	mg/kg	2	GC.14	<2.0	19222-9	<2.0 <2.0	[NR]	[NR]
styrene	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	[NR]	[NR]
1,1,2,2- tetrachloroethane	mg/kg	1	GC.14	<1.0	19222-9		[NR]	[NR]
o-Xylene	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	[NR]	[NR]

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
VOC's in soil					5m#	Base II Duplicate II %RPD		Recovery
1,2,3-trichloropropane*	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	[NR]	[NR]
isopropylbenzene	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	[NR]	[NR]
bromobenzene	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	[NR]	[NR]
n-propyl benzene	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	[NR]	[NR]
2-chlorotoluene	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	[NR]	[NR]
4-chlorotoluene	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	[NR]	[NR]
1,3,5-trimethyl benzene	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	[NR]	[NR]
tert-butyl benzene	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	[NR]	[NR]
1,2,4-trimethyl benzene	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	[NR]	[NR]
1,3-dichlorobenzene	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	[NR]	[NR]
sec-butyl benzene	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	[NR]	[NR]
1,4-dichlorobenzene	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	[NR]	[NR]
4-isopropyl toluene	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	[NR]	[NR]
1,2-dichlorobenzene	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	[NR]	[NR]
n-butyl benzene	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	[NR]	[NR]
1,2-dibromo-3- chloropropane	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	[NR]	[NR]
1,2,4-trichlorobenzene	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	[NR]	[NR]
hexachlorobutadiene	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	[NR]	[NR]
1,2,3-trichlorobenzene	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	[NR]	[NR]
Surrogate Dibromofluorometha	%		GC.14	86	19222-9	88 89 RPD: 1	LCS-6	92%
Surrogate aaa- Trifluorotoluene	%		GC.14	91	19222-9	96 91 RPD: 5	LCS-6	101%
Surrogate Toluene-d8	%		GC.14	96	19222-9	98 96 RPD: 2	LCS-6	95%
Surrogate 4- Bromofluorobenzene	%		GC.14	78	19222-9	75 78 RPD: 4	LCS-6	70%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTPH & BTEX in Soil					Sili#	Base II Duplicate II %RPD		Recovery
Date extracted	-			12/5/08	19222-9	12/05/2008 12/05/2008	LCS-6	12/5/08%
Date analysed	-			12/5/08	19222-9	12/05/2008 12/05/2008	LCS-6	12/5/08%
vTPH C6 - C9	mg/kg	25	GC.16	<25	19222-9	<25 <25	LCS-6	108%
Benzene	mg/kg	0.5	GC.14	<0.5	19222-9	<0.5 <0.5	LCS-6	88%
Toluene	mg/kg	0.5	GC.14	<0.5	19222-9	<0.5 <0.5	LCS-6	136%
Ethylbenzene	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	LCS-6	108%
m+p-xylene	mg/kg	2	GC.14	<2.0	19222-9	<2.0 <2.0	LCS-6	105%
o-Xylene	mg/kg	1	GC.14	<1.0	19222-9	<1.0 <1.0	LCS-6	83%
Surrogate aaa- Trifluorotoluene	%		GC.14	91	19222-9	96 91 RPD: 5	LCS-6	85%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
sTPH in Soil (C10-C36)						Base II Duplicate II %RPD		
Date extracted	-			12/5/08	19222-9	12/05/2008 12/05/2008	LCS-6	12/5/08%
Date analysed	-			12/5/08	19222-9	12/05/2008 12/05/2008	LCS-6	12/5/08%
TPH C ₁₀ - C ₁₄	mg/kg	50	GC.3	<50	19222-9	<50 <50	LCS-6	86%
TPH C ₁₅ - C ₂₈	mg/kg	100	GC.3	<100	19222-9	<100 <100	LCS-6	83%
TPH C29 - C36	mg/kg	100	GC.3	<100	19222-9	<100 <100	LCS-6	97%
Surrogate o-Terphenyl	%		GC.3	97	19222-9	135 103 RPD: 27	LCS-6	101%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II %RPD		recovery
Date extracted	-			12/5/08	19222-9	12/05/2008 12/05/2008	LCS-6	12/5/08%
Date analysed	-			12/5/08	19222-9	12/05/2008 12/05/2008	LCS-6	12/5/08%
Naphthalene	mg/kg	0.1	GC.12 subset	<0.1	19222-9	<0.1 <0.1	LCS-6	102%
Acenaphthylene	mg/kg	0.1	GC.12 subset	<0.1	19222-9	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	0.1	GC.12 subset	<0.1	19222-9	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	0.1	GC.12 subset	<0.1	19222-9	<0.1 <0.1	LCS-6	107%
Phenanthrene	mg/kg	0.1	GC.12 subset	<0.1	19222-9	<0.1 <0.1	LCS-6	106%
Anthracene	mg/kg	0.1	GC.12 subset	<0.1	19222-9	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	0.1	GC.12 subset	<0.1	19222-9	<0.1 <0.1	LCS-6	105%
Pyrene	mg/kg	0.1	GC.12 subset	<0.1	19222-9	<0.1 <0.1	LCS-6	106%
Benzo(a)anthracene	mg/kg	0.1	GC.12 subset	<0.1	19222-9	<0.1 <0.1	[NR]	[NR]
Chrysene	mg/kg	0.1	GC.12 subset	<0.1	19222-9	<0.1 <0.1	LCS-6	118%
Benzo(b+k)fluoranthene	mg/kg	0.2	GC.12 subset	<0.2	19222-9	<0.2 <0.2	[NR]	[NR]

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
DAIL-: C "					Sm#	Dana II Dana II (II 0/ BBB		Recovery
PAHs in Soil						Base II Duplicate II %RPD		
Benzo(a)pyrene	mg/kg	0.05	GC.12 subset	<0.05	19222-9	<0.05 <0.05	LCS-6	85%
Dibenzo(a,h)anthracene	mg/kg	0.1	GC.12 subset	<0.1	19222-9	<0.1 <0.1	[NR]	[NR]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	GC.12 subset	<0.1	19222-9	<0.1 <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	GC.12 subset	<0.1	19222-9	<0.1 <0.1	[NR]	[NR]
Surrogate p-Terphenyl- d ₁₄	%		GC.12 subset	82	19222-9	96 100 RPD: 4	LCS-6	102%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
Organochlorine Pesticides in soil						Base II Duplicate II %RPD		Recovery
Date extracted	-			12/5/08	19222-15	12/05/2008 12/05/2008	LCS-6	12/5/08%
Date analysed	-			13/5/08	19222-15	13/05/2008 13/05/2008	LCS-6	13/5/08%
НСВ	mg/kg	0.1	GC-5	<0.1	19222-15	<0.1 <0.1	[NR]	[NR]
alpha-BHC	mg/kg	0.1	GC-5	<0.1	19222-15	<0.1 <0.1	LCS-6	88%
gamma-BHC	mg/kg	0.1	GC-5	<0.1	19222-15	<0.1 <0.1	[NR]	[NR]
beta-BHC	mg/kg	0.1	GC-5	<0.1	19222-15	<0.1 <0.1	LCS-6	83%
Heptachlor	mg/kg	0.1	GC-5	<0.1	19222-15	<0.1 <0.1	LCS-6	60%
delta-BHC	mg/kg	0.1	GC-5	<0.1	19222-15	<0.1 <0.1	[NR]	[NR]
Aldrin	mg/kg	0.1	GC-5	<0.1	19222-15	<0.1 <0.1	LCS-6	99%
Heptachlor Epoxide	mg/kg	0.1	GC-5	<0.1	19222-15	<0.1 <0.1	LCS-6	90%
gamma-Chlordane	mg/kg	0.1	GC-5	<0.1	19222-15	<0.1 <0.1	[NR]	[NR]
alpha-chlordane	mg/kg	0.1	GC-5	<0.1	19222-15	<0.1 <0.1	[NR]	[NR]
Endosulfan I	mg/kg	0.1	GC-5	<0.1	19222-15	<0.1 <0.1	[NR]	[NR]
pp-DDE	mg/kg	0.1	GC-5	<0.1	19222-15	<0.1 <0.1	LCS-6	89%
Dieldrin	mg/kg	0.1	GC-5	<0.1	19222-15	<0.1 <0.1	LCS-6	95%
Endrin	mg/kg	0.1	GC-5	<0.1	19222-15	<0.1 <0.1	LCS-6	63%
pp-DDD	mg/kg	0.1	GC-5	<0.1	19222-15	<0.1 <0.1	LCS-6	92%
Endosulfan II	mg/kg	0.1	GC-5	<0.1	19222-15	<0.1 <0.1	[NR]	[NR]
pp-DDT	mg/kg	0.1	GC-5	<0.1	19222-15	<0.1 <0.1	[NR]	[NR]
Endrin Aldehyde	mg/kg	0.1	GC-5	<0.1	19222-15	<0.1 <0.1	[NR]	[NR]
Endosulfan Sulphate	mg/kg	0.1	GC-5	<0.1	19222-15	<0.1 <0.1	LCS-6	80%
Methoxychlor	mg/kg	0.1	GC-5	<0.1	19222-15	<0.1 <0.1	[NR]	[NR]
Surrogate TCLMX	%		GC-5	82	19222-15	90 85 RPD: 6	LCS-6	82%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organophosphorus Pesticides					Jiii#	Base II Duplicate II %RPD		it coovery
Date extracted	-			12/5/08	19222-15	12/05/2008 12/05/2008	LCS-6	12/5/08%
Date analysed	-			13/5/08	19222-15	13/05/2008 13/05/2008	LCS-6	13/5/08%
Diazinon	mg/kg	0.1	GC.8	<0.1	19222-15	<0.1 <0.1	[NR]	[NR]
Dimethoate	mg/kg	0.1	GC.8	<0.1	19222-15	<0.1 <0.1	[NR]	[NR]
Chlorpyriphos-methyl	mg/kg	0.1	GC.8	<0.1	19222-15	<0.1 <0.1	[NR]	[NR]
Ronnel	mg/kg	0.1	GC.8	<0.1	19222-15	<0.1 <0.1	[NR]	[NR]
Chlorpyriphos	mg/kg	0.1	GC.8	<0.1	19222-15	<0.1 <0.1	LCS-6	97%
Fenitrothion	mg/kg	0.1	GC.8	<0.1	19222-15	<0.1 <0.1	LCS-6	79%
Bromophos-ethyl	mg/kg	0.1	GC.8	<0.1	19222-15	<0.1 <0.1	[NR]	[NR]
Ethion	mg/kg	0.1	GC.8	<0.1	19222-15	<0.1 <0.1	LCS-6	121%
Surrogate TCLMX	%		GC.8	82	19222-15	90 85 RPD: 6	LCS-6	83%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
PCBs in Soil						Base II Duplicate II %RPD		Recovery
Date extracted	-			12/5/08	19222-15	12/05/2008 12/05/2008	LCS-6	12/5/08%
Date analysed	-			13/5/08	19222-15	13/05/2008 13/05/2008	LCS-6	13/5/08%
Arochlor 1016	mg/kg	0.1	GC-6	<0.1	19222-15	<0.1 <0.1	[NR]	[NR]
Arochlor 1232	mg/kg	0.1	GC-6	<0.1	19222-15	<0.1 <0.1	[NR]	[NR]
Arochlor 1242	mg/kg	0.1	GC-6	<0.1	19222-15	<0.1 <0.1	[NR]	[NR]
Arochlor 1248	mg/kg	0.1	GC-6	<0.1	19222-15	<0.1 <0.1	[NR]	[NR]
Arochlor 1254	mg/kg	0.1	GC-6	<0.1	19222-15	<0.1 <0.1	LCS-6	87%
Arochlor 1260	mg/kg	0.1	GC-6	<0.1	19222-15	<0.1 <0.1	[NR]	[NR]
Surrogate TCLMX	%		GC-6	82	19222-15	90 85 RPD: 6	LCS-6	127%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Total Phenolics in Soil						Base II Duplicate II %RPD		
Date extracted	-			16/5/08	19222-24	16/05/2008 16/05/2008	LCS-1	16/5/08%
Date analysed	-			16/5/08	19222-24	16/05/2008 16/05/2008	LCS-1	16/5/08%
Total Phenolics (as Phenol)	mg/kg	5	LAB.30	<5.0	19222-24	<5.0 <5.0	LCS-1	106%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Herbicides in Soil						Base II Duplicate II %RPD		
Dicamba	mg/kg	0.1	Ext-020	<0.1	[NT]	[NT]	LCS-1	102%
MCPA	mg/kg	0.1	Ext-020	<0.1	[NT]	[NT]	LCS-1	103%
Dichlorprop	mg/kg	0.1	Ext-020	<0.1	[NT]	[NT]	LCS-1	101%
2,4-D	mg/kg	0.1	Ext-020	<0.1	[NT]	[NT]	LCS-1	105%
2,4,5-T	mg/kg	0.1	Ext-020	<0.1	[NT]	[NT]	LCS-1	101%
2,4,5-TP	mg/kg	0.1	Ext-020	<0.1	[NT]	[NT]	LCS-1	115%
2,4-DB	mg/kg	0.1	Ext-020	<0.1	[NT]	[NT]	LCS-1	105%
MCPP	mg/kg	0.1	Ext-020	<0.1	[NT]	[NT]	LCS-1	103%
Triclopyr	mg/kg	0.1	Ext-020	<0.1	[NT]	[NT]	LCS-1	104%

QUALITY CONTROL Acid Extractable metals in soil	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery
Date digested	-			13/05/0 8	19222-1	13/05/2008 13/05/2008	LCS-6	13/05/08%
Date analysed	-			14/05/0 8	19222-1	14/05/2008 14/05/2008	LCS-6	14/05/08%
Arsenic	mg/kg	4	Metals.20 ICP-AES	<4.0	19222-1	<4.0 <4.0	LCS-6	92%
Cadmium	mg/kg	1	Metals.20 ICP-AES	<1.0	19222-1	<1.0 <1.0	LCS-6	96%
Chromium	mg/kg	1	Metals.20 ICP-AES	<1.0	19222-1	4.3 4.2 RPD: 2	LCS-6	93%
Copper	mg/kg	1	Metals.20 ICP-AES	<1.0	19222-1	7.9 7.6 RPD: 4	LCS-6	94%
Lead	mg/kg	1	Metals.20 ICP-AES	<1.0	19222-1	32 33 RPD: 3	LCS-6	92%
Mercury	mg/kg	0.1	Metals.21 CV-AAS	<0.10	19222-1	<0.10 <0.10	LCS-6	109%
Nickel	mg/kg	1	Metals.20 ICP-AES	<1.0	19222-1	2.3 2.5 RPD: 8	LCS-6	93%
Zinc	mg/kg	1	Metals.20 ICP-AES	<1.0	19222-1	38 37 RPD: 3	LCS-6	93%
Phosphorus	mg/kg	10	Metals.20 ICP-AES	<10	[NT]	[NT]	LCS-6	97%

Miscellaneous Inorg - soil mg/kg 0.5	QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	S	Spike Sm#	Spike % Recovery
Nitrate as N in soil mg/kg 0.5 LAB.55 <0.5 [NT] [NT] LCS-1 93%	_					Giiiii	Base II Duplicate II %	RPD		icoovery
Nitrite as N in soil	Ammonia as N in soil	mg/kg	0.5	LAB.57	<0.5	[NT]	[NT]		LCS-1	101%
Total Kjeldahl Nitrogen mg/kg 30 Ext-020 <30 [NT] [NT] [NR] [NR] Total Nitrogen in soil mg/kg 10 LAB.66 <10 [NT] [NT] [NT] [NT] [NR] [NR] pH 1:5 soil:water pH Units LAB.1 [NT] [NT] [NT] [NT] LCS-1 100% Electrical Conductivity μS/cm 1 LAB.2 <1.0 [NT] [NT] [NT] LCS-1 105% 155 soil:water Salinity as NACL * mg/kg 1 LAB.2 <1.0 [NT] [NT] [NT] LCS-1 105% Resistivity in soil* ohm m 1 LAB.2 <1.0 [NT] [NT] LCS-1 105% Chloride 1:5 soil:water mg/kg 100 LAB.11 <100 [NT] [NT] LCS-1 105% Soil:water mg/kg 25 LAB.9 <25 [NT] [NT] LCS-1 110% Soil:water mg/kg 25 LAB.9 <25 [NT] [NT] LCS-1 110% Soil:water Mg/kg 25 LAB.9 <25 [NT] [NT] LCS-1 110% Soil:water Mg/kg 25 LAB.9 <25 [NT] [NT] LCS-1 110% Soil:water Mg/kg 25 LAB.9 <25 [NT] [NT] LCS-1 110% Soil:water Mg/kg 25 LAB.9 <25 [NT] [NT] LCS-1 110% Soil:water Mg/kg 120/5/2008 Moisture Mg/kg 122/5/208 Moisture Mg/kg	Nitrate as N in soil	mg/kg	0.5	LAB.55	<0.5	[NT]	[NT]		LCS-1	93%
Total Nitrogen in soil mg/kg 10	Nitrite as N in soil	mg/kg	0.1	LAB.56	<0.1	[NT]	[NT]		LCS-1	105%
PH 1:5 soil:water PH Units LAB.1 [NT] [NT] [NT] LCS-1 100%	Total Kjeldahl Nitrogen	mg/kg	30	Ext-020	<30	[NT]	[NT]		[NR]	[NR]
Electrical Conductivity 1.5 soil:water 1	Total Nitrogen in soil	mg/kg	10	LAB.66	<10	[NT]	[NT]		[NR]	[NR]
1:5 soil:water Salinity as NACL * mg/kg 1	pH 1:5 soil:water	pH Units		LAB.1	[NT]	[NT]	[NT]		LCS-1	100%
Resistivity in soil*	1 - 1	μS/cm	1	LAB.2	<1.0	[NT]	[NT]		LCS-1	105%
Chloride 1:5 soil:water mg/kg 100 LAB.11 <100 [NT] [NT] LCS-1 105%	Salinity as NACL *	mg/kg	1	LAB.2	<1.0	[NT]	[NT]		LCS-1	105%
Sulphate, SO4 1:5	Resistivity in soil*	ohm m	1	LAB.2	<1.0	[NT]	[NT]		LCS-1	105%
Soil:water	Chloride 1:5 soil:water	mg/kg	100	LAB.11	<100	[NT]	[NT]		LCS-1	105%
Moisture	1	mg/kg	25	LAB.9	<25	[NT]	[NT]		LCS-1	110%
Date analysed Moisture - LAB.8 12/5/08 19222-1 12/05/2008 12/05/2008 12/05/2008 12/05/2008 QUALITY CONTROL VOC's in soil UNITS Dup. Sm# Duplicate Base + Duplicate + %RPD Spike Sm# Spike % Recovery Date extracted - [NT] [NT] 19222-24 12/5/08% Date analysed - [NT] [NT] [NT] [NR] Dichlorodifluoromethane mg/kg [NT] [NT] [NR] [NR] Chloromethane mg/kg [NT] [NT] [NT] [NR] [NR] Bromomethane mg/kg [NT] [NT] [NT] [NR] [NR] Chloroethane mg/kg [NT] [NT] [NT] [NR] [NR]		UNITS	PQL	METHOD	Blank	Duplicate Sm#	·	RPD		
Date analysed Moisture - LAB.8 40.10 19222-1 12/05/2008 12	Date prepared	-			12/5/08	19222-1	12/05/2008 12/05/20	008		
QUALITY CONTROL VOC's in soil UNITS Dup. Sm# Duplicate Base + Duplicate + %RPD Spike Sm# Spike % Recovery Date extracted - [NT] [NT] 19222-24 12/5/08% Date analysed - [NT] [NT] 19222-24 12/5/08% Dichlorodifluoromethane mg/kg [NT] [NT] [NR] [NR] Chloromethane mg/kg [NT] [NT] [NR] [NR] Vinyl Chloride mg/kg [NT] [NT] [NT] [NR] Bromomethane mg/kg [NT] [NT] [NR] [NR] Chloroethane mg/kg [NT] [NT] [NT] [NR] [NR]		-			12/5/08	19222-1				
VOC's in soil Base + Duplicate + %RPD Date extracted - [NT] [NT] 19222-24 12/5/08% Date analysed - [NT] [NT] 19222-24 12/5/08% Dichlorodifluoromethane mg/kg [NT] [NT] [NR] [NR] Chloromethane mg/kg [NT] [NT] [NR] [NR] Vinyl Chloride mg/kg [NT] [NT] [NR] [NR] Bromomethane mg/kg [NT] [NT] [NR] [NR] Chloroethane mg/kg [NT] [NT] [NT] [NR]	Moisture	%	0.1	LAB.8	<0.10	19222-1	27 27 RPD: 0			
Date extracted - [NT] [NT] 19222-24 12/5/08% Date analysed - [NT] [NT] 19222-24 12/5/08% Dichlorodifluoromethane mg/kg [NT] [NT] [NR] [NR] Chloromethane mg/kg [NT] [NT] [NR] [NR] Vinyl Chloride mg/kg [NT] [NT] [NR] [NR] Bromomethane mg/kg [NT] [NT] [NR] [NR] Chloroethane mg/kg [NT] [NT] [NT] [NR]	QUALITY CONTROL	UNITS	S 1	Dup. Sm#		Duplicate	Spike Sm#	Spik	e % Recovery	
Date analysed - [NT] [NT] 19222-24 12/5/08% Dichlorodifluoromethane mg/kg [NT] [NT] [NR] [NR] Chloromethane mg/kg [NT] [NT] [NR] [NR] Vinyl Chloride mg/kg [NT] [NT] [NR] [NR] Bromomethane mg/kg [NT] [NT] [NR] [NR] Chloroethane mg/kg [NT] [NT] [NR] [NR]	VOC's in soil				Base + I	Ouplicate + %RPD				
Dichlorodifluoromethane mg/kg [NT] [NT] [NR] [NR] Chloromethane mg/kg [NT] [NT] [NR] [NR] Vinyl Chloride mg/kg [NT] [NT] [NR] [NR] Bromomethane mg/kg [NT] [NT] [NR] [NR] Chloroethane mg/kg [NT] [NT] [NR] [NR]	Date extracted	-		[NT]		[NT]	19222-24		12/5/08%	
Chloromethane mg/kg [NT] [NT] [NR] [NR] Vinyl Chloride mg/kg [NT] [NT] [NT] [NR] [NR] Bromomethane mg/kg [NT] [NT] [NR] [NR] Chloroethane mg/kg [NT] [NT] [NR] [NR]	Date analysed	-		[NT]		[NT]	19222-24		12/5/08%	
Vinyl Chloride mg/kg [NT] [NT] [NR] Bromomethane mg/kg [NT] [NT] [NR] Chloroethane mg/kg [NT] [NT] [NR]	Dichlorodifluoromethane	mg/kg	9	[NT]		[NT]	[NR]		[NR]	
Bromomethane mg/kg [NT] [NT] [NR] Chloroethane mg/kg [NT] [NT] [NR]	Chloromethane	mg/kg	a	[NT]		[NT]	[NR]		[NR]	
Chloroethane mg/kg [NT] [NT] [NR] [NR]	Vinyl Chloride	mg/kg	g	[NT]		[NT]	[NR]		[NR]	
	Bromomethane	mg/kg	9	[NT]		[NT]	[NR]		[NR]	
Trichlorofluoromethane mg/kg [NT] [NT] [NR] [NR]	Chloroethane	mg/kg	a	[NT]		[NT]	[NR]		[NR]	
	Trichlorofluoromethane	mg/kg	,	[NT]		[NT]	[NR]		[NR]	
1,1-Dichloroethene mg/kg [NT] [NT] [NR] [NR]	1,1-Dichloroethene	mg/kg	9	[NT]		[NT]	[NR]		[NR]	
trans-1,2-dichloroethene mg/kg [NT] [NT] [NR] [NR]	trans-1,2-dichloroethene	mg/kg	,	[NT]		[NT]	[NR]		[NR]	
1,1-dichloroethane mg/kg [NT] [NT] 19222-24 88%	1,1-dichloroethane	-		[NT]			19222-24		88%	
cis-1,2-dichloroethene mg/kg [NT] [NT] [NR] [NR]	cis-1,2-dichloroethene	mg/kg	,	[NT]		[NT]	[NR]		[NR]	
bromochloromethane mg/kg [NT] [NT] [NR] [NR]	bromochloromethane	mg/kg	3	[NT]		[NT]	[NR]		[NR]	
chloroform mg/kg [NT] [NT] 19222-24 81%	chloroform	mg/kg	,	[NT]		[NT]	19222-24		81%	
2,2-dichloropropane mg/kg [NT] [NT] [NR] [NR]	2,2-dichloropropane	mg/kg	,	[NT]		[NT]	[NR]		[NR]	
1,2-dichloroethane mg/kg [NT] [NT] 19222-24 84%	1,2-dichloroethane	mg/kg	,				19222-24		84%	
1,1,1-trichloroethane mg/kg [NT] [NT] 19222-24 77%	1,1,1-trichloroethane			[NT]			19222-24		77%	
1,1-dichloropropene mg/kg [NT] [NT] [NR] [NR]	1,1-dichloropropene						[NR]		[NR]	
carbon tetrachloride mg/kg [NT] [NT] [NR] [NR]										

Envirolab Reference: 19222 **Revision No:** R 00

QUALITY CONTROL VOC's in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Benzene	mg/kg	[NT]	[NT]	[NR]	[NR]
dibromomethane	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2-dichloropropane	mg/kg	[NT]	[NT]	[NR]	[NR]
trichloroethene	mg/kg	[NT]	[NT]	19222-24	94%
bromodichloromethane	mg/kg	[NT]	[NT]	19222-24	103%
trans-1,3-dichloropropene	mg/kg	[NT]	[NT]	[NR]	[NR]
cis-1,3-dichloropropene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,1,2-trichloroethane	mg/kg	[NT]	[NT]	[NR]	[NR]
Toluene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,3-dichloropropane	mg/kg	[NT]	[NT]	[NR]	[NR]
dibromochloromethane	mg/kg	[NT]	[NT]	19222-24	103%
1,2-dibromoethane	mg/kg	[NT]	[NT]	[NR]	[NR]
tetrachloroethene	mg/kg	[NT]	[NT]	19222-24	95%
1,1,1,2-tetrachloroethane	mg/kg	[NT]	[NT]	[NR]	[NR]
chlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
Ethylbenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
bromoform	mg/kg	[NT]	[NT]	[NR]	[NR]
m+p-xylene	mg/kg	[NT]	[NT]	[NR]	[NR]
styrene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,1,2,2-tetrachloroethane	mg/kg	[NT]	[NT]	[NR]	[NR]
o-Xylene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2,3-trichloropropane*	mg/kg	[NT]	[NT]	[NR]	[NR]
isopropylbenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
bromobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
n-propyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]
2-chlorotoluene	mg/kg	[NT]	[NT]	[NR]	[NR]
4-chlorotoluene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,3,5-trimethyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]
tert-butyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2,4-trimethyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,3-dichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
sec-butyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,4-dichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
4-isopropyl toluene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2-dichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
n-butyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2-dibromo-3- chloropropane	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2,4-trichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]

QUALITY CONTROL VOC's in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery	
hexachlorobutadiene	mg/kg	[NT]	[NT]	[NR]	[NR]	
1,2,3-trichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]	
Surrogate Dibromofluorometha	%	[NT]	[NT]	19222-24	95%	
Surrogate aaa- Trifluorotoluene	%	[NT]	[NT]	19222-24	89%	
Surrogate Toluene-d8	%	[NT]	[NT]	19222-24	97%	
Surrogate 4- Bromofluorobenzene	%	[NT]	[NT]	19222-24	74%	
QUALITY CONTROL vTPH & BTEX in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery	
Date extracted	-	19222-39	12/05/2008 12/05/2008	19222-22	12/5/08%	
Date analysed	-	19222-39	12/05/2008 12/05/2008	19222-22	12/5/08%	
vTPH C6 - C9	mg/kg	19222-39	<25 <25	19222-22	104%	
Benzene	mg/kg	19222-39	<0.5 <0.5	19222-22	112%	
Toluene	mg/kg	19222-39	<0.5 <0.5	19222-22	122%	
Ethylbenzene	mg/kg	19222-39	<1.0 <1.0	19222-22	91%	
m+p-xylene	mg/kg	19222-39	<2.0 <2.0	19222-22	97%	
o-Xylene	mg/kg	19222-39	<1.0 <1.0	19222-22	99%	
Surrogate aaa- Trifluorotoluene	%	19222-39	83 98 RPD: 17	19222-22	99%	
QUALITY CONTROL sTPH in Soil (C10-C36)	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery	
Date extracted	-	19222-39	12/05/2008 12/05/2008	19222-22	12/5/08%	
Date analysed	-	19222-39	13/05/2008 13/05/2008	19222-22	12/5/08%	
TPH C ₁₀ - C ₁₄	mg/kg	19222-39	<50 <50	19222-22	79%	
TPH C ₁₅ - C ₂₈	mg/kg	19222-39	<100 <100	19222-22	80%	
TPH C29 - C36	mg/kg	19222-39	<100 <100	19222-22	86%	
Surrogate o-Terphenyl	%	19222-39	99 98 RPD: 1	19222-22	99%	
QUALITY CONTROL PAHs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery	
Date extracted	-	19222-39	12/05/2008 12/05/2008	19222-22	12/5/08%	
Date analysed	_	19222-39	12/05/2008 12/05/2008	19222-22	12/5/08%	
Naphthalene	mg/kg	19222-39	<0.1 <0.1	19222-22	79%	
Acenaphthylene	mg/kg	19222-39	<0.1 <0.1	[NR]	[NR]	
Acenaphthene	mg/kg	19222-39	<0.1 <0.1	[NR]	[NR]	
Fluorene	mg/kg	19222-39	<0.1 <0.1	19222-22	102%	
Phenanthrene	mg/kg	19222-39	0.2 0.1 RPD: 67	19222-22	101%	
Anthracene	mg/kg	19222-39	<0.1 <0.1	[NR]	[NR]	
Fluoranthene	mg/kg	19222-39	0.6 0.6 RPD: 0	19222-22	102%	

QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery
PAHs in Soil			Base + Duplicate + %RPD		
Pyrene	mg/kg	19222-39	0.6 0.7 RPD: 15	19222-22	103%
Benzo(a)anthracene	mg/kg	19222-39	0.3 0.4 RPD: 29	[NR]	[NR]
Chrysene	mg/kg	19222-39	0.4 0.5 RPD: 22	19222-22	110%
Benzo(b+k)fluoranthene	mg/kg	19222-39	0.9 1.0 RPD: 11	[NR]	[NR]
Benzo(a)pyrene	mg/kg	19222-39	0.5 0.6 RPD: 18	19222-22	85%
Dibenzo(a,h)anthracene	mg/kg	19222-39	<0.1 <0.1	[NR]	[NR]
Indeno(1,2,3-c,d)pyrene	mg/kg	19222-39	0.4 0.4 RPD: 0	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	19222-39	0.4 0.4 RPD: 0	[NR]	[NR]
Surrogate p-Terphenyl- d ₁₄	%	19222-39	100 101 RPD: 1	19222-22	100%
QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	19222-55	12/05/2008 12/05/2008	19222-22	12/5/08%
Date analysed	-	19222-55	13/05/2008 13/05/2008	19222-22	13/5/08%
НСВ	mg/kg	19222-55	<0.1 <0.1	[NR]	[NR]
alpha-BHC	mg/kg	19222-55	<0.1 <0.1	19222-22	86%
gamma-BHC	mg/kg	19222-55	<0.1 <0.1	[NR]	[NR]
beta-BHC	mg/kg	19222-55	<0.1 <0.1	19222-22	92%
Heptachlor	mg/kg	19222-55	<0.1 <0.1	19222-22	90%
delta-BHC	mg/kg	19222-55	<0.1 <0.1	[NR]	[NR]
Aldrin	mg/kg	19222-55	<0.1 <0.1	19222-22	94%
Heptachlor Epoxide	mg/kg	19222-55	<0.1 <0.1	19222-22	92%
gamma-Chlordane	mg/kg	19222-55	<0.1 <0.1	[NR]	[NR]
alpha-chlordane	mg/kg	19222-55	<0.1 <0.1	[NR]	[NR]
Endosulfan I	mg/kg	19222-55	<0.1 <0.1	[NR]	[NR]
pp-DDE	mg/kg	19222-55	<0.1 <0.1	19222-22	90%
Dieldrin	mg/kg	19222-55	<0.1 <0.1	19222-22	95%
Endrin	mg/kg	19222-55	<0.1 <0.1	19222-22	83%
pp-DDD	mg/kg	19222-55	<0.1 <0.1	19222-22	93%
Endosulfan II	mg/kg	19222-55	<0.1 <0.1	[NR]	[NR]
pp-DDT	mg/kg	19222-55	<0.1 <0.1	[NR]	[NR]
Endrin Aldehyde	mg/kg	19222-55	<0.1 <0.1	[NR]	[NR]
Endosulfan Sulphate	mg/kg	19222-55	<0.1 <0.1	19222-22	85%
Methoxychlor	mg/kg	19222-55	<0.1 <0.1	[NR]	[NR]
Surrogate TCLMX	%	19222-55	83 83 RPD: 0	19222-22	80%

QUALITY CONTROL Organophosphorus Pesticides	UNITS	Dup. Sm#	Duplicate Spike Sm# Base + Duplicate + %RPD		Spike % Recovery	
Date extracted	-	19222-55	12/05/2008 12/05/2008	19222-22	12/5/08%	
Date analysed	-	19222-55	13/05/2008 13/05/2008	19222-22	13/5/08%	
Diazinon	mg/kg	19222-55	<0.1 <0.1	[NR]	[NR]	
Dimethoate	mg/kg	19222-55	<0.1 <0.1	[NR]	[NR]	
Chlorpyriphos-methyl	mg/kg	19222-55	<0.1 <0.1	[NR]	[NR]	
Ronnel	mg/kg	19222-55	<0.1 <0.1	[NR]	[NR]	
Chlorpyriphos	mg/kg	19222-55	<0.1 <0.1	19222-22	83%	
Fenitrothion	mg/kg	19222-55	<0.1 <0.1	19222-22	64%	
Bromophos-ethyl	mg/kg	19222-55	<0.1 <0.1	[NR]	[NR]	
Ethion	mg/kg	19222-55	<0.1 <0.1	19222-22	98%	
Surrogate TCLMX	%	19222-55	83 83 RPD: 0	19222-22	78%	
QUALITY CONTROL PCBs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery	
Date extracted	-	19222-55	12/05/2008 12/05/2008	19222-22	12/5/08%	
Date analysed	-	19222-55	13/05/2008 13/05/2008	19222-22	13/5/08%	
Arochlor 1016	mg/kg	19222-55	<0.1 <0.1	[NR]	i] [NR]	
Arochlor 1232	mg/kg	19222-55	<0.1 <0.1	[NR]	[NR]	
Arochlor 1242	mg/kg	19222-55	<0.1 <0.1	[NR]	[NR]	
Arochlor 1248	mg/kg	19222-55	<0.1 <0.1	[NR]	[NR]	
Arochlor 1254	mg/kg	19222-55	<0.1 <0.1	19222-22	87%	
Arochlor 1260	mg/kg	19222-55	<0.1 <0.1	[NR]	[NR]	
Surrogate TCLMX	%	19222-55	83 83 RPD: 0	19222-22	119%	
QUALITY CONTROL Acid Extractable metals in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery	
Date digested	-	19222-20	13/05/2008 13/05/2008	LCS-7	13/05/08%	
Date analysed	-	19222-20	14/05/2008 14/05/2008	LCS-7	14/05/08%	
Arsenic	mg/kg	19222-20	<4.0 <4.0	LCS-7	91%	
Cadmium	mg/kg	19222-20	<1.0 <1.0	LCS-7	94%	
Chromium	mg/kg	19222-20	6.2 5.1 RPD: 19	LCS-7	92%	
Copper	mg/kg	19222-20	7.7 9.8 RPD: 24	LCS-7	93%	
Lead	mg/kg	19222-20	35 35 RPD: 0	LCS-7	92%	
Mercury	mg/kg	19222-20	0.12 0.14 RPD: 15	LCS-7	110%	
Nickel	mg/kg	19222-20	1.9 1.8 RPD: 5	LCS-7	91%	
Zinc	mg/kg	19222-20	34 32 RPD: 6	LCS-7	92%	
Phosphorus	mg/kg	[NT]	[NT]	LCS-7	95%	

QUALITY CONTROL Moisture	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD		
Date prepared	-	19222-9	12/05/2008 12/05/2008		
Date analysed	-	19222-9	12/05/2008 12/05/2008		
Moisture	%	19222-9	25 25 RPD: 0		
QUALITY CONTROL Acid Extractable metals in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date digested	-	19222-42	13/05/2008 13/05/2008	19222-5	13/05/08%
Date analysed	-	19222-42	14/05/2008 14/05/2008	19222-5	14/05/08%
Arsenic	mg/kg	19222-42	<4.0 7.1	19222-5	98%
Cadmium	mg/kg	19222-42	<1.0 <1.0	19222-5	99%
Chromium	mg/kg	19222-42	7.2 13 RPD: 57	19222-5	98%
Copper	mg/kg	19222-42	9.7 15 RPD: 43	19222-5	99%
Lead	mg/kg	19222-42	26 42 RPD: 47	19222-5	97%
Mercury	mg/kg	19222-42	0.24 0.21 RPD: 13	19222-5	109%
Nickel	mg/kg	19222-42	2.1 3.8 RPD: 58	19222-5	96%
Zinc	mg/kg	19222-42	32 43 RPD: 29	19222-5	98%
Phosphorus	mg/kg	19222-42	120 200 RPD: 50	19222-5	107%
QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate		
Moisture			Base + Duplicate + %RPD		
Date prepared	-	19222-15	12/05/2008 12/05/2008		
Date analysed	-	19222-15	12/05/2008 12/05/2008		
Moisture	%	19222-15	22 22 RPD: 0		
QUALITY CONTROL Acid Extractable metals in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date digested	-	19222-58	13/05/2008 13/05/2008	19222-43	13/05/08%
Date analysed	-	19222-58	14/05/2008 14/05/2008	19222-43	14/05/08%
Arsenic	mg/kg	19222-58	6.3 4.7 RPD: 29	19222-43	90%
Cadmium	mg/kg	19222-58	<1.0 <1.0	19222-43	94%
Chromium	mg/kg	19222-58	7.2 5.0 RPD: 36	19222-43	87%
Copper	mg/kg	19222-58	240 210 RPD: 13	19222-43	88%
Lead	mg/kg	19222-58	33 29 RPD: 13	19222-43	83%
Mercury	mg/kg	19222-58	<0.10 <0.10	19222-43	106%
Nickel	mg/kg	19222-58	8.6 5.0 RPD: 53	19222-43	89%
Zinc	mg/kg	19222-58	340 210 RPD: 47	19222-43	88%
Phosphorus	mg/kg	[NT]	[NT]	19222-43	93%

QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate
Moisture			Base + Duplicate + %RPD
Date prepared	-	19222-20	12/05/2008 12/05/2008
Date analysed	-	19222-20	12/05/2008 12/05/2008
Moisture	%	19222-20	27 27 RPD: 0
QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate
Moisture			Base + Duplicate + %RPD
Date prepared	-	19222-39	12/05/2008 12/05/2008
Date analysed	-	19222-39	12/05/2008 12/05/2008
Moisture	%	19222-39	20 20 RPD: 0
QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate
Moisture			Base + Duplicate + %RPD
Date prepared	-	19222-42	12/05/2008 12/05/2008
Date analysed	-	19222-42	12/05/2008 12/05/2008
Moisture	%	19222-42	30 30 RPD: 0
QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate
Moisture			Base + Duplicate + %RPD
Date prepared	-	19222-55	12/05/2008 12/05/2008
Date analysed	-	19222-55	12/05/2008 12/05/2008
Moisture	%	19222-55	5.0 5.0 RPD: 0
QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate
Moisture			Base + Duplicate + %RPD
Date prepared	-	19222-58	12/05/2008 12/05/2008
Date analysed	-	19222-58	12/05/2008 12/05/2008
Moisture	%	19222-58	14 14 RPD: 0

Report Comments:

Texture Classification:

28 = Sandy Loam

55 = Sandy Loam

TKN - samples 25 & 38 - analysed by NMI: Report Number - RN679927.

Herbicides and TKN analysed by NMI: Report Number - RN680257.

Asbestos was analysed by Approved Identifier: Not applicable for this job

INS: Insufficient sample for this test NT: Not tested PQL: Practical Quantitation Limit RPD: Relative Percent Difference NA: Test not required LCS: Laboratory Control Sample

NR: Not requested <: Less than >: Greater than

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria:

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for

SVOC and speciated phenols is acceptable. Surrogates: 60-140% is acceptable for general organics and 10-140% for

SVOC and speciated phenols.

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 19257

Client:

Consulting Earth Scientists

Suite 121, 26-32 Pirrama Rd Pyrmont NSW 2009

Attention: Luke Jenkins / Kelly Weir

Sample log in details:

Your Reference: CES050706-BCC Area A

No. of samples: 49 Soils, 1 Water

Date samples received: 12/05/08

Date completed instructions received: 12/05/08

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: 21/05/08

Date of Preliminary Report: Not Issued Issue Date: 23/05/08

NATA accreditation number 2901. This document shall not be reproduced except in full.

This document is issued in accordance with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Tests not covered by NATA are denoted with *.

Results Approved By:

David Springer()

Business Development & Quality Manager

VOC's in soil						
Our Reference:	UNITS	19257-7	19257-21	19257-29	19257-34	19257-46
Your Reference		090508-168	090508-178	090508-202	090508-197	090508-205
		-KW	-KW	-KW	-KW	-KW
Date Sampled		9/05/2008	9/05/2008	9/05/2008	9/05/2008	9/05/2008
Type of sample Sample Matrix Code		Soil SO	Soil SO	Soil SO	Soil SO	Soil SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	_	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	_	17/05/2008	17/05/2008	17/05/2008	17/05/2008	17/05/2008
Dichlorodifluoromethane	mg/kg	<10	<10	<10	<10	<10
Chloromethane	mg/kg	<10	<10	<10	<10	<10
Vinyl Chloride	mg/kg	<10	<10	<10	<10	<10
Bromomethane	mg/kg	<10	<10	<10	<10	<10
Chloroethane	mg/kg	<10	<10	<10	<10	<10
Trichlorofluoromethane	mg/kg	<10	<10	<10	<10	<10
1,1-Dichloroethene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,2-dichloroethene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-dichloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,2-dichloroethene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
bromochloromethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
chloroform	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
2,2-dichloropropane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1-trichloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-dichloropropene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
carbon tetrachloride	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Benzene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
dibromomethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichloropropane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
trichloroethene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
bromodichloromethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,3-dichloropropene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,3-dichloropropene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-trichloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
1,3-dichloropropane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
dibromochloromethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dibromoethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
tetrachloroethene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1,2-tetrachloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
chlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Ethylbenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
bromoform	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
m+p-xylene	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0

VOC's in soil Our Reference: Your Reference	UNITS	19257-7 090508-168 -KW	19257-21 090508-178 -KW	19257-29 090508-202 -KW	19257-34 090508-197 -KW	19257-46 090508-205 -KW
Date Sampled Type of sample Sample Matrix Code Time Sampled		9/05/2008 Soil SO 00:00	9/05/2008 Soil SO 00:00	9/05/2008 Soil SO 00:00	9/05/2008 Soil SO 00:00	9/05/2008 Soil SO 00:00
styrene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-tetrachloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
o-Xylene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-trichloropropane*	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
isopropylbenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
bromobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
n-propyl benzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
2-chlorotoluene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
4-chlorotoluene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,3,5-trimethyl benzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
tert-butyl benzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-trimethyl benzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-dichlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
sec-butyl benzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,4-dichlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
4-isopropyl toluene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
n-butyl benzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dibromo-3-chloropropane	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-trichlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
hexachlorobutadiene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-trichlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Surrogate Dibromofluorometha	%	86	76	98	83	92
Surrogate aaa-Trifluorotoluene	%	95	101	79	95	88
Surrogate Toluene-d8	%	91	91	90	91	92
Surrogate 4-Bromofluorobenzene	%	85	84	82	80	80

VOC's in soil		
0 B-f	LINUTO	40057.40
Our Reference: Your Reference	UNITS	19257-49 Trip Blank
Date Sampled		9/05/2008
Type of sample		Soil
Sample Matrix Code		so
Time Sampled		00:00
Date extracted	-	16/05/2008
Date analysed	-	17/05/2008
Dichlorodifluoromethane	mg/kg	<10
Chloromethane	mg/kg	<10
Vinyl Chloride	mg/kg	<10
Bromomethane	mg/kg	<10
Chloroethane	mg/kg	<10
Trichlorofluoromethane	mg/kg	<10
1,1-Dichloroethene	mg/kg	<1.0
trans-1,2-dichloroethene	mg/kg	<1.0
1,1-dichloroethane	mg/kg	<1.0
cis-1,2-dichloroethene	mg/kg	<1.0
bromochloromethane	mg/kg	<1.0
chloroform	mg/kg	<1.0
2,2-dichloropropane	mg/kg	<1.0
1,2-dichloroethane	mg/kg	<1.0
1,1,1-trichloroethane	mg/kg	<1.0
1,1-dichloropropene	mg/kg	<1.0
carbon tetrachloride	mg/kg	<1.0
Benzene	mg/kg	<0.5
dibromomethane	mg/kg	<1.0
1,2-dichloropropane	mg/kg	<1.0
trichloroethene	mg/kg	<1.0
bromodichloromethane	mg/kg	<1.0
trans-1,3-dichloropropene	mg/kg	<1.0
cis-1,3-dichloropropene	mg/kg	<1.0
1,1,2-trichloroethane	mg/kg	<1.0
Toluene	mg/kg	<0.5
1,3-dichloropropane	mg/kg	<1.0
dibromochloromethane	mg/kg	<1.0
1,2-dibromoethane	mg/kg	<1.0
tetrachloroethene	mg/kg	<1.0
1,1,1,2-tetrachloroethane	mg/kg	<1.0
chlorobenzene	mg/kg	<1.0
Ethylbenzene	mg/kg	<1.0
bromoform	mg/kg	<1.0
m+p-xylene	mg/kg	<2.0
styrene	mg/kg	<1.0

VOC's in soil Our Reference: Your Reference Date Sampled Type of sample Sample Matrix Code Time Sampled	UNITS	19257-49 Trip Blank 9/05/2008 Soil SO 00:00
1,1,2,2-tetrachloroethane	mg/kg	<1.0
o-Xylene	mg/kg	<1.0
1,2,3-trichloropropane*	mg/kg	<1.0
isopropylbenzene	mg/kg	<1.0
bromobenzene	mg/kg	<1.0
n-propyl benzene	mg/kg	<1.0
2-chlorotoluene	mg/kg	<1.0
4-chlorotoluene	mg/kg	<1.0
1,3,5-trimethyl benzene	mg/kg	<1.0
tert-butyl benzene	mg/kg	<1.0
1,2,4-trimethyl benzene	mg/kg	<1.0
1,3-dichlorobenzene	mg/kg	<1.0
sec-butyl benzene	mg/kg	<1.0
1,4-dichlorobenzene	mg/kg	<1.0
4-isopropyl toluene	mg/kg	<1.0
1,2-dichlorobenzene	mg/kg	<1.0
n-butyl benzene	mg/kg	<1.0
1,2-dibromo-3-chloropropane	mg/kg	<1.0
1,2,4-trichlorobenzene	mg/kg	<1.0
hexachlorobutadiene	mg/kg	<1.0
1,2,3-trichlorobenzene	mg/kg	<1.0
Surrogate Dibromofluorometha	%	81
Surrogate aaa-Trifluorotoluene	%	99
<i>Surrogate</i> Toluene-d₃	%	91
Surrogate 4-Bromofluorobenzene	%	79

vTPH & BTEX in Soil						
Our Reference:	UNITS	19257-2	19257-3	19257-7	19257-10	19257-12
Your Reference		090508-165	090508-166	090508-168	090508-182	090508-171
		-KW	-KW	-KW	-KW	-KW
Date Sampled		9/05/2008	9/05/2008	9/05/2008	9/05/2008	9/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
vTPH C6 - C9	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
m+p-xylene	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0
o-Xylene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Surrogate aaa-Trifluorotoluene	%	104	125	95	93	96

vTPH & BTEX in Soil						
Our Reference:	UNITS	19257-14	19257-18	19257-21	19257-26	19257-29
Your Reference		090508-173	090508-175	090508-178	090508-192	090508-202
		-KW	-KW	-KW	-KW	-KW
Date Sampled		9/05/2008	9/05/2008	9/05/2008	9/05/2008	9/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
vTPH C6 - C9	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
m+p-xylene	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0
o-Xylene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Surrogate aaa-Trifluorotoluene	%	105	101	101	107	79

vTPH & BTEX in Soil Our Reference: Your Reference Date Sampled Type of sample Sample Matrix Code Time Sampled	UNITS	19257-34 090508-197 -KW 9/05/2008 Soil SO 00:00	19257-35 090508-199 -KW 9/05/2008 Soil SO 00:00	19257-37 090508-198 -KW 9/05/2008 Soil SO 00:00	19257-46 090508-205 -KW 9/05/2008 Soil SO 00:00	19257-49 Trip Blank 9/05/2008 Soil SO 00:00
Date extracted	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
vTPH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
m+p-xylene	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0
o-Xylene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Surrogate aaa-Trifluorotoluene	%	95	98	91	88	99

vTPH & BTEX in Soil		
Our Reference:	UNITS	19257-50
Your Reference		Trip Spike
Date Sampled		9/05/2008
Type of sample		Soil
Sample Matrix Code		SO
Time Sampled		00:00
Date extracted	-	16/05/2008
Date analysed	-	16/05/2008
Benzene	mg/kg	0.7
Toluene	mg/kg	14
Ethylbenzene	mg/kg	1.6
m+p-xylene	mg/kg	11
o-Xylene	mg/kg	4.0
Surrogate aaa-Trifluorotoluene	%	97

sTPH in Soil (C10-C36)						
Our Reference:	UNITS	19257-2	19257-3	19257-7	19257-10	19257-12
Your Reference		090508-165	090508-166	090508-168	090508-182	090508-171
		-KW	-KW	-KW	-KW	-KW
Date Sampled		9/05/2008	9/05/2008	9/05/2008	9/05/2008	9/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
TPH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TPH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TPH C29 - C36	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	85	85	90	92	92

sTPH in Soil (C10-C36)						
Our Reference:	UNITS	19257-14	19257-18	19257-21	19257-26	19257-29
Your Reference		090508-173 -KW	090508-175 -KW	090508-178 -KW	090508-192 -KW	090508-202 -KW
Date Sampled		9/05/2008	9/05/2008	9/05/2008	9/05/2008	9/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
TPH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TPH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TPH C29 - C36	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	93	94	92	95	88

sTPH in Soil (C10-C36)					
Our Reference:	UNITS	19257-34	19257-35	19257-37	19257-46
Your Reference		090508-197 -KW	090508-199 -KW	090508-198 -KW	090508-205 -KW
Date Sampled		9/05/2008	9/05/2008	9/05/2008	9/05/2008
Type of sample		Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00
Date extracted	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008
TPH C10 - C14	mg/kg	<50	<50	<50	<50
TPH C15 - C28	mg/kg	<100	<100	<100	<100
TPH C29 - C36	mg/kg	<100	<100	<100	<100
Surrogate o-Terphenyl	%	90	90	92	94

PAHs in Soil						
Our Reference:	UNITS	19257-3	19257-12	19257-18	19257-23	19257-29
Your Reference		090508-166	090508-171	090508-175	090508-186	090508-202
		-KW	-KW	-KW	-KW	-KW
Date Sampled		9/05/2008	9/05/2008	9/05/2008	9/05/2008	9/05/2008
Type of sample Sample Matrix Code		Soil SO	Soil SO	Soil SO	Soil SO	Soil SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	17/05/2008	17/05/2008	17/05/2008	17/05/2008	17/05/2008
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	0.06	0.07	<0.05
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	106	103	106	104	103

PAHs in Soil Our Reference: Your Reference	UNITS	19257-37 090508-198	19257-38 090508-207	19257-40 090508-209	19257-42 090508-188	19257-43 090508-189
Date Sampled		-KW 9/05/2008	-KW 9/05/2008	-KW 9/05/2008	-KW 9/05/2008	-KW 9/05/2008
Type of sample Sample Matrix Code Time Sampled		Soil SO 00:00	Soil SO 00:00	Soil SO 00:00	Soil SO 00:00	Soil SO 00:00
Date extracted	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	17/05/2008	17/05/2008	17/05/2008	17/05/2008	17/05/2008
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	0.3	0.7
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	0.8	0.4
Pyrene	mg/kg	0.1	<0.1	<0.1	1.0	0.4
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	0.5	0.2
Chrysene	mg/kg	<0.1	<0.1	<0.1	0.5	0.3
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	0.8	0.3
Benzo(a)pyrene	mg/kg	0.1	<0.05	<0.05	0.5	0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	0.3	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	0.3	<0.1
Surrogate p-Terphenyl-d14	%	108	107	100	104	100

PAHs in Soil Our Reference: Your Reference Date Sampled Type of sample Sample Matrix Code Time Sampled	UNITS	19257-44 090508-190 -KW 9/05/2008 Soil SO 00:00	19257-46 090508-205 -KW 9/05/2008 Soil SO 00:00
Date extracted	-	16/05/2008	16/05/2008
Date analysed	-	17/05/2008	17/05/2008
Naphthalene	mg/kg	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1
Surrogate p-Terphenyl-d ₁₄	%	101	109

Organochlorine Pesticides in soil						
Our Reference:	UNITS	19257-22	19257-31	19257-32	19257-38	19257-39
Your Reference		090508-185 -KW	090508-194 -KW	090508-195 -KW	090508-207 -KW	090508-208 -KW
Date Sampled		9/05/2008	9/05/2008	9/05/2008	9/05/2008	9/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code Time Sampled		SO 00:00	SO 00:00	SO 00:00	SO 00:00	SO 00:00
<u>'</u>						
Date extracted	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	83	81	80	78	80

Organochlorine Pesticides in soil Our Reference: Your Reference Date Sampled Type of sample Sample Matrix Code Time Sampled	UNITS	19257-45 090508-204 -KW 9/05/2008 Soil SO 00:00
Date extracted	-	16/05/2008
Date analysed	-	16/05/2008
нсв	mg/kg	<0.1
alpha-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
pp-DDD	mg/kg	0.1
Endosulfan II	mg/kg	<0.1
pp-DDT	mg/kg	0.1
Endrin Aldehyde	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Surrogate TCLMX	%	77

Organophosphorus Pesticides						
Our Reference:	UNITS	19257-22	19257-31	19257-32	19257-38	19257-39
Your Reference		090508-185	090508-194	090508-195	090508-207	090508-208
		-KW	-KW	-KW	-KW	-KW
Date Sampled		9/05/2008	9/05/2008	9/05/2008	9/05/2008	9/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	83	81	80	78	80

Organophosphorus Pesticides		
Our Reference:	UNITS	19257-45
Your Reference		090508-204
		-KW
Date Sampled		9/05/2008
Type of sample		Soil
Sample Matrix Code		SO
Time Sampled		00:00
Date extracted	-	16/05/2008
Date analysed	-	16/05/2008
Diazinon	mg/kg	<0.1
Dimethoate	mg/kg	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1
Ronnel	mg/kg	<0.1
Chlorpyriphos	mg/kg	<0.1
Fenitrothion	mg/kg	<0.1
Bromophos-ethyl	mg/kg	<0.1
Ethion	mg/kg	<0.1
Surrogate TCLMX	%	77

PCBs in Soil						
Our Reference:	UNITS	19257-22	19257-31	19257-32	19257-38	19257-39
Your Reference		090508-185	090508-194	090508-195	090508-207	090508-208
		-KW	-KW	-KW	-KW	-KW
Date Sampled		9/05/2008	9/05/2008	9/05/2008	9/05/2008	9/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Arochlor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	83	81	80	78	80

PCBs in Soil		
Our Reference:	UNITS	19257-45
Your Reference		090508-204
		-KW
Date Sampled		9/05/2008
Type of sample		Soil
Sample Matrix Code		so
Time Sampled		00:00
Date extracted	-	16/05/2008
Date analysed	-	16/05/2008
Arochlor 1016	mg/kg	<0.1
Arochlor 1232	mg/kg	<0.1
Arochlor 1242	mg/kg	<0.1
Arochlor 1248	mg/kg	<0.1
Arochlor 1254	mg/kg	<0.1
Arochlor 1260	mg/kg	<0.1
Surrogate TCLMX	%	77

Total Phenolics in Soil						
Our Reference:	UNITS	19257-7	19257-21	19257-29	19257-35	19257-46
Your Reference		090508-168	090508-178	090508-202	090508-199	090508-205
		-KW	-KW	-KW	-KW	-KW
Date Sampled		9/05/2008	9/05/2008	9/05/2008	9/05/2008	9/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	19/05/2008	19/05/2008	19/05/2008	19/05/2008	19/05/2008
Total Phenolics (as Phenol)	mg/kg	<5.0	<5.0	<5.0	<5.0	<5.0

Acid Extractable metals in soil						
Our Reference:	UNITS	19257-2	19257-3	19257-7	19257-10	19257-12
Your Reference		090508-165	090508-166	090508-168	090508-182	090508-171
		-KW	-KW	-KW	-KW	-KW
Date Sampled		9/05/2008	9/05/2008	9/05/2008	9/05/2008	9/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date digested	-	19/05/2008	19/05/2008	19/05/2008	19/05/2008	19/05/2008
Date analysed	-	20/05/2008	20/05/2008	20/05/2008	20/05/2008	20/05/2008
Arsenic	mg/kg	6.2	4.5	5.1	<4.0	8.3
Cadmium	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Chromium	mg/kg	2.1	2.3	3.8	1.7	13
Copper	mg/kg	3.6	8.5	2.0	<1.0	34
Lead	mg/kg	14	31	5.7	3.0	24
Mercury	mg/kg	0.28	0.14	<0.10	<0.10	0.52
Nickel	mg/kg	<1.0	1.6	1.8	<1.0	19
Zinc	mg/kg	11	51	7.9	28	43

Acid Extractable metals in soil						
Our Reference:	UNITS	19257-14	19257-18	19257-21	19257-23	19257-26
Your Reference		090508-173	090508-175	090508-178	090508-186	090508-192
		-KW	-KW	-KW	-KW	-KW
Date Sampled		9/05/2008	9/05/2008	9/05/2008	9/05/2008	9/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date digested	-	19/05/2008	19/05/2008	19/05/2008	19/05/2008	19/05/2008
Date analysed	-	20/05/2008	20/05/2008	20/05/2008	20/05/2008	20/05/2008
Arsenic	mg/kg	<4.0	4.3	<4.0	4.6	7.1
Cadmium	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Chromium	mg/kg	1.4	2.1	2.7	3.9	8.5
Copper	mg/kg	3.0	3.6	<1.0	13	24
Lead	mg/kg	19	16	7.9	40	180
Mercury	mg/kg	<0.10	<0.10	<0.10	0.26	<0.10
Nickel	mg/kg	<1.0	<1.0	<1.0	7.2	4.7
Zinc	mg/kg	9.6	20	1.2	44	69

Acid Extractable metals in soil Our Reference: Your Reference Date Sampled Type of sample Sample Matrix Code Time Sampled	UNITS	19257-29 090508-202 -KW 9/05/2008 Soil SO 00:00	19257-31 090508-194 -KW 9/05/2008 Soil SO 00:00	19257-32 090508-195 -KW 9/05/2008 Soil SO 00:00	19257-34 090508-197 -KW 9/05/2008 Soil SO 00:00	19257-37 090508-198 -KW 9/05/2008 Soil SO 00:00
Date digested	-	19/05/2008	19/05/2008	19/05/2008	19/05/2008	19/05/2008
Date analysed	-	20/05/2008	20/05/2008	20/05/2008	20/05/2008	20/05/2008
Arsenic	mg/kg	8.0	<4.0	<4.0	<4.0	<4.0
Cadmium	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Chromium	mg/kg	3.6	9.7	4.2	2.8	11
Copper	mg/kg	<1.0	13	7.3	13	22
Lead	mg/kg	1.7	950	1,200	61	990
Mercury	mg/kg	<0.10	<0.10	<0.10	0.53	<0.10
Nickel	mg/kg	1.6	12	4.0	1.5	15
Zinc	mg/kg	1.4	41	34	57	200

Acid Extractable metals in soil						
Our Reference:	UNITS	19257-38	19257-39	19257-40	19257-42	19257-43
Your Reference		090508-207 -KW	090508-208 -KW	090508-209 -KW	090508-188 -KW	090508-189 -KW
Date Sampled		9/05/2008	9/05/2008	9/05/2008	9/05/2008	9/05/2008
Type of sample Sample Matrix Code Time Sampled		Soil SO 00:00	Soil SO 00:00	Soil SO 00:00	Soil SO 00:00	Soil SO 00:00
Date digested	-	19/05/2008	19/05/2008	19/05/2008	19/05/2008	19/05/2008
Date analysed	-	20/05/2008	20/05/2008	20/05/2008	20/05/2008	20/05/2008
Arsenic	mg/kg	<4.0	<4.0	<4.0	4.5	<4.0
Cadmium	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Chromium	mg/kg	6.0	3.1	<1.0	5.4	2.4
Copper	mg/kg	2.2	11	1.9	16	33
Lead	mg/kg	6.3	47	<1.0	68	21
Mercury	mg/kg	<0.10	0.90	<0.10	0.23	<0.10
Nickel	mg/kg	1.7	2.7	<1.0	4.5	15
Zinc	mg/kg	7.1	36	33	47	33
Phosphorus	mg/kg	[NA]	220	[NA]	[NA]	[NA]

Acid Extractable metals in soil Our Reference: Your Reference	UNITS	19257-45 090508-204 -KW
Date Sampled Type of sample Sample Matrix Code Time Sampled		9/05/2008 Soil SO 00:00
Date digested	-	19/05/2008
Date analysed	-	20/05/2008
Arsenic	mg/kg	<4.0
Cadmium	mg/kg	<1.0
Chromium	mg/kg	6.7
Copper	mg/kg	25
Lead	mg/kg	130
Mercury	mg/kg	<0.10
Nickel	mg/kg	9.2
Zinc	mg/kg	89

Miscellaneous Inorg - soil		
Our Reference:	UNITS	19257-39
Your Reference		090508-208
		-KW
Date Sampled		9/05/2008
Type of sample		Soil
Sample Matrix Code		SO
Time Sampled		00:00
Date analysed	-	13/05/2008
Ammonia as N in soil	mg/kg	<0.5
Nitrate as N in soil	mg/kg	4.9
Nitrite as N in soil	mg/kg	<0.1
Total Kjeldahl Nitrogen	mg/kg	2,300
Total Nitrogen in soil	mg/kg	2,300

Moisture						
Our Reference:	UNITS	19257-2	19257-3	19257-7	19257-10	19257-12
Your Reference		090508-165 -KW	090508-166 -KW	090508-168 -KW	090508-182 -KW	090508-171 -KW
Date Sampled		9/05/2008	9/05/2008	9/05/2008	9/05/2008	9/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		so	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date prepared	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Moisture	%	6.6	6.1	6.4	8.8	5.2
		T	I	T	T	T
Moisture	LINUTO	10057.11	10057.10	10057.04	10057.00	10057.00
Our Reference:	UNITS	19257-14	19257-18	19257-21	19257-22	19257-23
Your Reference		090508-173 -KW	090508-175 -KW	090508-178 -KW	090508-185 -KW	090508-186 -KW
Date Sampled		9/05/2008	9/05/2008	9/05/2008	9/05/2008	9/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date prepared	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Moisture	%	6.9	4.8	14	5.4	4.3
Moisture						
Our Reference:	UNITS	19257-26	19257-29	19257-31	19257-32	19257-34
Your Reference		090508-192 -KW	090508-202 -KW	090508-194 -KW	090508-195 -KW	090508-197 -KW
Date Sampled		9/05/2008	9/05/2008	9/05/2008	9/05/2008	9/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date prepared	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Moisture	%	5.5	23	4.7	3.5	19
NA-S-4		1				
Moisture	LINUTO	40057.05	40057.07	40057.00	40057.00	40057.40
Our Reference:	UNITS	19257-35	19257-37	19257-38	19257-39	19257-40
Your Reference		090508-199 -KW	090508-198 -KW	090508-207 -KW	090508-208 -KW	090508-209 -KW
Date Sampled		9/05/2008	9/05/2008	9/05/2008	9/05/2008	9/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		so	SO	SO	SO	so
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date prepared	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008

Moisture	UNITS	19257-42	19257-43	19257-44	19257-45	19257-46
Our Reference:		090508-188	090508-189	090508-190	090508-204	090508-205
Your Reference		-KW	-KW	-KW	-KW	-KW
Date Sampled		9/05/2008	9/05/2008	9/05/2008	9/05/2008	9/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date prepared Date analysed	-	16/05/2008 16/05/2008	16/05/2008 16/05/2008	16/05/2008 16/05/2008	16/05/2008 16/05/2008	16/05/2008 16/05/2008
Moisture	%	7.7	20	16	1.6	3.6

Moisture		
Our Reference:	UNITS	19257-49
Your Reference		Trip Blank
Date Sampled		9/05/2008
Type of sample Sample Matrix Code Time Sampled		Soil SO 00:00
Date prepared	-	16/05/2008
Date analysed	-	16/05/2008
Moisture	%	5.6

Herbicides in Soil			
Our Reference:	UNITS	19257-22	19257-39
Your Reference		090508-185	090508-208
		-KW	-KW
Date Sampled		9/05/2008	9/05/2008
Type of sample		Soil	Soil
Sample Matrix Code		SO	SO
Time Sampled		00:00	00:00
Date analysed	-	14/05/2008	14/05/2008
Date Extracted	-	15/05/2008	15/05/2008
Dicamba	mg/kg	<0.1	<0.1
MCPA	mg/kg	<0.1	<0.1
Dichlorprop	mg/kg	<0.1	<0.1
2,4-D	mg/kg	<0.1	<0.1
2,4,5-T	mg/kg	<0.1	<0.1
2,4,5-TP	mg/kg	<0.1	<0.1
2,4-DB	mg/kg	<0.1	<0.1
MCPP	mg/kg	<0.1	<0.1
Triclopyr	mg/kg	<0.1	<0.1

	T	
VOC's in water	LINUTO	10057 40
Our Reference: Your Reference	UNITS	19257-48 090508-500
Tour Nerelence		-KW
Date Sampled		9/05/2008
Type of sample		Water
Sample Matrix Code		WG
Time Sampled		00:00
Date extracted	-	18/05/2008
Date analysed	-	18/05/2008
Dichlorodifluoromethane	μg/L	<10
Chloromethane	μg/L	<10
Vinyl Chloride	μg/L	<10
Bromomethane	μg/L	<10
Chloroethane	μg/L	<10
Trichlorofluoromethane	μg/L	<10
1,1-Dichloroethene	μg/L	<1.0
Trans-1,2-dichloroethene	μg/L	<1.0
1,1-dichloroethane	μg/L	<1.0
Cis-1,2-dichloroethene	μg/L	<1.0
Bromochloromethane	μg/L	<1.0
Chloroform	μg/L	<1.0
2,2-dichloropropane	μg/L	<1.0
1,2-dichloroethane	μg/L	<1.0
1,1,1-trichloroethane	μg/L	<1.0
1,1-dichloropropene	μg/L	<1.0
Carbon tetrachloride	μg/L	<1.0
Benzene	μg/L	<1.0
Dibromomethane	μg/L	<1.0
1,2-dichloropropane	μg/L	<1.0
Trichloroethene	μg/L	<1.0
Bromodichloromethane	μg/L	<1.0
trans-1,3-dichloropropene	μg/L	<1.0
cis-1,3-dichloropropene	μg/L	<1.0
1,1,2-trichloroethane	μg/L	<1.0
Toluene	μg/L	<1.0
1,3-dichloropropane	μg/L	<1.0
Dibromochloromethane	μg/L	<1.0
1,2-dibromoethane	μg/L	<1.0
Tetrachloroethene	μg/L	<1.0
1,1,1,2-tetrachloroethane	μg/L	<1.0
Chlorobenzene	μg/L	<1.0
Ethylbenzene	μg/L	<1.0
Bromoform	μg/L	<1.0
m+p-xylene	μg/L	<2.0
1 7	1 1 3	

VOC's in water		
Our Reference:	UNITS	19257-48
Your Reference		090508-500
Data Samulad		-KW
Date Sampled Type of sample		9/05/2008 Water
Sample Matrix Code		Water
Time Sampled		00:00
Styrene	μg/L	<1.0
1,1,2,2-tetrachloroethane	μg/L	<1.0
o-xylene	μg/L	<1.0
1,2,3-trichloropropane*	μg/L	<1.0
Isopropylbenzene	μg/L	<1.0
Bromobenzene	μg/L	<1.0
n-propyl benzene	μg/L	<1.0
2-chlorotoluene	μg/L	<1.0
4-chlorotoluene	μg/L	<1.0
1,3,5-trimethyl benzene	μg/L	<1.0
Tert-butyl benzene	μg/L	<1.0
1,2,4-trimethyl benzene	μg/L	<1.0
1,3-dichlorobenzene	μg/L	<1.0
Sec-butyl benzene	μg/L	<1.0
1,4-dichlorobenzene	μg/L	<1.0
4-isopropyl toluene	μg/L	<1.0
1,2-dichlorobenzene	μg/L	<1.0
n-butyl benzene	μg/L	<1.0
1,2-dibromo-3-chloropropane	μg/L	<1.0
1,2,4-trichlorobenzene	μg/L	<1.0
Hexachlorobutadiene	μg/L	<1.0
1,2,3-trichlorobenzene	μg/L	<1.0
Surrogate Dibromofluoromethane	%	76
Surrogate toluene-d8	%	88
Surrogate 4-BFB	%	76

vTPH & BTEX in Water		
Our Reference:	UNITS	19257-48
Your Reference		090508-500
		-KW
Date Sampled		9/05/2008
Type of sample		Water
Sample Matrix Code		WG
Time Sampled		00:00
Date extracted	-	18/05/2008
Date analysed	-	18/05/2008
TPH C6 - C9	μg/L	<10
Benzene	μg/L	<1.0
Toluene	μg/L	<1.0
Ethylbenzene	μg/L	<1.0
m+p-xylene	μg/L	<2.0
o-xylene	μg/L	<1.0
Surrogate Dibromofluoromethane	%	76
Surrogate toluene-d8	%	88
Surrogate 4-BFB	%	76

sTPH in Water (C10-C36)		
Our Reference:	UNITS	19257-48
Your Reference		090508-500 -KW
Date Sampled		9/05/2008
Type of sample Sample Matrix Code Time Sampled		Water WG 00:00
Date extracted	-	16/05/2008
Date analysed	-	16/05/2008
TPH C10 - C14	μg/L	<50
TPH C ₁₅ - C ₂₈	μg/L	<100
TPH C29 - C36	μg/L	<100
Surrogate o-Terphenyl	%	92

PAHs in Water		
Our Reference:	UNITS	19257-48
Your Reference		090508-500
		-KW
Date Sampled		9/05/2008
Type of sample		Water
Sample Matrix Code Time Sampled		WG 00:00
Time Sampled		00.00
Date extracted	-	16/05/2008
Date analysed	-	17/05/2008
Naphthalene	μg/L	<1
Acenaphthylene	μg/L	<1
Acenaphthene	μg/L	<1
Fluorene	μg/L	<1
Phenanthrene	μg/L	<1
Anthracene	μg/L	<1
Fluoranthene	μg/L	<1
Pyrene	μg/L	<1
Benzo(a)anthracene	μg/L	<1
Chrysene	μg/L	<1
Benzo(b+k)fluoranthene	μg/L	<2
Benzo(a)pyrene	μg/L	<1
Dibenzo(a,h)anthracene	μg/L	<1
Indeno(1,2,3-c,d)pyrene	μg/L	<1
Benzo(g,h,i)perylene	μg/L	<1
Surrogate p-Terphenyl-d14	%	117

Total Phenolics in Water		
Our Reference:	UNITS	19257-48
Your Reference		090508-500
		-KW
Date Sampled		9/05/2008
Type of sample		Water
Sample Matrix Code		WG
Time Sampled		00:00
Date extracted	-	19/05/2008
Date analysed	-	20/05/2008
Total Phenolics (as Phenol)	mg/L	<0.050

HM in water - total		
Our Reference:	UNITS	19257-48
Your Reference		090508-500
		-KW
Date Sampled		9/05/2008
Type of sample		Water
Sample Matrix Code		WG
Time Sampled		00:00
Date prepared	-	19/05/2008
Date analysed	-	20/05/2008
Arsenic-Total	μg/L	<1.0
Cadmium-Total	μg/L	<0.10
Chromium-Total	μg/L	<1.0
Copper-Total	μg/L	<1.0
Lead-Total	μg/L	<1.0
Mercury-Total	μg/L	<0.50
Nickel-Total	μg/L	<1.0
Zinc-Total	μg/L	5.5

Method ID	Methodology Summary
GC.14	Soil samples extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
GC.16	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS.
GC.3	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
GC.12 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
GC-5	Soil samples are extracted with hexane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
GC.8	Soil samples are extracted with hexane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
GC-6	Soil samples are extracted with hexane/acetone and waters with dichloromethane and analysed by GC-ECD.
LAB.30	Total Phenolics - determined colorimetrically following disitillation.
Metals.20 ICP- AES	Determination of various metals by ICP-AES.
Metals.21 CV- AAS	Determination of Mercury by Cold Vapour AAS.
LAB.57	Ammonia water extractable - determined colourimetrically based on EPA103A.
LAB.55	Nitrate water extractable - determined colourimetrically based on EPA114A.
LAB.56	Nitrite water extractable - determined colourimetrically based on EPA116A.
Ext-020	Analysis subcontracted to Australian Government - National Measurement Institute. NATA Accreditation No: 198
LAB.66	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen.
LAB.8	Moisture content determined by heating at 105 deg C for a minimum of 4 hours.
GC.13	Water samples are analysed directly by purge and trap GC-MS.
Metals.22 ICP- MS	Determination of various metals by ICP-MS.

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
VOC's in soil						Base II Duplicate II %RPD		Recovery
Date extracted	-			16/5/08	19257-34	16/05/2008 16/05/2008	LCS-1	16/5/08%
Date analysed	-			17/5/08	19257-34	17/05/2008 17/05/2008	LCS-1	17/5/08%
Dichlorodifluoromethane	mg/kg	10	GC.14	<10	19257-34	<10 <10	[NR]	[NR]
Chloromethane	mg/kg	10	GC.14	<10	19257-34	<10 <10	[NR]	[NR]
Vinyl Chloride	mg/kg	10	GC.14	<10	19257-34	<10 <10	[NR]	[NR]
Bromomethane	mg/kg	10	GC.14	<10	19257-34	<10 <10	[NR]	[NR]
Chloroethane	mg/kg	10	GC.14	<10	19257-34	<10 <10	[NR]	[NR]
Trichlorofluoromethane	mg/kg	10	GC.14	<10	19257-34	<10 <10	[NR]	[NR]
1,1-Dichloroethene	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	[NR]	[NR]
trans-1,2-dichloroethene	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	[NR]	[NR]
1,1-dichloroethane	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	LCS-1	95%
cis-1,2-dichloroethene	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	[NR]	[NR]
bromochloromethane	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	[NR]	[NR]
chloroform	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	LCS-1	86%
2,2-dichloropropane	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	[NR]	[NR]
1,2-dichloroethane	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	LCS-1	90%
1,1,1-trichloroethane	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	LCS-1	85%
1,1-dichloropropene	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	[NR]	[NR]
carbon tetrachloride	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	[NR]	[NR]
Benzene	mg/kg	0.5	GC.14	<0.5	19257-34	<0.5 <0.5	[NR]	[NR]
dibromomethane	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	[NR]	[NR]
1,2-dichloropropane	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	[NR]	[NR]
trichloroethene	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	LCS-1	113%
bromodichloromethane	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	LCS-1	106%
trans-1,3- dichloropropene	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	[NR]	[NR]
cis-1,3-dichloropropene	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	[NR]	[NR]
1,1,2-trichloroethane	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	[NR]	[NR]
Toluene	mg/kg	0.5	GC.14	<0.5	19257-34	<0.5 <0.5	[NR]	[NR]
1,3-dichloropropane	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	[NR]	[NR]
dibromochloromethane	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	LCS-1	106%
1,2-dibromoethane	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	[NR]	[NR]
tetrachloroethene	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	LCS-1	108%
1,1,1,2- tetrachloroethane	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	[NR]	[NR]
chlorobenzene	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	[NR]	[NR]
Ethylbenzene	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	[NR]	[NR]
bromoform	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	[NR]	[NR]
m+p-xylene	mg/kg	2	GC.14	<2.0	19257-34	<2.0 <2.0	[NR]	[NR]
styrene	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	[NR]	[NR]
1,1,2,2- tetrachloroethane	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	[NR]	[NR]
o-Xylene	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	[NR]	[NR]

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
VOC's in soil						Base II Duplicate II %RPD		
1,2,3-trichloropropane*	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	[NR]	[NR]
isopropylbenzene	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	[NR]	[NR]
bromobenzene	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	[NR]	[NR]
n-propyl benzene	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	[NR]	[NR]
2-chlorotoluene	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	[NR]	[NR]
4-chlorotoluene	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	[NR]	[NR]
1,3,5-trimethyl benzene	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	[NR]	[NR]
tert-butyl benzene	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	[NR]	[NR]
1,2,4-trimethyl benzene	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	[NR]	[NR]
1,3-dichlorobenzene	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	[NR]	[NR]
sec-butyl benzene	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	[NR]	[NR]
1,4-dichlorobenzene	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	[NR]	[NR]
4-isopropyl toluene	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	[NR]	[NR]
1,2-dichlorobenzene	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	[NR]	[NR]
n-butyl benzene	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	[NR]	[NR]
1,2-dibromo-3- chloropropane	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	[NR]	[NR]
1,2,4-trichlorobenzene	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	[NR]	[NR]
hexachlorobutadiene	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	[NR]	[NR]
1,2,3-trichlorobenzene	mg/kg	1	GC.14	<1.0	19257-34	<1.0 <1.0	[NR]	[NR]
Surrogate Dibromofluorometha	%		GC.14	87	19257-34	83 90 RPD: 8	LCS-1	85%
Surrogate aaa- Trifluorotoluene	%		GC.14	89	19257-34	95 87 RPD: 9	LCS-1	107%
Surrogate Toluene-ds	%		GC.14	94	19257-34	91 93 RPD: 2	LCS-1	93%
Surrogate 4- Bromofluorobenzene	%		GC.14	83	19257-34	80 79 RPD: 1	LCS-1	77%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTPH & BTEX in Soil					Ciliii	Base II Duplicate II %RPD		1100010.3
Date extracted	-			[NT]	19257-3	16/05/2008 16/05/2008	LCS-1	16/5/08%
Date analysed	-			[NT]	19257-3	16/05/2008 16/05/2008	LCS-1	16/5/08%
vTPH C6 - C9	mg/kg	25	GC.16	<25	19257-3	<25 <25	LCS-1	121%
Benzene	mg/kg	0.5	GC.14	<0.5	19257-3	<0.5 <0.5	LCS-1	125%
Toluene	mg/kg	0.5	GC.14	<0.5	19257-3	<0.5 <0.5	LCS-1	130%
Ethylbenzene	mg/kg	1	GC.14	<1.0	19257-3	<1.0 <1.0	LCS-1	122%
m+p-xylene	mg/kg	2	GC.14	<2.0	19257-3	<2.0 <2.0	LCS-1	135%
o-Xylene	mg/kg	1	GC.14	<1.0	19257-3	<1.0 <1.0	LCS-1	140%
Surrogate aaa- Trifluorotoluene	%		GC.14	[NT]	19257-3	125 96 RPD: 26	LCS-1	90%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
sTPH in Soil (C10-C36)						Base II Duplicate II %RPD		
Date extracted	-			16/5/08	19257-3	16/05/2008 16/05/2008	LCS-1	16/5/08%
Date analysed	-			16/5/08	19257-3	16/05/2008 16/05/2008	LCS-1	16/5/08%
TPH C ₁₀ - C ₁₄	mg/kg	50	GC.3	<50	19257-3	<50 <50	LCS-1	87%
TPH C ₁₅ - C ₂₈	mg/kg	100	GC.3	<100	19257-3	<100 <100	LCS-1	83%
TPH C29 - C36	mg/kg	100	GC.3	<100	19257-3	<100 <100	LCS-1	96%
Surrogate o-Terphenyl	%		GC.3	94	19257-3	85 86 RPD: 1	LCS-1	92%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II %RPD		
Date extracted	-			16/5/08	19257-3	16/05/2008 16/05/2008	LCS-1	16/5/08%
Date analysed	-			17/5/08	19257-3	17/05/2008 17/05/2008	LCS-1	17/5/08%
Naphthalene	mg/kg	0.1	GC.12 subset	<0.1	19257-3	<0.1 <0.1	LCS-1	109%
Acenaphthylene	mg/kg	0.1	GC.12 subset	<0.1	19257-3	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	0.1	GC.12 subset	<0.1	19257-3	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	0.1	GC.12 subset	<0.1	19257-3	<0.1 <0.1	LCS-1	108%
Phenanthrene	mg/kg	0.1	GC.12 subset	<0.1	19257-3	<0.1 <0.1	LCS-1	105%
Anthracene	mg/kg	0.1	GC.12 subset	<0.1	19257-3	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	0.1	GC.12 subset	<0.1	19257-3	<0.1 <0.1	LCS-1	109%
Pyrene	mg/kg	0.1	GC.12 subset	<0.1	19257-3	<0.1 <0.1	LCS-1	112%
Benzo(a)anthracene	mg/kg	0.1	GC.12 subset	<0.1	19257-3	<0.1 <0.1	[NR]	[NR]
Chrysene	mg/kg	0.1	GC.12 subset	<0.1	19257-3	<0.1 <0.1	LCS-1	114%
Benzo(b+k)fluoranthene	mg/kg	0.2	GC.12 subset	<0.2	19257-3	<0.2 <0.2	[NR]	[NR]

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
DAIL-: C "					Sm#	Bass II Down II (II 0/ BBB		Recovery
PAHs in Soil						Base II Duplicate II %RPD		
Benzo(a)pyrene	mg/kg	0.05	GC.12 subset	<0.05	19257-3	<0.05 <0.05	LCS-1	109%
Dibenzo(a,h)anthracene	mg/kg	0.1	GC.12 subset	<0.1	19257-3	<0.1 <0.1	[NR]	[NR]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	GC.12 subset	<0.1	19257-3	<0.1 <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	GC.12 subset	<0.1	19257-3	<0.1 <0.1	[NR]	[NR]
Surrogate p-Terphenyl-	%		GC.12 subset	113	19257-3	106 105 RPD: 1	LCS-1	110%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
Organochlorine Pesticides in soil						Base II Duplicate II %RPD		Recovery
Date extracted	-			16/5/08	19257-22	16/05/2008 16/05/2008	LCS-3	16/5/08%
Date analysed	_			16/5/08	19257-22	16/05/2008 16/05/2008	LCS-3	16/5/08%
HCB	mg/kg	0.1	GC-5	<0.1	19257-22	<0.1 <0.1	[NR]	[NR]
alpha-BHC	mg/kg	0.1	GC-5	<0.1	19257-22	<0.1 <0.1	LCS-3	91%
gamma-BHC	mg/kg	0.1	GC-5	<0.1	19257-22	<0.1 <0.1	[NR]	[NR]
beta-BHC	mg/kg	0.1	GC-5	<0.1	19257-22	<0.1 <0.1	LCS-3	106%
Heptachlor	mg/kg	0.1	GC-5	<0.1	19257-22	<0.1 <0.1	LCS-3	101%
delta-BHC	mg/kg	0.1	GC-5	<0.1	19257-22	<0.1 <0.1	[NR]	[NR]
Aldrin	mg/kg	0.1	GC-5	<0.1	19257-22	<0.1 <0.1	LCS-3	98%
Heptachlor Epoxide	mg/kg	0.1	GC-5	<0.1	19257-22	<0.1 <0.1	LCS-3	100%
gamma-Chlordane	mg/kg	0.1	GC-5	<0.1	19257-22	<0.1 <0.1	[NR]	[NR]
alpha-chlordane	mg/kg	0.1	GC-5	<0.1	19257-22	<0.1 <0.1	[NR]	[NR]
Endosulfan I	mg/kg	0.1	GC-5	<0.1	19257-22	<0.1 <0.1	[NR]	[NR]
pp-DDE	mg/kg	0.1	GC-5	<0.1	19257-22	<0.1 <0.1	LCS-3	103%
Dieldrin	mg/kg	0.1	GC-5	<0.1	19257-22	<0.1 <0.1	LCS-3	103%
Endrin	mg/kg	0.1	GC-5	<0.1	19257-22	<0.1 <0.1	LCS-3	94%
pp-DDD	mg/kg	0.1	GC-5	<0.1	19257-22	<0.1 <0.1	LCS-3	107%
Endosulfan II	mg/kg	0.1	GC-5	<0.1	19257-22	<0.1 <0.1	[NR]	[NR]
pp-DDT	mg/kg	0.1	GC-5	<0.1	19257-22	<0.1 <0.1	[NR]	[NR]
Endrin Aldehyde	mg/kg	0.1	GC-5	<0.1	19257-22	<0.1 <0.1	[NR]	[NR]
Endosulfan Sulphate	mg/kg	0.1	GC-5	<0.1	19257-22	<0.1 <0.1	LCS-3	100%
Methoxychlor	mg/kg	0.1	GC-5	<0.1	19257-22	<0.1 <0.1	[NR]	[NR]
Surrogate TCLMX	%		GC-5	81	19257-22	83 77 RPD: 8	LCS-3	84%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organophosphorus Pesticides					3111#	Base II Duplicate II %RPD		Recovery
Date extracted	-			16/5/08	19257-22	16/05/2008 16/05/2008	LCS-3	16/5/08%
Date analysed	-			16/5/08	19257-22	16/05/2008 16/05/2008	LCS-3	16/5/08%
Diazinon	mg/kg	0.1	GC.8	<0.1	19257-22	<0.1 <0.1	[NR]	[NR]
Dimethoate	mg/kg	0.1	GC.8	<0.1	19257-22	<0.1 <0.1	[NR]	[NR]
Chlorpyriphos-methyl	mg/kg	0.1	GC.8	<0.1	19257-22	<0.1 <0.1	[NR]	[NR]
Ronnel	mg/kg	0.1	GC.8	<0.1	19257-22	<0.1 <0.1	[NR]	[NR]
Chlorpyriphos	mg/kg	0.1	GC.8	<0.1	19257-22	<0.1 <0.1	LCS-3	100%
Fenitrothion	mg/kg	0.1	GC.8	<0.1	19257-22	<0.1 <0.1	LCS-3	91%
Bromophos-ethyl	mg/kg	0.1	GC.8	<0.1	19257-22	<0.1 <0.1	[NR]	[NR]
Ethion	mg/kg	0.1	GC.8	<0.1	19257-22	<0.1 <0.1	LCS-3	122%
Surrogate TCLMX	%		GC.8	81	19257-22	83 77 RPD: 8	LCS-3	88%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PCBs in Soil						Base II Duplicate II %RPD		
Date extracted	-			16/5/08	19257-22	16/05/2008 16/05/2008	LCS-3	16/5/08%
Date analysed	-			16/5/08	19257-22	16/05/2008 16/05/2008	LCS-3	16/5/08%
Arochlor 1016	mg/kg	0.1	GC-6	<0.1	19257-22	<0.1 <0.1	[NR]	[NR]
Arochlor 1232	mg/kg	0.1	GC-6	<0.1	19257-22	<0.1 <0.1	[NR]	[NR]
Arochlor 1242	mg/kg	0.1	GC-6	<0.1	19257-22	<0.1 <0.1	[NR]	[NR]
Arochlor 1248	mg/kg	0.1	GC-6	<0.1	19257-22	<0.1 <0.1	[NR]	[NR]
Arochlor 1254	mg/kg	0.1	GC-6	<0.1	19257-22	<0.1 <0.1	LCS-3	95%
Arochlor 1260	mg/kg	0.1	GC-6	<0.1	19257-22	<0.1 <0.1	[NR]	[NR]
Surrogate TCLMX	%		GC-6	81	19257-22	83 77 RPD: 8	LCS-3	130%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Total Phenolics in Soil						Base II Duplicate II %RPD		
Date extracted	-			16/5/08	[NT]	[NT]	LCS-1	16/5/08%
Date analysed	-			19/5/08	[NT]	[NT]	LCS-1	19/5/08%
Total Phenolics (as Phenol)	mg/kg	5	LAB.30	<5.0	[NT]	[NT]	LCS-1	112%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil						Base II Duplicate II %RPD		
Date digested	-			19/5/08	19257-2	19/05/2008 19/05/2008	LCS-5	19/5/08%
Date analysed	-			20/5/08	19257-2	20/05/2008 20/05/2008	LCS-5	20/5/08%
Arsenic	mg/kg	4	Metals.20 ICP-AES	<4.0	19257-2	6.2 6.4 RPD: 3	LCS-5	94%
Cadmium	mg/kg	1	Metals.20 ICP-AES	<1.0	19257-2	<1.0 <1.0	LCS-5	100%
Chromium	mg/kg	1	Metals.20 ICP-AES	<1.0	19257-2	2.1 2.2 RPD: 5	LCS-5	100%
Copper	mg/kg	1	Metals.20 ICP-AES	<1.0	19257-2	3.6 3.7 RPD: 3	LCS-5	102%

Lead mg/kg 1 Metals.20 c1.0 19257-2 14 14 RPD: 0 LCS-5 97%	QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Mercury mg/kg 0.1 Metals 2.1 <0.10 19257-2 0.28 0.27 RPD: 4 LCS-5 114%							Base II Duplicate II %RPD		,
Nickel mg/kg	Lead	mg/kg	1	1	<1.0	19257-2	14 14 RPD: 0	LCS-5	97%
Zinc mg/kg 1 Metals.20 <1.0 19257-2 11 14 RPD: 24 LCS-5 98%	Mercury	mg/kg	0.1		<0.10	19257-2	0.28 0.27 RPD: 4	LCS-5	114%
Phosphorus	Nickel	mg/kg	1		<1.0	19257-2	<1.0 <1.0	LCS-5	99%
CP-AES C	Zinc	mg/kg	1		<1.0	19257-2	11 14 RPD: 24	LCS-5	98%
Miscellaneous Inorg - soil	Phosphorus	mg/kg	10		<10	[NT]	[NT]	[NR]	[NR]
Miscellaneous Inorg - soil Base Duplicate I %RPD	QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	
Nitrate as N in soil mg/kg 0.5 LAB.55 <0.5 [NT] [NT] LCS-1 93%	Miscellaneous Inorg - soil						Base II Duplicate II %RPD		Recovery
Nitrite as N in soil mg/kg 0.1 LAB.56 <0.1 [NT] [NT] LCS-1 100%	Ammonia as N in soil	mg/kg	0.5	LAB.57	<0.5	[NT]	[NT]	LCS-1	101%
Total Kjeldahl Nitrogen mg/kg 30 Ext-020 <30 [NT] [NT] [NT] LCS-1 116%	Nitrate as N in soil	mg/kg	0.5	LAB.55	<0.5	[NT]	[NT]	LCS-1	93%
Total Nitrogen in soil mg/kg 10	Nitrite as N in soil	mg/kg	0.1	LAB.56	<0.1	[NT]	[NT]	LCS-1	100%
Duplicate Section Control Co	Total Kjeldahl Nitrogen	mg/kg	30	Ext-020	<30	[NT]	[NT]	LCS-1	116%
Date prepared - 16/5/08 19257-3 16/05/2008 16	Total Nitrogen in soil	mg/kg	10	LAB.66	<10	[NT]	[NT]	[NR]	[NR]
Date analysed -		UNITS	PQL	METHOD	Blank	Duplicate Sm#	•		
Date analysed	Date prepared	-			16/5/08	19257-3	16/05/2008 16/05/2008		
QUALITY CONTROL UNITS PQL METHOD Blank Duplicate Sm# Duplicate results Spike Sm# Spike % Recovery Herbicides in Soil mg/kg 0.1 Ext-020 <0.1		_				19257-3			
Herbicides in Soil Base Duplicate Recovery	Moisture	%	0.1	LAB.8	<0.10	19257-3	6.1 6.1 RPD: 0		
Dicamba mg/kg 0.1 Ext-020 <0.1 [NT] [NT] LCS-1 102% MCPA mg/kg 0.1 Ext-020 <0.1	QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
MCPA mg/kg 0.1 Ext-020 <0.1 [NT] [NT] LCS-1 103% Dichlorprop mg/kg 0.1 Ext-020 <0.1	Herbicides in Soil						Base II Duplicate II %RPD		
MCPA mg/kg 0.1 Ext-020 <0.1 [NT] [NT] LCS-1 103% Dichlorprop mg/kg 0.1 Ext-020 <0.1	Dicamba	mg/kg	0.1	Ext-020	<0.1	[NT]	[NT]	LCS-1	102%
2,4-D mg/kg 0.1 Ext-020 <0.1 [NT] [NT] LCS-1 105% 2,4,5-T mg/kg 0.1 Ext-020 <0.1	MCPA		0.1	Ext-020	<0.1			LCS-1	103%
2,4,5-T mg/kg 0.1 Ext-020 <0.1	Dichlorprop	mg/kg	0.1	Ext-020	<0.1	[NT]	[NT]	LCS-1	101%
2,4,5-TP mg/kg 0.1 Ext-020 <0.1 [NT] [NT] LCS-1 115% 2,4-DB mg/kg 0.1 Ext-020 <0.1	2,4-D	mg/kg	0.1	Ext-020	<0.1	[NT]	[NT]	LCS-1	105%
2,4-DB mg/kg 0.1 Ext-020 <0.1 [NT] [NT] LCS-1 105% MCPP mg/kg 0.1 Ext-020 <0.1	2,4,5-T	mg/kg	0.1	Ext-020	<0.1	[NT]	[NT]	LCS-1	101%
MCPP mg/kg 0.1 Ext-020 <0.1 [NT] [NT] LCS-1 103%	2,4,5-TP	mg/kg	0.1	Ext-020	<0.1	[NT]	[NT]	LCS-1	115%
	2,4-DB	mg/kg	0.1	Ext-020	<0.1	[NT]	[NT]	LCS-1	105%
Triclopyr mg/kg 0.1 Ext-020 <0.1 [NT] [NT] LCS-1 104%	MCPP	mg/kg	0.1	Ext-020	<0.1	[NT]	[NT]	LCS-1	103%
	Triclopyr	mg/kg	0.1	Ext-020	<0.1	[NT]	[NT]	LCS-1	104%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
VOC's in water					Om#	Base II Duplicate II %RPD		Recovery
Date extracted	-			18/5/08	[NT]	[NT]	LCS-W1	18/5/08%
Date analysed	-			18/5/08	[NT]	[NT]	LCS-W1	18/5/08%
Dichlorodifluoromethane	μg/L	10	GC.13	<10	[NT]	[NT]	[NR]	[NR]
Chloromethane	μg/L	10	GC.13	<10	[NT]	[NT]	[NR]	[NR]
Vinyl Chloride	μg/L	10	GC.13	<10	[NT]	[NT]	[NR]	[NR]
Bromomethane	μg/L	10	GC.13	<10	[NT]	[NT]	[NR]	[NR]
Chloroethane	μg/L	10	GC.13	<10	[NT]	[NT]	[NR]	[NR]
Trichlorofluoromethane	μg/L	10	GC.13	<10	[NT]	[NT]	[NR]	[NR]
1,1-Dichloroethene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Trans-1,2- dichloroethene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,1-dichloroethane	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	86%
Cis-1,2-dichloroethene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Bromochloromethane	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Chloroform	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	87%
2,2-dichloropropane	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,2-dichloroethane	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	88%
1,1,1-trichloroethane	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	87%
1,1-dichloropropene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Carbon tetrachloride	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Benzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Dibromomethane	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,2-dichloropropane	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Trichloroethene	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	114%
Bromodichloromethane	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	100%
trans-1,3- dichloropropene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
cis-1,3-dichloropropene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,1,2-trichloroethane	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Toluene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,3-dichloropropane	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Dibromochloromethane	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	97%
1,2-dibromoethane	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Tetrachloroethene	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	95%
1,1,1,2- tetrachloroethane	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Chlorobenzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Ethylbenzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Bromoform	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
m+p-xylene	μg/L	2	GC.13	<2.0	[NT]	[NT]	[NR]	[NR]
Styrene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,1,2,2- tetrachloroethane	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
VOC's in water						Base II Duplicate II %RPD		
o-xylene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,2,3-trichloropropane*	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Isopropylbenzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Bromobenzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
n-propyl benzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
2-chlorotoluene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
4-chlorotoluene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,3,5-trimethyl benzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Tert-butyl benzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,2,4-trimethyl benzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,3-dichlorobenzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Sec-butyl benzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,4-dichlorobenzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
4-isopropyl toluene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,2-dichlorobenzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
n-butyl benzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,2-dibromo-3- chloropropane	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,2,4-trichlorobenzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Hexachlorobutadiene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,2,3-trichlorobenzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Surrogate Dibromofluoromethane	%		GC.13	75	[NT]	[NT]	LCS-W1	100%
Surrogate toluene-d8	%		GC.13	108	[NT]	[NT]	LCS-W1	110%
Surrogate 4-BFB	%		GC.13	96	[NT]	[NT]	LCS-W1	96%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTPH & BTEX in Water					Jiiir	Base II Duplicate II %RPD		
Date extracted	-			18/5/08	[NT]	[NT]	LCS-W1	18/5/08%
Date analysed	-			18/5/08	[NT]	[NT]	LCS-W1	18/5/08%
TPH C6 - C9	μg/L	10	GC.16	<10	[NT]	[NT]	LCS-W1	101%
Benzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	96%
Toluene	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	118%
Ethylbenzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	111%
m+p-xylene	μg/L	2	GC.13	<2.0	[NT]	[NT]	LCS-W1	110%
o-xylene	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	109%
Surrogate Dibromofluoromethane	%		GC.13	75	[NT]	[NT]	LCS-W1	79%
Surrogate toluene-d8	%		GC.13	108	[NT]	[NT]	LCS-W1	103%
Surrogate 4-BFB	%		GC.13	96	[NT]	[NT]	LCS-W1	97%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
sTPH in Water (C10-C36)						Base II Duplicate II %RPD		
Date extracted	-			16/5/08	[NT]	[NT]	LCS-W1	16/5/08%
Date analysed	-			16/5/08	[NT]	[NT]	LCS-W1	16/5/08%
TPH C10 - C14	μg/L	50	GC.3	<50	[NT]	[NT]	LCS-W1	84%
TPH C ₁₅ - C ₂₈	μg/L	100	GC.3	<100	[NT]	[NT]	LCS-W1	92%
TPH C29 - C36	μg/L	100	GC.3	<100	[NT]	[NT]	LCS-W1	102%
Surrogate o-Terphenyl	%		GC.3	105	[NT]	[NT]	LCS-W1	108%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Water						Base II Duplicate II %RPD		
Date extracted	-			[NT]	[NT]	[NT]	LCS-W2	16/5/08%
Date analysed	-			[NT]	[NT]	[NT]	LCS-W2	17/5/08%
Naphthalene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	LCS-W2	91%
Acenaphthylene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	[NR]	[NR]
Fluorene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	LCS-W2	89%
Phenanthrene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	LCS-W2	89%
Anthracene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	LCS-W2	85%
Pyrene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	LCS-W2	88%
Benzo(a)anthracene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	[NR]	[NR]
Chrysene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	LCS-W2	92%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Water						Base II Duplicate II %RPD		
Benzo(b+k)fluoranthene	µg/L	2	GC.12 subset	<2	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	LCS-W2	70%
Dibenzo(a,h)anthracene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	[NR]	[NR]
Indeno(1,2,3-c,d)pyrene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl-	%		GC.12 subset	[NT]	[NT]	[NT]	LCS-W2	108%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Total Phenolics in Water						Base II Duplicate II %RPD		
Date extracted	-			19/5/08	[NT]	[NT]	LCS-W1	19/5/08%
Date analysed	-			20/5/08	[NT]	[NT]	LCS-W1	20/5/08%
Total Phenolics (as Phenol)	mg/L	0.05	LAB.30	<0.050	[NT]	[NT]	LCS-W1	120%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
HM in water - total						Base II Duplicate II %RPD		
Date prepared	-			19/5/08	[NT]	[NT]	LCS-W1	19/5/08%
Date analysed	-			20/5/08	[NT]	[NT]	LCS-W1	20/5/08%
Arsenic-Total	μg/L	1	Metals.22 ICP-MS	<1.0	[NT]	[NT]	LCS-W1	94%
Cadmium-Total	μg/L	0.1	Metals.22 ICP-MS	<0.10	[NT]	[NT]	LCS-W1	97%
Chromium-Total	μg/L	1	Metals.22 ICP-MS	<1.0	[NT]	[NT]	LCS-W1	100%
Copper-Total	μg/L	1	Metals.22 ICP-MS	<1.0	[NT]	[NT]	LCS-W1	97%
Lead-Total	μg/L	1	Metals.22 ICP-MS	<1.0	[NT]	[NT]	LCS-W1	96%
Mercury-Total	μg/L	0.5	Metals.21 CV-AAS	<0.50	[NT]	[NT]	LCS-W1	99%
Nickel-Total	μg/L	1	Metals.22 ICP-MS	<1.0	[NT]	[NT]	LCS-W1	98%
Zinc-Total	μg/L	1	Metals.22 ICP-MS	<1.0	[NT]	[NT]	LCS-W1	99%

QUALITY CONTROL VOC's in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	19257-7	16/5/08%
Date analysed	-	[NT]	[NT]	19257-7	17/5/08%
Dichlorodifluoromethane	mg/kg	[NT]	[NT]	[NR]	[NR]
Chloromethane	mg/kg	[NT]	[NT]	[NR]	[NR]
Vinyl Chloride	mg/kg	[NT]	[NT]	[NR]	[NR]
Bromomethane	mg/kg	[NT]	[NT]	[NR]	[NR]
Chloroethane	mg/kg	[NT]	[NT]	[NR]	[NR]
Trichlorofluoromethane	mg/kg	[NT]	[NT]	[NR]	[NR]
1,1-Dichloroethene	mg/kg	[NT]	[NT]	[NR]	[NR]
trans-1,2-dichloroethene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,1-dichloroethane	mg/kg	[NT]	[NT]	19257-7	106%
cis-1,2-dichloroethene	mg/kg	[NT]	[NT]	[NR]	[NR]
bromochloromethane	mg/kg	[NT]	[NT]	[NR]	[NR]
chloroform	mg/kg	[NT]	[NT]	19257-7	92%
2,2-dichloropropane	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2-dichloroethane	mg/kg	[NT]	[NT]	19257-7	96%
1,1,1-trichloroethane	mg/kg	[NT]	[NT]	19257-7	91%
1,1-dichloropropene	mg/kg	[NT]	[NT]	[NR]	[NR]
carbon tetrachloride	mg/kg	[NT]	[NT]	[NR]	[NR]
Benzene	mg/kg	[NT]	[NT]	[NR]	[NR]
dibromomethane	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2-dichloropropane	mg/kg	[NT]	[NT]	[NR]	[NR]
trichloroethene	mg/kg	[NT]	[NT]	19257-7	118%
bromodichloromethane	mg/kg	[NT]	[NT]	19257-7	108%
trans-1,3-dichloropropene	mg/kg	[NT]	[NT]	[NR]	[NR]
cis-1,3-dichloropropene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,1,2-trichloroethane	mg/kg	[NT]	[NT]	[NR]	[NR]
Toluene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,3-dichloropropane	mg/kg	[NT]	[NT]	[NR]	[NR]
dibromochloromethane	mg/kg	[NT]	[NT]	19257-7	108%
1,2-dibromoethane	mg/kg	[NT]	[NT]	[NR]	[NR]
tetrachloroethene	mg/kg	[NT]	[NT]	19257-7	116%
1,1,1,2-tetrachloroethane	mg/kg	[NT]	[NT]	[NR]	[NR]
chlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
Ethylbenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
bromoform	mg/kg	[NT]	[NT]	[NR]	[NR]
m+p-xylene	mg/kg	[NT]	[NT]	[NR]	[NR]
styrene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,1,2,2-tetrachloroethane	mg/kg	[NT]	[NT]	[NR]	[NR]

QUALITY CONTROL VOC's in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
o-Xylene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2,3-trichloropropane*	mg/kg	[NT]	[NT]	[NR]	[NR]
isopropylbenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
bromobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
n-propyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]
2-chlorotoluene	mg/kg	[NT]	[NT]	[NR]	[NR]
4-chlorotoluene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,3,5-trimethyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]
tert-butyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2,4-trimethyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,3-dichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
sec-butyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,4-dichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
4-isopropyl toluene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2-dichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
n-butyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2-dibromo-3- chloropropane	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2,4-trichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
hexachlorobutadiene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2,3-trichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate Dibromofluorometha	%	[NT]	[NT]	19257-7	84%
Surrogate aaa- Trifluorotoluene	%	[NT]	[NT]	19257-7	108%
Surrogate Toluene-d8	%	[NT]	[NT]	19257-7	94%
Surrogate 4- Bromofluorobenzene	%	[NT]	[NT]	19257-7	78%

QUALITY CONTROL vTPH & BTEX in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recover
Date extracted	-	19257-34	16/05/2008 16/05/2008	19257-7	16/5/08%
Date analysed	-	19257-34	16/05/2008 16/05/2008	19257-7	16/5/08%
vTPH C6 - C9	mg/kg	19257-34	<25 <25	19257-7	125%
Benzene	mg/kg	19257-34	<0.5 <0.5	19257-7	125%
Toluene	mg/kg	19257-34	<0.5 <0.5	19257-7	133%
Ethylbenzene	mg/kg	19257-34	<1.0 <1.0	19257-7	123%
m+p-xylene	mg/kg	19257-34	<2.0 <2.0	19257-7	133%
o-Xylene	mg/kg	19257-34	<1.0 <1.0	19257-7	135%
Surrogate aaa- Trifluorotoluene	%	19257-34	95 87 RPD: 9	19257-7	103%
QUALITY CONTROL sTPH in Soil (C10-C36)	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	19257-37	16/05/2008 16/05/2008	19257-12	16/5/08%
Date analysed	-	19257-37	16/05/2008 16/05/2008	19257-12	16/5/08%
TPH C ₁₀ - C ₁₄	mg/kg	19257-37	<50 <50	19257-12	88%
TPH C ₁₅ - C ₂₈	mg/kg	19257-37	<100 <100	19257-12	84%
TPH C29 - C36	mg/kg	19257-37	<100 <100	19257-12	96%
Surrogate o-Terphenyl	%	19257-37	92 94 RPD: 2	19257-12	92%
QUALITY CONTROL PAHs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recover
Date extracted	-	19257-37	16/05/2008 16/05/2008	19257-12	16/5/08%
Date analysed	-	19257-37	17/05/2008 17/05/2008	19257-12	17/5/08%
Naphthalene	mg/kg	19257-37	<0.1 <0.1	19257-12	110%
Acenaphthylene	mg/kg	19257-37	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	19257-37	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	19257-37	<0.1 <0.1	19257-12	105%
Phenanthrene	mg/kg	19257-37	<0.1 0.3	19257-12	107%
Anthracene	mg/kg	19257-37	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	19257-37	0.1 0.3 RPD: 100	19257-12	109%
Pyrene	mg/kg	19257-37	0.1 0.5 RPD: 133	19257-12	113%
Benzo(a)anthracene	mg/kg	19257-37	<0.1 0.2	[NR]	[NR]
Chrysene	mg/kg	19257-37	<0.1 0.2	19257-12	113%
Benzo(b+k)fluoranthene	mg/kg	19257-37	<0.2 0.3	[NR]	[NR]
Benzo(a)pyrene	mg/kg	19257-37	0.1 0.2 RPD: 67	19257-12	109%
Dibenzo(a,h)anthracene	mg/kg	19257-37	<0.1 <0.1	[NR]	[NR]
ndeno(1,2,3-c,d)pyrene	mg/kg	19257-37	<0.1 0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	19257-37	<0.1 0.1	[NR]	[NR]
Surrogate p-Terphenyl-	%	19257-37	108 108 RPD: 0	19257-12	103%

QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	19257-31	16/5/08%
Date analysed	-	[NT]	[NT]	19257-31	16/5/08%
HCB	mg/kg	[NT]	[NT]	[NR]	[NR]
alpha-BHC	mg/kg	[NT]	[NT]	19257-31	95%
gamma-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]
beta-BHC	mg/kg	[NT]	[NT]	19257-31	105%
Heptachlor	mg/kg	[NT]	[NT]	19257-31	108%
delta-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]
Aldrin	mg/kg	[NT]	[NT]	19257-31	105%
Heptachlor Epoxide	mg/kg	[NT]	[NT]	19257-31	100%
gamma-Chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]
alpha-chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]
Endosulfan I	mg/kg	[NT]	[NT]	[NR]	[NR]
pp-DDE	mg/kg	[NT]	[NT]	19257-31	99%
Dieldrin	mg/kg	[NT]	[NT]	19257-31	102%
Endrin	mg/kg	[NT]	[NT]	19257-31	94%
pp-DDD	mg/kg	[NT]	[NT]	19257-31	103%
Endosulfan II	mg/kg	[NT]	[NT]	[NR]	[NR]
pp-DDT	mg/kg	[NT]	[NT]	[NR]	[NR]
Endrin Aldehyde	mg/kg	[NT]	[NT]	[NR]	[NR]
Endosulfan Sulphate	mg/kg	[NT]	[NT]	19257-31	100%
Methoxychlor	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%	[NT]	[NT]	19257-31	86%

QUALITY CONTROL Organophosphorus Pesticides	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	19257-31	16/5/08%
Date analysed	-	[NT]	[NT]	19257-31	16/5/08%
Diazinon	mg/kg	[NT]	[NT]	[NR]	[NR]
Dimethoate	mg/kg	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos-methyl	mg/kg	[NT]	[NT]	[NR]	[NR]
Ronnel	mg/kg	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos	mg/kg	[NT]	[NT]	19257-31	97%
Fenitrothion	mg/kg	[NT]	[NT]	19257-31	88%
Bromophos-ethyl	mg/kg	[NT]	[NT]	[NR]	[NR]
Ethion	mg/kg	[NT]	[NT]	19257-31	123%
Surrogate TCLMX	%	[NT]	[NT]	19257-31	85%
QUALITY CONTROL PCBs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	19257-31	16/5/08%
Date analysed	-	[NT]	[NT]	19257-31	16/5/08%
Arochlor 1016	mg/kg	[NT]	[NT]	[NR]	[NR]
Arochlor 1232	mg/kg	[NT]	[NT]	[NR]	[NR]
Arochlor 1242	mg/kg	[NT]	[NT]	[NR]	[NR]
Arochlor 1248	mg/kg	[NT]	[NT]	[NR]	[NR]
Arochlor 1254	mg/kg	[NT]	[NT]	19257-31	81%
Arochlor 1260	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%	[NT]	[NT]	19257-31	127%
QUALITY CONTROL Acid Extractable metals in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date digested	-	19257-29	19/05/2008 19/05/2008	LCS-6	19/5/08%
Date analysed	-	19257-29	20/05/2008 20/05/2008	LCS-6	20/5/08%
Arsenic	mg/kg	19257-29	8.0 7.8 RPD: 3	LCS-6	95%
Cadmium	mg/kg	19257-29	<1.0 <1.0	LCS-6	100%
Chromium	mg/kg	19257-29	3.6 4.0 RPD: 11	LCS-6	101%
Copper	mg/kg	19257-29	<1.0 1.5	LCS-6	103%
Lead	mg/kg	19257-29	1.7 1.9 RPD: 11	LCS-6	98%
Mercury	mg/kg	19257-29	<0.10 <0.10	LCS-6	114%
Nickel	mg/kg	19257-29	1.6 1.4 RPD: 13	LCS-6	100%
Zinc	mg/kg	19257-29	1.4 1.4 RPD: 0	LCS-6	99%
Phosphorus	mg/kg	[NT]	[NT]	LCS-6	88%

Base + Duplicate + %RPD	QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate		
Date analysed - 19257-2 16/05/2008 16/05/2008 16/05/2008 Moisture	Moisture			· ·		
Moisture	Date prepared	-	19257-2	16/05/2008 16/05/2008		
QUALITY CONTROL Total Phenolics in Water Dup. Sm# Base + Duplicate + %RPD Spike Sm# Spike Recovery Base + Duplicate + %RPD Date extracted - [NT] [NT] 19257-48 19/5/08% Total Phenolics (as Phenol) mg/L [NT] [NT] 19257-48 20/5/08% Total Phenolics (as Phenol) mg/L [NT] [NT] 19257-48 98% QUALITY CONTROL UNITS Dup. Sm# Duplicate Base + Duplicate + %RPD Spike Sm# Spike % Recovery Spike sm# Spike % Recovery Spike sm# Spike % Recovery Spike sm# Spike % Recovery Spike sm# Spike % Recovery Spike sm# Spike % Recovery Spike sm# Spike % Recovery Spike sm# Spike % Recovery Spike sm# Spike % Recovery Spike sm# Spike sm# Spike % Recovery Spike sm# Spike	Date analysed	-	19257-2	16/05/2008 16/05/2008		
Total Phenolics in Water	Moisture	%	19257-2	6.6 6.6 RPD: 0		
Date extracted	QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery
Date analysed -	Total Phenolics in Water			Base + Duplicate + %RPD		
Total Phenolics (as Phenol) mg/L [NT] [NT] 19257-48 98%	Date extracted	-	[NT]	[NT]	19257-48	19/5/08%
QUALITY CONTROL Acid Extractable metals in soil Dup. Sm# Base + Duplicate + %RPD Spike \$ Recovery	Date analysed	-	[NT]	[NT]	19257-48	20/5/08%
Acid Extractable metals in soil Base + Duplicate + %RPD	Total Phenolics (as Phenol)	mg/L	[NT]	[NT]	19257-48	98%
Date digested	QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery
Date digested - [NT] [NT] 19257-3 195/08%				Base + Duplicate + %RPD		
Date analysed - [NT] [NT] 19257-3 20/5/08% Arsenic mg/kg [NT] [NT] 19257-3 96% Cadmium mg/kg [NT] [NT] 19257-3 96% Chromium mg/kg [NT] [NT] 19257-3 100% Copper mg/kg [NT] [NT] 19257-3 103% Lead mg/kg [NT] [NT] 19257-3 103% Mercury mg/kg [NT] [NT] 19257-3 103% Mickel mg/kg [NT] [NT] 19257-3 103% Phosphorus mg/kg [NT] [NT] 19257-3 96% Phosphorus mg/kg [NT] [NT] [NT] [NR] [NR] QUALITY CONTROL UNITS Dup. Sm# Duplicate Base + Duplicate + %RPD Date prepared - 19257-22 5.4 5.4 RPD: 0 0 QUALITY CONTROL Moisture 4 19257-34						
Arsenic mg/kg [NT] [NT] 19257-3 96% Cadmium mg/kg [NT] [NT] 19257-3 96% Chromium mg/kg [NT] [NT] 19257-3 96% Chromium mg/kg [NT] [NT] 19257-3 100% Copper mg/kg [NT] [NT] 19257-3 103% Lead mg/kg [NT] [NT] 19257-3 89% Mercury mg/kg [NT] [NT] 19257-3 89% Mercury mg/kg [NT] [NT] 19257-3 98% Zinc mg/kg [NT] [NT] 19257-3 98% Zinc mg/kg [NT] [NT] 19257-3 96% Phosphorus mg/kg [NT] [NT] 19257-3 96% Phosphorus mg/kg [NT] [NT] [NT] [NR] [NR] QUALITY CONTROL Moisture Base + Duplicate Base + Duplicate + %RPD Date prepared - 19257-22 16/05/2008 16/05/2008 Moisture % 19257-22 5.4 5.4 RPD: 0 QUALITY CONTROL Moisture Base + Duplicate Base + Duplicate + %RPD Date prepared - 19257-34 16/05/2008 16/05/2008 Date analysed - 19257-34 16/05/2008 16/05/2008 Moisture % 19257-34 16/05/2008 16/05/2008 Moisture % 19257-34 19 19 RPD: 0 QUALITY CONTROL Moisture % 19257-34 19 19 RPD: 0 QUALITY CONTROL Moisture % 19257-34 19 19 RPD: 0 QUALITY CONTROL Moisture % 19257-34 19 19 RPD: 0 QUALITY CONTROL Moisture % 19257-34 19 19 RPD: 0 QUALITY CONTROL Moisture % 19257-37 16/05/2008 16/05/2008 Date analysed - 19257-37 16/05/2008 16/05/2008 Date analysed - 19257-37 16/05/2008 16/05/2008 Date analysed - 19257-37 16/05/2008 16/05/2008		-				
Cadmium mg/kg [NT] [NT] 19257-3 96% Chromium mg/kg [NT] [NT] 19257-3 100% Copper mg/kg [NT] [NT] 19257-3 103% Lead mg/kg [NT] [NT] 19257-3 103% Mercury mg/kg [NT] [NT] 19257-3 89% Mercury mg/kg [NT] [NT] 19257-3 89% Nickel mg/kg [NT] [NT] 19257-3 98% Zinc mg/kg [NT] [NT] 19257-3 98% Zinc mg/kg [NT] [NT] 19257-3 96% Phosphorus mg/kg [NT] [NT] [NT] 19257-3 96% Phosphorus mg/kg [NT] [NT] [NT] [NR] [NR] QUALITY CONTROL UNITS Dup. Sm# Duplicate Base + Duplicate + %RPD Date prepared - 19257-22 16/05/2008 16/05/2008 Moisture % 19257-22 5.4 5.4 RPD: 0 QUALITY CONTROL WITS Dup. Sm# Duplicate Moisture Base + Duplicate + %RPD Date prepared - 19257-34 16/05/2008 16/05/2008 Date analysed - 19257-34 16/05/2008 16/05/2008 Moisture % 19257-34 19 19 RPD: 0 QUALITY CONTROL WITS Dup. Sm# Duplicate Base + Duplicate + %RPD Date prepared - 19257-34 19 19 RPD: 0 QUALITY CONTROL WITS Dup. Sm# Duplicate Base + Duplicate + %RPD Date prepared - 19257-34 19 19 RPD: 0 QUALITY CONTROL WITS Dup. Sm# Duplicate Base + Duplicate + %RPD Date prepared - 19257-37 16/05/2008 16/05/2008 Date analysed - 19257-37 16/05/2008 16/05/2008	Date analysed	-	[NT]	[NT]		20/5/08%
Chromium mg/kg [NT] [NT] 19257-3 100%	Arsenic	mg/kg	[NT]	[NT]	19257-3	96%
Copper	Cadmium	mg/kg	[NT]	[NT]	19257-3	96%
Lead	Chromium	mg/kg	[NT]	[NT]	19257-3	100%
Mercury mg/kg [NT] [NT] 19257-3 103% Nickel mg/kg [NT] [NT] 19257-3 98% Zinc mg/kg [NT] [NT] 19257-3 96% Phosphorus mg/kg [NT] [NT] [NR] [NR] QUALITY CONTROL Moisture UNITS Dup. Sm# Duplicate + %RPD Date prepared - 19257-22 16/05/2008 16/05/2008 Moisture % 19257-22 5.4 5.4 RPD: 0 QUALITY CONTROL Moisture UNITS Dup. Sm# Duplicate + %RPD Date prepared - 19257-34 16/05/2008 16/05/2008 Date analysed - 19257-34 19 19 RPD: 0 QUALITY CONTROL Moisture William Moisture Duplicate Base + Duplicate Base + Duplicate + %RPD Date prepared - 19257-37 16/05/2008 16/05/2008 Date prepared - 19257-37 16/05/2008 16/05/2008	Copper	mg/kg	[NT]	[NT]	19257-3	103%
Nickel	Lead	mg/kg	[NT]	[NT]	19257-3	89%
Zinc	Mercury	mg/kg	[NT]	[NT]	19257-3	103%
Phosphorus mg/kg [NT] [NT] [NR] [NR]	Nickel	mg/kg	[NT]	[NT]	19257-3	98%
QUALITY CONTROL UNITS Dup. Sm# Duplicate Moisture - 19257-22 16/05/2008 16/05/2008 Date prepared - 19257-22 16/05/2008 16/05/2008 Date analysed - 19257-22 16/05/2008 16/05/2008 Moisture % 19257-22 5.4 5.4 RPD: 0 QUALITY CONTROL UNITS Dup. Sm# Duplicate Moisture - 19257-34 16/05/2008 16/05/2008 Date analysed - 19257-34 16/05/2008 16/05/2008 Moisture % 19257-34 19 19 RPD: 0 QUALITY CONTROL Moisture UNITS Dup. Sm# Duplicate Base + Duplicate + %RPD Base + Duplicate + %RPD Date prepared - 19257-37 16/05/2008 16/05/2008 Date analysed - 19257-37 16/05/2008 16/05/2008	Zinc	mg/kg	[NT]	[NT]	19257-3	96%
Moisture Base + Duplicate + %RPD	Phosphorus	mg/kg	[NT]	[NT]	[NR]	[NR]
Date prepared - 19257-22 16/05/2008 16/05/2008 Date analysed - 19257-22 16/05/2008 16/05/2008 Moisture % 19257-22 5.4 5.4 RPD: 0 QUALITY CONTROL Moisture Dup. Sm# Duplicate Base + Duplicate + %RPD Date prepared - 19257-34 16/05/2008 16/05/2008 Date analysed - 19257-34 16/05/2008 16/05/2008 Moisture % 19257-34 19 19 RPD: 0 QUALITY CONTROL UNITS Dup. Sm# Duplicate Moisture Base + Duplicate + %RPD Date prepared - 19257-37 16/05/2008 16/05/2008 Date analysed - 19257-37 16/05/2008 16/05/2008 16/05/2008 Date analysed - 19257-37 16/05/2008 16/05/2008 16/05/2008	QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate		
Date analysed - 19257-22 16/05/2008 16/05/2008 Moisture % 19257-22 5.4 5.4 RPD: 0 QUALITY CONTROL Moisture UNITS Dup. Sm# Duplicate Base + Duplicate + %RPD Date prepared - 19257-34 16/05/2008 16/05/2008 Date analysed - 19257-34 16/05/2008 16/05/2008 Moisture % 19257-34 19 19 RPD: 0 QUALITY CONTROL Moisture UNITS Dup. Sm# Duplicate Base + Duplicate + %RPD Date prepared - 19257-37 16/05/2008 16/05/2008 Date analysed - 19257-37 16/05/2008 16/05/2008	Moisture			Base + Duplicate + %RPD		
Moisture % 19257-22 5.4 5.4 RPD: 0 QUALITY CONTROL Moisture UNITS Dup. Sm# Duplicate Base + Duplicate + %RPD Date prepared - 19257-34 16/05/2008 16/05/2008 Date analysed - 19257-34 16/05/2008 16/05/2008 Moisture % 19257-34 19 19 RPD: 0 QUALITY CONTROL Moisture UNITS Dup. Sm# Duplicate Base + Duplicate + %RPD Date prepared - 19257-37 16/05/2008 16/05/2008 Date analysed - 19257-37 16/05/2008 16/05/2008	Date prepared	-	19257-22	16/05/2008 16/05/2008		
QUALITY CONTROL UNITS Dup. Sm# Duplicate Base + Duplicate + %RPD Date prepared - 19257-34 16/05/2008 16/05/2008 Date analysed - 19257-34 16/05/2008 16/05/2008 Moisture % 19257-34 19 19 RPD: 0 QUALITY CONTROL UNITS Dup. Sm# Duplicate Moisture Base + Duplicate + %RPD Date prepared - 19257-37 16/05/2008 16/05/2008 Date analysed - 19257-37 16/05/2008 16/05/2008	Date analysed	-	19257-22	16/05/2008 16/05/2008		
Moisture Base + Duplicate + %RPD Date prepared - 19257-34 16/05/2008 16/05/2008 Date analysed - 19257-34 16/05/2008 16/05/2008 Moisture % 19257-34 19 19 RPD: 0 QUALITY CONTROL UNITS Dup. Sm# Duplicate Moisture Base + Duplicate + %RPD Date prepared - 19257-37 16/05/2008 16/05/2008 Date analysed - 19257-37 16/05/2008 16/05/2008	Moisture	%	19257-22	5.4 5.4 RPD: 0		
Date prepared - 19257-34 16/05/2008 16/05/2008 Date analysed - 19257-34 16/05/2008 16/05/2008 Moisture % 19257-34 19 19 RPD: 0 QUALITY CONTROL UNITS Dup. Sm# Duplicate Moisture Base + Duplicate + %RPD Date prepared - 19257-37 16/05/2008 16/05/2008 Date analysed - 19257-37 16/05/2008 16/05/2008	QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate		
Date analysed - 19257-34 16/05/2008 16/05/2008 Moisture % 19257-34 19 19 RPD: 0 QUALITY CONTROL UNITS Dup. Sm# Duplicate Moisture Base + Duplicate + %RPD Date prepared - 19257-37 16/05/2008 16/05/2008 Date analysed - 19257-37 16/05/2008 16/05/2008	Moisture			Base + Duplicate + %RPD		
Moisture % 19257-34 19 19 RPD: 0 QUALITY CONTROL UNITS Dup. Sm# Duplicate Moisture Base + Duplicate + %RPD Date prepared - 19257-37 16/05/2008 16/05/2008 Date analysed - 19257-37 16/05/2008 16/05/2008	Date prepared	-	19257-34	16/05/2008 16/05/2008		
QUALITY CONTROL UNITS Dup. Sm# Duplicate Moisture Base + Duplicate + %RPD Date prepared - 19257-37 16/05/2008 16/05/2008 Date analysed - 19257-37 16/05/2008 16/05/2008	Date analysed	-	19257-34	16/05/2008 16/05/2008		
Moisture Base + Duplicate + %RPD Date prepared - 19257-37 16/05/2008 16/05/2008 Date analysed - 19257-37 16/05/2008 16/05/2008	Moisture	%	19257-34	19 19 RPD: 0		
Date prepared - 19257-37 16/05/2008 16/05/2008 Date analysed - 19257-37 16/05/2008 16/05/2008	QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate		
Date analysed - 19257-37 16/05/2008 16/05/2008	Moisture			Base + Duplicate + %RPD		
	Date prepared	-	19257-37	16/05/2008 16/05/2008		
Moisture % 19257-37 4.5 4.5 RPD: 0	Date analysed	-	19257-37	16/05/2008 16/05/2008		
	Moisture	%	19257-37	4.5 4.5 RPD: 0		

Report Comments:

Herbicides and TKN analysed by NMI: Report Number - RN680473.

Asbestos was analysed by Approved Identifier: Not applicable for this job

selected should be one where the analyte concentration is easily measurable.

INS: Insufficient sample for this test NT: Not tested PQL: Practical Quantitation Limit RPD: Relative Percent Difference NA: Test not required LCS: Laboratory Control Sample

NR: Not requested <: Less than >: Greater than

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. **LCS (Laboratory Control Sample)**: This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria:

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for

SVOC and speciated phenols is acceptable. Surrogates: 60-140% is acceptable for general organics and 10-140% for

SVOC and speciated phenols.

Envirolab Services Pty Ltd

Joshua Vim Chemist

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 19282

Client:

Consulting Earth Scientists

Suite 121, 26-32 Pirrama Rd Pyrmont NSW 2009

Attention: Luke Jenkins / Kelly Weir

Sample log in details:

Your Reference: CES050706-BCC Area A

No. of samples: 64 Soils, 3 Materials

Date samples received: 13/05/08
Date completed instructions received: 13/05/08

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: 22/05/08

Date of Preliminary Report: Not Issued Issue Date: 26/05/08

NATA accreditation number 2901. This document shall not be reproduced except in full.

This document is issued in accordance with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Tests not covered by NATA are denoted with *.

R 00

Results Approved By:

Revision No:

Business Development & Quality Manager

Envirolab Reference: 19282 Page 1 of 40

NATA

ACCREDITED FOR TECHNICAL

VOC's in soil					
Our Reference:	UNITS	19282-8	19282-17	19282-54	19282-62
Your Reference		120508-219	120508-228	120508-267	Trip Blank
		-KW	-KW	-KW	·
Date Sampled		12/05/2008	12/05/2008	12/05/2008	13/05/2008
Type of sample		Soil SO	Soil SO	Soil SO	Soil SO
Sample Matrix Code Time Sampled		00:00	00:00	00:00	00:00
Date extracted	_	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date extracted Date analysed	_ _	18/05/2008	18/05/2008	18/05/2008	18/05/2008
Dichlorodifluoromethane	mg/kg	<10	<10	<10	<10
Chloromethane	mg/kg	<10	<10	<10	<10
Vinyl Chloride	mg/kg	<10	<10	<10	<10
Bromomethane	mg/kg	<10	<10	<10	<10
Chloroethane	mg/kg	<10	<10	<10	<10
Trichlorofluoromethane	mg/kg	<10	<10	<10	<10
1,1-Dichloroethene	mg/kg	<1.0	<1.0	<1.0	<1.0
trans-1,2-dichloroethene	mg/kg	<1.0	<1.0	<1.0	<1.0
1,1-dichloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0
cis-1,2-dichloroethene	mg/kg	<1.0	<1.0	<1.0	<1.0
bromochloromethane	mg/kg	<1.0	<1.0	<1.0	<1.0
chloroform	mg/kg	<1.0	<1.0	<1.0	<1.0
2,2-dichloropropane	mg/kg	<1.0	<1.0	<1.0	<1.0
1,2-dichloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0
1,1,1-trichloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0
1,1-dichloropropene	mg/kg	<1.0	<1.0	<1.0	<1.0
carbon tetrachloride	mg/kg	<1.0	<1.0	<1.0	<1.0
Benzene	mg/kg	<0.5	<0.5	<0.5	<0.5
dibromomethane	mg/kg	<1.0	<1.0	<1.0	<1.0
1,2-dichloropropane	mg/kg	<1.0	<1.0	<1.0	<1.0
trichloroethene	mg/kg	<1.0	<1.0	<1.0	<1.0
bromodichloromethane	mg/kg	<1.0	<1.0	<1.0	<1.0
trans-1,3-dichloropropene	mg/kg	<1.0	<1.0	<1.0	<1.0
cis-1,3-dichloropropene	mg/kg	<1.0	<1.0	<1.0	<1.0
1,1,2-trichloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5
1,3-dichloropropane	mg/kg	<1.0	<1.0	<1.0	<1.0
dibromochloromethane	mg/kg	<1.0	<1.0	<1.0	<1.0
1,2-dibromoethane	mg/kg	<1.0	<1.0	<1.0	<1.0
tetrachloroethene	mg/kg	<1.0	<1.0	<1.0	<1.0
1,1,1,2-tetrachloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0
chlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0
Ethylbenzene	mg/kg	<1.0	<1.0	<1.0	<1.0
bromoform	mg/kg	<1.0	<1.0	<1.0	<1.0
m+p-xylene	mg/kg	<2.0	<2.0	<2.0	<2.0

VOC's in soil Our Reference: Your Reference	UNITS	19282-8 120508-219	19282-17 120508-228	19282-54 120508-267	19282-62 Trip Blank
Date Sampled Type of sample Sample Matrix Code Time Sampled		-KW 12/05/2008 Soil SO 00:00	-KW 12/05/2008 Soil SO 00:00	-KW 12/05/2008 Soil SO 00:00	13/05/2008 Soil SO 00:00
styrene	mg/kg	<1.0	<1.0	<1.0	<1.0
1,1,2,2-tetrachloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0
o-Xylene	mg/kg	<1.0	<1.0	<1.0	<1.0
1,2,3-trichloropropane*	mg/kg	<1.0	<1.0	<1.0	<1.0
isopropylbenzene	mg/kg	<1.0	<1.0	<1.0	<1.0
bromobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0
n-propyl benzene	mg/kg	<1.0	<1.0	<1.0	<1.0
2-chlorotoluene	mg/kg	<1.0	<1.0	<1.0	<1.0
4-chlorotoluene	mg/kg	<1.0	<1.0	<1.0	<1.0
1,3,5-trimethyl benzene	mg/kg	<1.0	<1.0	<1.0	<1.0
tert-butyl benzene	mg/kg	<1.0	<1.0	<1.0	<1.0
1,2,4-trimethyl benzene	mg/kg	<1.0	<1.0	<1.0	<1.0
1,3-dichlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0
sec-butyl benzene	mg/kg	<1.0	<1.0	<1.0	<1.0
1,4-dichlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0
4-isopropyl toluene	mg/kg	<1.0	<1.0	<1.0	<1.0
1,2-dichlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0
n-butyl benzene	mg/kg	<1.0	<1.0	<1.0	<1.0
1,2-dibromo-3-chloropropane	mg/kg	<1.0	<1.0	<1.0	<1.0
1,2,4-trichlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0
hexachlorobutadiene	mg/kg	<1.0	<1.0	<1.0	<1.0
1,2,3-trichlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0
Surrogate Dibromofluorometha	%	68	69	83	90
Surrogate aaa-Trifluorotoluene	%	107	99	88	90
Surrogate Toluene-da	%	89	91	94	96
Surrogate 4-Bromofluorobenzene	%	79	78	79	77

LINITO					
UNITS	19282-16	19282-17	19282-24	19282-32	19282-33
	120508-227	120508-228	120508-236	120508-244	120508-24
	-KW	-KW	-KW	-KW	-KW
	12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
	Soil	Soil	Soil	Soil	Soil
					SO
	00:00	00:00	00:00	00:00	00:00
-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
-	17/05/2008	17/05/2008	17/05/2008	17/05/2008	17/05/2008
mg/kg	<25	<25	<25	<25	<25
mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0
mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
%	94	99	88	85	89
	mg/kg mg/kg mg/kg mg/kg mg/kg	-KW 12/05/2008 Soil SO 00:00 - 16/05/2008 - 17/05/2008 mg/kg <25 mg/kg <0.5 mg/kg <0.5 mg/kg <1.0 mg/kg <2.0 mg/kg <1.0			

vTPH & BTEX in Soil						
Our Reference:	UNITS	19282-34	19282-37	19282-40	19282-43	19282-46
Your Reference		120508-246	120508-249	120508-252	120508-255	120508-258
		-KW	-KW	-KW	-KW	-KW
Date Sampled		12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	17/05/2008	17/05/2008	17/05/2008	17/05/2008	17/05/2008
vTPH C6 - C9	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
m+p-xylene	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0
o-Xylene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Surrogate aaa-Trifluorotoluene	%	93	102	98	87	101

vTPH & BTEX in Soil Our Reference:	UNITS	19282-47	19282-62	19282-63
Your Reference		120508-259 -KW	Trip Blank	Trip Spike 1
Date Sampled		12/05/2008	13/05/2008	13/05/2008
Type of sample Sample Matrix Code Time Sampled		Soil SO 00:00	Soil SO 00:00	Soil SO 00:00
Date extracted	-	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	17/05/2008	17/05/2008	17/05/2008
vTPH C6 - C9	mg/kg	<25	<25	[NA]
Benzene	mg/kg	<0.5	<0.5	76%
Toluene	mg/kg	<0.5	<0.5	73%
Ethylbenzene	mg/kg	<1.0	<1.0	84%
m+p-xylene	mg/kg	<2.0	<2.0	98%
o-Xylene	mg/kg	<1.0	<1.0	117%
Surrogate aaa-Trifluorotoluene	%	91	90	101

sTPH in Soil (C10-C36)						
, ,						
Our Reference:	UNITS	19282-16	19282-17	19282-24	19282-32	19282-33
Your Reference		120508-227	120508-228	120508-236	120508-244	120508-245
		-KW	-KW	-KW	-KW	-KW
Date Sampled		12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	17/05/2008	17/05/2008	17/05/2008
TPH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TPH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TPH C29 - C36	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	100	97	98	94	93

sTPH in Soil (C10-C36)						
Our Reference:	UNITS	19282-34	19282-37	19282-40	19282-43	19282-46
Your Reference		120508-246 -KW	120508-249 -KW	120508-252 -KW	120508-255 -KW	120508-258 -KW
Date Sampled		12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	17/05/2008	17/05/2008	17/05/2008	17/05/2008	17/05/2008
TPH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TPH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TPH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	95	98	95	93	92

sTPH in Soil (C10-C36)		
Our Reference:	UNITS	19282-47
Your Reference		120508-259
		-KW
Date Sampled		12/05/2008
Type of sample		Soil
Sample Matrix Code		SO
Time Sampled		00:00
Date extracted	-	16/05/2008
Date analysed	-	17/05/2008
TPH C10 - C14	mg/kg	<50
TPH C ₁₅ - C ₂₈	mg/kg	<100
TPH C29 - C36	mg/kg	<100
Surrogate o-Terphenyl	%	92

PAHs in Soil						
Our Reference:	UNITS	19282-2	19282-7	19282-8	19282-9	19282-10
Your Reference		120508-212 -KW	120508-218 -KW	120508-219 -KW	120508-220 -KW	120508-221 -KW
Date Sampled		12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO 00:00	SO	SO 00:00	SO 00:00	SO 00:00
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	17/05/2008	17/05/2008	17/05/2008	17/05/2008	17/05/2008
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	0.1	<0.1	0.3
Pyrene	mg/kg	<0.1	<0.1	0.1	<0.1	0.3
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
Chrysene	mg/kg	<0.1	<0.1	0.1	<0.1	0.2
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	0.4
Benzo(a)pyrene	mg/kg	<0.05	<0.05	0.08	<0.05	0.2
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2
Surrogate p-Terphenyl-d14	%	93	114	117	108	112

PAHs in Soil Our Reference:	UNITS	19282-32	19282-33	19282-34	19282-40	19282-43
Your Reference		120508-244 -KW	120508-245 -KW	120508-246 -KW	120508-252 -KW	120508-255 -KW
Date Sampled		12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code Time Sampled		SO 00:00	SO 00:00	SO 00:00	SO 00:00	SO 00:00
· · · · · · · · · · · · · · · · · · ·						
Date extracted	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	17/05/2008	17/05/2008	17/05/2008	17/05/2008	17/05/2008
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.09	<0.05	<0.05	<0.05	<0.05
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate p-Terphenyl-d ₁₄	%	114	110	109	111	112

PAHs in Soil Our Reference: Your Reference Date Sampled Type of sample Sample Matrix Code Time Sampled	UNITS	19282-46 120508-258 -KW 12/05/2008 Soil SO 00:00	19282-47 120508-259 -KW 12/05/2008 Soil SO 00:00
Date extracted	-	16/05/2008	16/05/2008
Date analysed	-	17/05/2008	17/05/2008
Naphthalene	mg/kg	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1
Surrogate p-Terphenyl-d ₁₄	%	111	112

Organochlorine Pesticides in soil						
Our Reference:	UNITS	19282-4	19282-12	19282-15	19282-20	19282-23
Your Reference		120508-214 -KW	120508-223 -KW	120508-226 -KW	120508-232 -KW	120508-235 -KW
Date Sampled		12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code Time Sampled		SO 00:00	SO 00:00	SO 00:00	SO 00:00	SO 00:00
<u> </u>						
Date extracted	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	7.0	70	73	73	73

Organochlorine Pesticides in soil Our Reference: Your Reference Date Sampled Type of sample Sample Matrix Code Time Sampled	UNITS	19282-31 120508-243 -KW 12/05/2008 Soil SO 00:00	19282-36 120508-248 -KW 12/05/2008 Soil SO 00:00	19282-39 120508-251 -KW 12/05/2008 Soil SO 00:00	19282-45 120508-257 -KW 12/05/2008 Soil SO 00:00	19282-67 120508-275 -KW 12/05/2008 Soil SO 00:00
Date extracted	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	73	71	71	75	76

Organophosphorus Pesticides						
Our Reference:	UNITS	19282-4	19282-12	19282-15	19282-20	19282-23
Your Reference		120508-214 -KW	120508-223 -KW	120508-226 -KW	120508-232 -KW	120508-235 -KW
Date Sampled		12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Type of sample Sample Matrix Code Time Sampled		Soil SO 00:00	Soil SO 00:00	Soil SO 00:00	Soil SO 00:00	Soil SO 00:00
Date extracted	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	73	70	73	73	73

Organophosphorus Pesticides						
Our Reference:	UNITS	19282-31	19282-36	19282-39	19282-45	19282-67
Your Reference		120508-243 -KW	120508-248 -KW	120508-251 -KW	120508-257 -KW	120508-275 -KW
Date Sampled		12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Type of sample Sample Matrix Code Time Sampled		Soil SO 00:00	Soil SO 00:00	Soil SO 00:00	Soil SO 00:00	Soil SO 00:00
Date extracted	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	73	71	71	75	76

PCBs in Soil						
Our Reference:	UNITS	19282-4	19282-12	19282-15	19282-20	19282-23
Your Reference		120508-214	120508-223	120508-226	120508-232	120508-235
		-KW	-KW	-KW	-KW	-KW
Date Sampled		12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Type of sample Sample Matrix Code		Soil SO	Soil SO	Soil SO	Soil SO	Soil SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
<u> </u>						
Date extracted	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Arochlor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	73	70	73	73	73
PCBs in Soil						
Our Reference:	UNITS	19282-31	19282-36	19282-39	19282-45	19282-67
Your Reference		120508-243	120508-248	120508-251	120508-257	120508-27
Data Campled		-KW 12/05/2008	-KW 12/05/2008	-KW 12/05/2008	-KW 12/05/2008	-KW 12/05/2008
Date Sampled Type of sample		Soil	12/05/2006 Soil	12/05/2006 Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date extracted Date analysed	-	16/05/2008 16/05/2008	16/05/2008 16/05/2008	16/05/2008 16/05/2008	16/05/2008 16/05/2008	
	- - mg/kg					
Date analysed	- - mg/kg mg/kg	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed Arochlor 1016		16/05/2008	16/05/2008 <0.1	16/05/2008 <0.1	16/05/2008 <0.1	16/05/2008
Date analysed Arochlor 1016 Arochlor 1232	mg/kg	16/05/2008 <0.1 <0.1	16/05/2008 <0.1 <0.1	16/05/2008 <0.1 <0.1	16/05/2008 <0.1 <0.1	<0.1

<0.1

73

<0.1

71

<0.1

71

<0.1

75

Envirolab Reference: 19282 Revision No: R 00

Arochlor 1260

Surrogate TCLMX

mg/kg

%

<0.1

76

Total Phenolics in Soil					
Our Reference:	UNITS	19282-9	19282-17	19282-46	19282-47
Your Reference		120508-220 -KW	120508-228 -KW	120508-258 -KW	120508-259 -KW
Date Sampled		12/05/2008	12/05/2008	12/05/2008	12/05/2008
Type of sample		Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00
Date extracted	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	19/05/2008	19/05/2008	19/05/2008	19/05/2008
Total Phenolics (as Phenol)	mg/kg	<5.0	<5.0	<5.0	<5.0

Acid Extractable metals in soil						
Our Reference:	UNITS	19282-2	19282-5	19282-8	19282-9	19282-12
Your Reference		120508-212 -KW	120508-215 -KW	120508-219 -KW	120508-220 -KW	120508-223 -KW
Date Sampled		12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Type of sample Sample Matrix Code Time Sampled		Soil SO 00:00	Soil SO 00:00	Soil SO 00:00	Soil SO 00:00	Soil SO 00:00
Date digested	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	20/05/2008	20/05/2008	20/05/2008	20/05/2008	20/05/2008
Arsenic	mg/kg	<4.0	<4.0	9.9	<4.0	<4.0
Cadmium	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Chromium	mg/kg	2.2	1.6	20	3.8	2.3
Copper	mg/kg	3.1	<1.0	7,500	12	6.4
Lead	mg/kg	10	1.0	350	7.2	23
Mercury	mg/kg	0.56	0.14	<0.10	<0.10	<0.10
Nickel	mg/kg	1.3	<1.0	59	3.7	1.2
Zinc	mg/kg	11	2.1	540	13	26
Phosphorus	mg/kg	[NA]	[NA]	[NA]	[NA]	84

Acid Extractable metals in soil						
Our Reference:	UNITS	19282-16	19282-17	19282-18	19282-21	19282-24
Your Reference		120508-227 -KW	120508-228 -KW	120508-229 -KW	120508-233 -KW	120508-236 -KW
Date Sampled		12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date digested	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	20/05/2008	20/05/2008	20/05/2008	20/05/2008	20/05/2008
Arsenic	mg/kg	5.8	4.7	<4.0	<4.0	<4.0
Cadmium	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Chromium	mg/kg	15	5.1	<1.0	1.4	1.3
Copper	mg/kg	15	8.3	1.2	1.0	6.5
Lead	mg/kg	18	21	<1.0	2.9	5.3
Mercury	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Nickel	mg/kg	2.8	2.3	<1.0	<1.0	<1.0
Zinc	mg/kg	59	32	2.1	5.4	5.6

Acid Extractable metals in soil						
Our Reference:	UNITS	19282-26	19282-27	19282-28	19282-30	19282-31
Your Reference		120508-238	120508-239	120508-240	120508-242	120508-24
Date Sampled		-KW 12/05/2008	-KW 12/05/2008	-KW 12/05/2008	-KW 12/05/2008	-KW 12/05/200
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		so	so	so	so	so
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date digested	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/200
Date analysed	-	20/05/2008	20/05/2008	20/05/2008	20/05/2008	20/05/200
Arsenic	mg/kg	[NA]	<4.0	<4.0	4.7	[NA]
Cadmium	mg/kg	[NA]	<1.0	<1.0	<1.0	[NA]
Chromium	mg/kg	[NA]	1.6	1.5	5.2	[NA]
Copper	mg/kg	[NA]	3.2	2.9	1.4	[NA]
Lead	mg/kg	[NA]	24	4.5	3.7	[NA]
Mercury	mg/kg	[NA]	<0.10	<0.10	<0.10	[NA]
Nickel	mg/kg	[NA]	<1.0	<1.0	<1.0	[NA]
Zinc	mg/kg	[NA]	26	12	2.7	[NA]
Phosphorus	mg/kg	77	[NA]	[NA]	[NA]	210
Acid Extractable metals in soil						
Our Reference:	UNITS	19282-32	19282-33	19282-34	19282-36	19282-3
Your Reference		120508-244	120508-245	120508-246	120508-248	120508-2
		-KW	-KW	-KW	-KW	-KW
Date Sampled		12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/20
Type of sample Sample Matrix Code		Soil SO	Soil SO	Soil SO	Soil SO	Soil SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date digested	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/200
Date analysed	-	20/05/2008	20/05/2008	20/05/2008	20/05/2008	20/05/20
Arsenic	mg/kg	<4.0	<4.0	<4.0	4.8	<4.0
Cadmium	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Chromium	mg/kg	4.1	<1.0	<1.0	4.3	2.8
Copper	mg/kg	22	<1.0	1.1	12	8.7
Lead	mg/kg	100	<1.0	1.3	38	300
Mercury	mg/kg	<0.10	<0.10	<0.10	0.21	<0.10
Nickel	mg/kg	1.6	<1.0	<1.0	4.5	1.5

Envirolab Reference: 19282 Revision No: R 00

Zinc

130

1.9

3.4

mg/kg

29

28

Acid Extractable metals in soil Our Reference: Your Reference Date Sampled Type of sample Sample Matrix Code Time Sampled	UNITS	19282-41 120508-253 -KW 12/05/2008 Soil SO 00:00	19282-43 120508-255 -KW 12/05/2008 Soil SO 00:00	19282-45 120508-257 -KW 12/05/2008 Soil SO 00:00	19282-46 120508-258 -KW 12/05/2008 Soil SO 00:00	19282-47 120508-259 -KW 12/05/2008 Soil SO 00:00
Date digested	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	20/05/2008	20/05/2008	20/05/2008	20/05/2008	20/05/2008
Arsenic	mg/kg	<4.0	<4.0	8.6	10	16
Cadmium	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Chromium	mg/kg	3.3	8.0	21	1.9	2.7
Copper	mg/kg	1.2	11	30	<1.0	1.0
Lead	mg/kg	1.1	33	50	<1.0	1.2
Mercury	mg/kg	<0.10	<0.10	0.21	<0.10	<0.10
Nickel	mg/kg	<1.0	<1.0	1.8	<1.0	<1.0
Zinc	mg/kg	9.6	21	20	1.6	2.0
Phosphorus	mg/kg	[NA]	[NA]	1,700	[NA]	[NA]
Acid Extractable metals in soil						
Our Reference:	UNITS	19282-48	19282-51	19282-54	19282-56	19282-57
Your Reference		120508-261 -KW	120508-264 -KW	120508-267 -KW	120508-269 -KW	120508-27 -KW
Date Sampled		12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/200
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code Time Sampled		SO 00:00	SO 00:00	SO 00:00	SO 00:00	SO 00:00
Date digested	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/200
Date analysed	-	20/05/2008	20/05/2008	20/05/2008	20/05/2008	20/05/200
Arsenic	mg/kg	6.9	20	150	12	[NA]
Cadmium	mg/kg	<1.0	<1.0	<1.0	<1.0	[NA]
Chromium	mg/kg	5.8	12	14	1.5	[NA]
Copper	mg/kg	14	16	33	1.0	[NA]
Lead	mg/kg	22	39	99	2.8	[NA]
Mercury	mg/kg	<0.10	<0.10	0.26	<0.10	[NA]

Envirolab Reference: 19282 Revision No: R 00

Nickel

Zinc

Phosphorus

mg/kg

mg/kg

mg/kg

1.6

19

1,000

1.3

17

1,500

10

54

[NA]

<1.0

2.1

[NA]

[NA]

[NA]

200

Acid Extractable metals in soil Our Reference: Your Reference Date Sampled Type of sample Sample Matrix Code Time Sampled	UNITS	19282-58 120508-271 -KW 12/05/2008 Soil SO 00:00	19282-59 120508-272 -KW 12/05/2008 Soil SO 00:00	19282-67 120508-275 -KW 12/05/2008 Soil SO 00:00
Date digested	-	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	20/05/2008	20/05/2008	20/05/2008
Arsenic	mg/kg	<4.0	4.5	<4.0
Cadmium	mg/kg	<1.0	<1.0	<1.0
Chromium	mg/kg	8.9	15	4.6
Copper	mg/kg	6.3	5.8	11
Lead	mg/kg	47	23	28
Mercury	mg/kg	<0.10	<0.10	0.24
Nickel	mg/kg	1.7	1.7	2.6
Zinc	mg/kg	74	38	33

Miscellaneous Inorg - soil						
Our Reference:	UNITS	19282-12	19282-26	19282-31	19282-45	19282-48
Your Reference		120508-223	120508-238	120508-243	120508-257	120508-261
		-KW	-KW	-KW	-KW	-KW
Date Sampled		12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date analysed	-	15/05/2008	15/05/2008	15/05/2008	15/05/2008	15/05/2008
Ammonia as N in soil	mg/kg	1.3	0.7	2.5	0.8	2.9
Nitrate as N in soil	mg/kg	<0.5	<0.5	0.8	<0.5	<0.5
Nitrite as N in soil	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total Kjeldahl Nitrogen	mg/kg	1,700	240	2,000	5,100	17,000
Total Nitrogen in soil	mg/kg	1,700	240	2,000	5,100	17,000
pH 1:5 soil:water	pH Units	[NA]	8.6	6.8	[NA]	4.8
Electrical Conductivity 1:5 soil:water	μS/cm	[NA]	70	130	[NA]	99
Salinity as NACL *	mg/kg	[NA]	45	83	[NA]	63
Resistivity in soil*	ohm m	[NA]	140	77	[NA]	100
Chloride 1:5 soil:water	mg/kg	[NA]	<100	<100	[NA]	<100
Sulphate, SO4 1:5 soil:water	mg/kg	[NA]	<25	<25	[NA]	<25

Miscellaneous Inorg - soil			
Our Reference:	UNITS	19282-51	19282-57
Your Reference		120508-264	120508-270
		-KW	-KW
Date Sampled		12/05/2008	12/05/2008
Type of sample		Soil	Soil
Sample Matrix Code		SO	SO
Time Sampled		00:00	00:00
Date analysed	-	15/05/2008	15/05/2008
Ammonia as N in soil	mg/kg	0.9	2.4
Nitrate as N in soil	mg/kg	0.7	<0.5
Nitrite as N in soil	mg/kg	<0.1	<0.1
Total Kjeldahl Nitrogen	mg/kg	710	520
Total Nitrogen in soil	mg/kg	710	520
pH 1:5 soil:water	pH Units	7.1	6.3
Electrical Conductivity 1:5 soil:water	μS/cm	90	84
Salinity as NACL *	mg/kg	58	54
Resistivity in soil*	ohm m	110	120
Chloride 1:5 soil:water	mg/kg	<100	<100
Sulphate, SO4 1:5 soil:water	mg/kg	<25	<25

		I		1		
Moisture						
Our Reference:	UNITS	19282-2	19282-4	19282-5	19282-7	19282-8
Your Reference		120508-212 -KW	120508-214 -KW	120508-215 -KW	120508-218 -KW	120508-219 -KW
Date Sampled		12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO	so
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date prepared	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Moisture	%	10	15	23	7.6	9.0
		I		I	Ι	
Moisture	LINITO	40000.0	40000 40	10000 10	40000 45	40000 40
Our Reference:	UNITS	19282-9	19282-10	19282-12	19282-15	19282-16
Your Reference		120508-220 -KW	120508-221 -KW	120508-223 -KW	120508-226 -KW	120508-227 -KW
Date Sampled		12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		so	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date prepared	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Moisture	%	27	32	15	15	21
		I	I	I	I	
Moisture	LINUTO	10000 17	10000 10	40000 00	40000 04	40000 00
Our Reference:	UNITS	19282-17	19282-18	19282-20	19282-21	19282-23
Your Reference		120508-228 -KW	120508-229 -KW	120508-232 -KW	120508-233 -KW	120508-235 -KW
Date Sampled		12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date prepared	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Moisture	%	23	19	16	5.7	2.7
Moisture						
Moisture Our Reference:	UNITS	10282 24	10282.26	10292 27	10292.29	10292 20
Our Reference: Your Reference		19282-24 120508-236	19282-26 120508-238	19282-27 120508-239	19282-28 120508-240	19282-30 120508-242
roui Keieience		-KW	120508-238 -KW	-KW	120508-240 -KW	120508-242 -KW
Date Sampled		12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO	so
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date prepared	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	_	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
2 ato arranjeou						

Moisture						
Our Reference:	UNITS	19282-31	19282-32	19282-33	19282-34	19282-36
Your Reference		120508-243 -KW	120508-244 -KW	120508-245 -KW	120508-246 -KW	120508-248 -KW
Date Sampled		12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date prepared	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Moisture	%	7.8	11	5.3	5.2	20
			Т			Τ
Moisture	LINUTO	10000 07	40000 00	10000 10	10000 11	10000 10
Our Reference:	UNITS	19282-37	19282-39	19282-40	19282-41	19282-42
Your Reference		120508-249 -KW	120508-251 -KW	120508-252 -KW	120508-253 -KW	120508-254 -KW
Date Sampled		12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date prepared	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Moisture	%	18	15	29	24	34
			I			
Moisture	LINUTO	40000 40	10000 15	40000 40	40000 47	40000 40
Our Reference:	UNITS	19282-43	19282-45	19282-46	19282-47	19282-48
Your Reference		120508-255 -KW	120508-257 -KW	120508-258 -KW	120508-259 -KW	120508-261 -KW
Date Sampled		12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		so	so	so	so	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date prepared	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Moisture	%	14	13	19	18	13
Meistra						
Moisture	UNITS	10202.54	10202.54	10202.50	10202.50	10202.50
Our Reference: Your Reference	UNITS	19282-51 120508-264	19282-54 120508-267	19282-56 120508-269	19282-58 120508-271	19282-59 120508-272
roui Reference		120508-264 -KW	-KW	-KW	120508-271 -KW	120508-272 -KW
Date Sampled		12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code Time Sampled		SO 00:00	SO 00:00	SO 00:00	SO 00:00	SO 00:00
типе затиреа		00.00	00.00	00.00	00.00	00.00
Date prepared	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Moisture	%	19	18	22	14	14

Moisture Our Reference: Your Reference Date Sampled Type of sample Sample Matrix Code Time Sampled	UNITS	19282-62 Trip Blank 13/05/2008 Soil SO 00:00	19282-67 120508-275 -KW 12/05/2008 Soil SO 00:00
Date prepared	-	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008
Moisture	%	0.30	21

Herbicides in Soil						
Our Reference:	UNITS	19282-20	19282-32	19282-36	19282-42	19282-51
Your Reference		120508-232	120508-244	120508-248	120508-254	120508-264
		-KW	-KW	-KW	-KW	-KW
Date Sampled		12/05/2008	12/05/2008	12/05/2008	12/05/2008	12/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date analysed	-	20/05/2008	20/05/2008	20/05/2008	20/05/2008	20/05/2008
Date Extracted	-	22/05/2008	22/05/2008	22/05/2008	22/05/2008	22/05/2008
Dicamba	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
MCPA	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorprop	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
2,4-D	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
2,4,5-T	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
2,4,5-TP	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
2,4-DB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
MCPP	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Triclopyr	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1

Herbicides in Soil		
Our Reference:	UNITS	19282-67
Your Reference		120508-275 -KW
Date Sampled		12/05/2008
Type of sample		Soil
Sample Matrix Code		so
Time Sampled		00:00
Date analysed	-	20/05/2008
Date Extracted	-	22/05/2008
Dicamba	mg/kg	<0.1
MCPA	mg/kg	<0.1
Dichlorprop	mg/kg	<0.1
2,4-D	mg/kg	<0.1
2,4,5-T	mg/kg	<0.1
2,4,5-TP	mg/kg	<0.1
2,4-DB	mg/kg	<0.1
MCPP	mg/kg	<0.1
Triclopyr	mg/kg	<0.1

Asbestos ID - materials				
Our Reference:	UNITS	19282-64	19282-65	19282-66
Your Reference		120508-A1-	120508-A2-	120508-A3-
		KW	KW	KW
Date Sampled		12/05/2008	12/05/2008	12/05/2008
Type of sample		Material	Material	Material
Sample Matrix Code		SO	SO	so
Time Sampled		00:00	00:00	00:00
Date analysed	-	14/05/2008	14/05/2008	14/05/2008
Sample Description	_	200g fibre	15g fibre	15g fibre
		cement sheet	cement sheet	cement sheet
		fragments	fragments	fragments
Asbestos ID in materials	-	Chrysotile	Chrysotile	Chrysotile
		asbestos	asbestos	asbestos
		detected	detected	detected
		Amosite		
		asbestos		
		detected		
		Crocidolite		
		asbestos		
		detected		

Method ID	Methodology Summary
GC.14	Soil samples extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
GC.16	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS.
GC.3	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
GC.12 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
GC-5	Soil samples are extracted with hexane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
GC.8	Soil samples are extracted with hexane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
GC-6	Soil samples are extracted with hexane/acetone and waters with dichloromethane and analysed by GC-ECD.
LAB.30	Total Phenolics - determined colorimetrically following disitillation.
Metals.20 ICP- AES	Determination of various metals by ICP-AES.
Metals.21 CV- AAS	Determination of Mercury by Cold Vapour AAS.
LAB.57	Ammonia water extractable - determined colourimetrically based on EPA103A.
LAB.55	Nitrate water extractable - determined colourimetrically based on EPA114A.
LAB.56	Nitrite water extractable - determined colourimetrically based on EPA116A.
Ext-020	Analysis subcontracted to Australian Government - National Measurement Institute. NATA Accreditation No: 198
LAB.66	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen.
LAB.1	pH - Measured using pH meter and electrode in accordance with APHA 20th ED, 4500-H+.
LAB.2	Conductivity and Salinity - measured using a conductivity cell and dedicated meter, in accordance with APHA2510 20th ED and Rayment & Higginson.
LAB.11	Chloride determined by argentometric titration.
LAB.9	Sulphate determined turbidimetrically.
LAB.8	Moisture content determined by heating at 105 deg C for a minimum of 4 hours.
AS4964-2004	Qualitative identification of asbestos type fibres in bulk using Polarised Light Microscopy and Dispersion Staining Techniques.

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
VOC's in soil						Base II Duplicate II %RPD		recovery
Date extracted	-			16/5/08	19282-8	16/05/2008 16/05/2008	LCS-2	16/5/08%
Date analysed	-			18/5/08	19282-8	18/05/2008 18/05/2008	LCS-2	18/5/08%
Dichlorodifluoromethane	mg/kg	10	GC.14	<10	19282-8	<10 <10	[NR]	[NR]
Chloromethane	mg/kg	10	GC.14	<10	19282-8	<10 <10	[NR]	[NR]
Vinyl Chloride	mg/kg	10	GC.14	<10	19282-8	<10 <10	[NR]	[NR]
Bromomethane	mg/kg	10	GC.14	<10	19282-8	<10 <10	[NR]	[NR]
Chloroethane	mg/kg	10	GC.14	<10	19282-8	<10 <10	[NR]	[NR]
Trichlorofluoromethane	mg/kg	10	GC.14	<10	19282-8	<10 <10	[NR]	[NR]
1,1-Dichloroethene	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	[NR]	[NR]
trans-1,2-dichloroethene	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	[NR]	[NR]
1,1-dichloroethane	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	LCS-2	93%
cis-1,2-dichloroethene	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	[NR]	[NR]
bromochloromethane	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	[NR]	[NR]
chloroform	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	LCS-2	84%
2,2-dichloropropane	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	[NR]	[NR]
1,2-dichloroethane	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	LCS-2	87%
1,1,1-trichloroethane	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	LCS-2	81%
1,1-dichloropropene	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	[NR]	[NR]
carbon tetrachloride	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	[NR]	[NR]
Benzene	mg/kg	0.5	GC.14	<0.5	19282-8	<0.5 <0.5	[NR]	[NR]
dibromomethane	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	[NR]	[NR]
1,2-dichloropropane	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	[NR]	[NR]
trichloroethene	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	LCS-2	116%
bromodichloromethane	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	LCS-2	114%
trans-1,3- dichloropropene	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	[NR]	[NR]
cis-1,3-dichloropropene	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	[NR]	[NR]
1,1,2-trichloroethane	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	[NR]	[NR]
Toluene	mg/kg	0.5	GC.14	<0.5	19282-8	<0.5 <0.5	[NR]	[NR]
1,3-dichloropropane	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	[NR]	[NR]
dibromochloromethane	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	LCS-2	111%
1,2-dibromoethane	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	[NR]	[NR]
tetrachloroethene	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	LCS-2	111%
1,1,1,2- tetrachloroethane	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	[NR]	[NR]
chlorobenzene	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	[NR]	[NR]
Ethylbenzene	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	[NR]	[NR]
bromoform	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	[NR]	[NR]
m+p-xylene	mg/kg	2	GC.14	<2.0	19282-8	<2.0 <2.0	[NR]	[NR]
styrene	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	[NR]	[NR]
1,1,2,2- tetrachloroethane	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	[NR]	[NR]
o-Xylene	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	[NR]	[NR]

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
VOC's in soil						Base II Duplicate II %RPD		
1,2,3-trichloropropane*	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	[NR]	[NR]
isopropylbenzene	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	[NR]	[NR]
bromobenzene	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	[NR]	[NR]
n-propyl benzene	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	[NR]	[NR]
2-chlorotoluene	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	[NR]	[NR]
4-chlorotoluene	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	[NR]	[NR]
1,3,5-trimethyl benzene	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	[NR]	[NR]
tert-butyl benzene	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	[NR]	[NR]
1,2,4-trimethyl benzene	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	[NR]	[NR]
1,3-dichlorobenzene	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	[NR]	[NR]
sec-butyl benzene	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	[NR]	[NR]
1,4-dichlorobenzene	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	[NR]	[NR]
4-isopropyl toluene	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	[NR]	[NR]
1,2-dichlorobenzene	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	[NR]	[NR]
n-butyl benzene	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	[NR]	[NR]
1,2-dibromo-3- chloropropane	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	[NR]	[NR]
1,2,4-trichlorobenzene	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	[NR]	[NR]
hexachlorobutadiene	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	[NR]	[NR]
1,2,3-trichlorobenzene	mg/kg	1	GC.14	<1.0	19282-8	<1.0 <1.0	[NR]	[NR]
Surrogate Dibromofluorometha	%		GC.14	87	19282-8	68 87 RPD: 25	LCS-2	85%
Surrogate aaa- Trifluorotoluene	%		GC.14	89	19282-8	107 87 RPD: 21	LCS-2	105%
Surrogate Toluene-d8	%		GC.14	94	19282-8	89 93 RPD: 4	LCS-2	92%
Surrogate 4- Bromofluorobenzene	%		GC.14	83	19282-8	79 79 RPD: 0	LCS-2	70%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTPH & BTEX in Soil					OIII#	Base II Duplicate II %RPD		Recovery
Date extracted	-			16/5/08	19282-16	16/05/2008 16/05/2008	LCS-2	16/5/08%
Date analysed	-			17/5/08	19282-16	17/05/2008 17/05/2008	LCS-2	17/5/08%
vTPH C6 - C9	mg/kg	25	GC.16	<25	19282-16	<25 <25	LCS-2	129%
Benzene	mg/kg	0.5	GC.14	<0.5	19282-16	<0.5 <0.5	LCS-2	122%
Toluene	mg/kg	0.5	GC.14	<0.5	19282-16	<0.5 <0.5	LCS-2	135%
Ethylbenzene	mg/kg	1	GC.14	<1.0	19282-16	<1.0 <1.0	LCS-2	125%
m+p-xylene	mg/kg	2	GC.14	<2.0	19282-16	<2.0 <2.0	LCS-2	131%
o-Xylene	mg/kg	1	GC.14	<1.0	19282-16	<1.0 <1.0	LCS-2	134%
Surrogate aaa- Trifluorotoluene	%		GC.14	94	19282-16	94 87 RPD: 8	LCS-2	104%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
sTPH in Soil (C10-C36)						Base II Duplicate II %RPD		
Date extracted	-			[NT]	19282-16	16/05/2008 16/05/2008	LCS-2	16/5/08%
Date analysed	-			[NT]	19282-16	16/05/2008 16/05/2008	LCS-2	17/5/08%
TPH C10 - C14	mg/kg	50	GC.3	<50	19282-16	<50 <50	LCS-2	95%
TPH C ₁₅ - C ₂₈	mg/kg	100	GC.3	<100	19282-16	<100 <100	LCS-2	89%
TPH C29 - C36	mg/kg	100	GC.3	<100	19282-16	<100 <100	LCS-2	102%
Surrogate o-Terphenyl	%		GC.3	[NT]	19282-16	100 98 RPD: 2	LCS-2	109%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II %RPD		
Date extracted	-			[NT]	19282-2	16/05/2008 16/05/2008	LCS-2	16/5/08%
Date analysed	-			[NT]	19282-2	17/05/2008 17/05/2008	LCS-2	17/5/08%
Naphthalene	mg/kg	0.1	GC.12 subset	<0.1	19282-2	<0.1 <0.1	LCS-2	114%
Acenaphthylene	mg/kg	0.1	GC.12 subset	<0.1	19282-2	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	0.1	GC.12 subset	<0.1	19282-2	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	0.1	GC.12 subset	<0.1	19282-2	<0.1 <0.1	LCS-2	107%
Phenanthrene	mg/kg	0.1	GC.12 subset	<0.1	19282-2	<0.1 0.4	LCS-2	107%
Anthracene	mg/kg	0.1	GC.12 subset	<0.1	19282-2	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	0.1	GC.12 subset	<0.1	19282-2	<0.1 0.3	LCS-2	107%
Pyrene	mg/kg	0.1	GC.12 subset	<0.1	19282-2	<0.1 0.3	LCS-2	111%
Benzo(a)anthracene	mg/kg	0.1	GC.12 subset	<0.1	19282-2	<0.1 0.1	[NR]	[NR]
Chrysene	mg/kg	0.1	GC.12 subset	<0.1	19282-2	<0.1 0.1	LCS-2	116%
Benzo(b+k)fluoranthene	mg/kg	0.2	GC.12 subset	<0.2	19282-2	<0.2 <0.2	[NR]	[NR]

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
DALIG !:: O-!!					Sm#	Dage II Dumilia - (- II 0/ DDD		Recovery
PAHs in Soil						Base II Duplicate II %RPD		
Benzo(a)pyrene	mg/kg	0.05	GC.12 subset	<0.05	19282-2	<0.05 0.07	LCS-2	108%
Dibenzo(a,h)anthracene	mg/kg	0.1	GC.12 subset	<0.1	19282-2	<0.1 <0.1	[NR]	[NR]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	GC.12 subset	<0.1	19282-2	<0.1 <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	GC.12 subset	<0.1	19282-2	<0.1 <0.1	[NR]	[NR]
Surrogate p-Terphenyl- d ₁₄	%		GC.12 subset	[NT]	19282-2	93 111 RPD: 18	LCS-2	123%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
Organochlorine Pesticides in soil						Base II Duplicate II %RPD		Recovery
Date extracted	-			16/5/08	19282-4	16/05/2008 16/05/2008	LCS-2	16/5/08%
Date analysed	_			16/5/08	19282-4	16/05/2008 16/05/2008	LCS-2	16/5/08%
НСВ	mg/kg	0.1	GC-5	<0.1	19282-4	<0.1 <0.1	[NR]	[NR]
alpha-BHC	mg/kg	0.1	GC-5	<0.1	19282-4	<0.1 <0.1	LCS-2	118%
gamma-BHC	mg/kg	0.1	GC-5	<0.1	19282-4	<0.1 <0.1	[NR]	[NR]
beta-BHC	mg/kg	0.1	GC-5	<0.1	19282-4	<0.1 <0.1	LCS-2	121%
Heptachlor	mg/kg	0.1	GC-5	<0.1	19282-4	<0.1 <0.1	LCS-2	127%
delta-BHC	mg/kg	0.1	GC-5	<0.1	19282-4	<0.1 <0.1	[NR]	[NR]
Aldrin	mg/kg	0.1	GC-5	<0.1	19282-4	<0.1 <0.1	LCS-2	119%
Heptachlor Epoxide	mg/kg	0.1	GC-5	<0.1	19282-4	<0.1 <0.1	LCS-2	123%
gamma-Chlordane	mg/kg	0.1	GC-5	<0.1	19282-4	<0.1 <0.1	[NR]	[NR]
alpha-chlordane	mg/kg	0.1	GC-5	<0.1	19282-4	<0.1 <0.1	[NR]	[NR]
Endosulfan I	mg/kg	0.1	GC-5	<0.1	19282-4	<0.1 <0.1	[NR]	[NR]
pp-DDE	mg/kg	0.1	GC-5	<0.1	19282-4	<0.1 <0.1	LCS-2	121%
Dieldrin	mg/kg	0.1	GC-5	<0.1	19282-4	<0.1 <0.1	LCS-2	122%
Endrin	mg/kg	0.1	GC-5	<0.1	19282-4	<0.1 <0.1	LCS-2	106%
pp-DDD	mg/kg	0.1	GC-5	<0.1	19282-4	<0.1 <0.1	LCS-2	110%
Endosulfan II	mg/kg	0.1	GC-5	<0.1	19282-4	<0.1 <0.1	[NR]	[NR]
pp-DDT	mg/kg	0.1	GC-5	<0.1	19282-4	<0.1 <0.1	[NR]	[NR]
Endrin Aldehyde	mg/kg	0.1	GC-5	<0.1	19282-4	<0.1 <0.1	[NR]	[NR]
Endosulfan Sulphate	mg/kg	0.1	GC-5	<0.1	19282-4	<0.1 <0.1	LCS-2	129%
Methoxychlor	mg/kg	0.1	GC-5	<0.1	19282-4	<0.1 <0.1	[NR]	[NR]
Surrogate TCLMX	%		GC-5	97	19282-4	7.0 72 RPD: 165	LCS-2	104%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
Organophosphorus Pesticides					Sm#	Base II Duplicate II %RPD		Recovery
Date extracted	-			16/5/08	19282-4	16/05/2008 16/05/2008	LCS-2	16/5/08%
Date analysed	-			16/5/08	19282-4	16/05/2008 16/05/2008	LCS-2	16/5/08%
Diazinon	mg/kg	0.1	GC.8	<0.1	19282-4	<0.1 <0.1	[NR]	[NR]
Dimethoate	mg/kg	0.1	GC.8	<0.1	19282-4	<0.1 <0.1	[NR]	[NR]
Chlorpyriphos-methyl	mg/kg	0.1	GC.8	<0.1	19282-4	<0.1 <0.1	[NR]	[NR]
Ronnel	mg/kg	0.1	GC.8	<0.1	19282-4	<0.1 <0.1	[NR]	[NR]
Chlorpyriphos	mg/kg	0.1	GC.8	<0.1	19282-4	<0.1 <0.1	LCS-2	106%
Fenitrothion	mg/kg	0.1	GC.8	<0.1	19282-4	<0.1 <0.1	LCS-2	92%
Bromophos-ethyl	mg/kg	0.1	GC.8	<0.1	19282-4	<0.1 <0.1	[NR]	[NR]
Ethion	mg/kg	0.1	GC.8	<0.1	19282-4	<0.1 <0.1	LCS-2	130%
Surrogate TCLMX	%		GC.8	97	19282-4	73 72 RPD: 1	LCS-2	85%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PCBs in Soil						Base II Duplicate II %RPD		
Date extracted	-			16/5/08	19282-4	16/05/2008 16/05/2008	LCS-2	16/5/08%
Date analysed	-			16/5/08	19282-4	16/05/2008 16/05/2008	LCS-2	16/5/08%
Arochlor 1016	mg/kg	0.1	GC-6	<0.1	19282-4	<0.1 <0.1	[NR]	[NR]
Arochlor 1232	mg/kg	0.1	GC-6	<0.1	19282-4	<0.1 <0.1	[NR]	[NR]
Arochlor 1242	mg/kg	0.1	GC-6	<0.1	19282-4	<0.1 <0.1	[NR]	[NR]
Arochlor 1248	mg/kg	0.1	GC-6	<0.1	19282-4	<0.1 <0.1	[NR]	[NR]
Arochlor 1254	mg/kg	0.1	GC-6	<0.1	19282-4	<0.1 <0.1	LCS-2	109%
Arochlor 1260	mg/kg	0.1	GC-6	<0.1	19282-4	<0.1 <0.1	[NR]	[NR]
Surrogate TCLMX	%		GC-6	97	19282-4	73 72 RPD: 1	LCS-2	91%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
Total Phenolics in Soil						Base II Duplicate II %RPD		Recovery
Date extracted	-			16/5/08	19282-9	16/05/2008 16/05/2008	LCS-1	1/5/08%
Date analysed	-			19/5/08	19282-9	19/05/2008 19/05/2008	LCS-1	19/5/08%
Total Phenolics (as Phenol)	mg/kg	5	LAB.30	<5.0	19282-9	<5.0 <5.0	LCS-1	114%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil						Base II Duplicate II %RPD		
Date digested	-			16/05/0 8	19282-2	16/05/2008 16/05/2008	LCS-2	16/05/08%
Date analysed	-			20/05/0	19282-2	20/05/2008 20/05/2008	LCS-2	20/05/08%
Arsenic	mg/kg	4	Metals.20 ICP-AES	<4.0	19282-2	<4.0 <4.0	LCS-2	92%
Cadmium	mg/kg	1	Metals.20 ICP-AES	<1.0	19282-2	<1.0 <1.0	LCS-2	97%
Chromium	mg/kg	1	Metals.20 ICP-AES	<1.0	19282-2	2.2 2.2 RPD: 0	LCS-2	97%

Envirolab Reference: 19282 Revision No: R 00

Page 30 of 40

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
Acid Extractable metals in soil					Sm#	Base II Duplicate II %RPD		Recovery
Copper	mg/kg	1	Metals.20 ICP-AES	<1.0	19282-2	3.1 3.7 RPD: 18	LCS-2	100%
Lead	mg/kg	1	Metals.20 ICP-AES	<1.0	19282-2	10 10 RPD: 0	LCS-2	95%
Mercury	mg/kg	0.1	Metals.21 CV-AAS	<0.10	19282-2	0.56 0.57 RPD: 2	LCS-2	104%
Nickel	mg/kg	1	Metals.20 ICP-AES	<1.0	19282-2	1.3 1.6 RPD: 21	LCS-2	97%
Zinc	mg/kg	1	Metals.20 ICP-AES	<1.0	19282-2	11 12 RPD: 9	LCS-2	98%
Phosphorus	mg/kg	10	Metals.20 ICP-AES	<10	[NT]	[NT]	LCS-2	90%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Miscellaneous Inorg - soil						Base II Duplicate II %RPD		-
Ammonia as N in soil	mg/kg	0.5	LAB.57	<0.5	19282-12	1.3 1.3 RPD: 0	LCS-1	107%
Nitrate as N in soil	mg/kg	0.5	LAB.55	<0.5	19282-12	<0.5 <0.5	LCS-1	98%
Nitrite as N in soil	mg/kg	0.1	LAB.56	<0.1	19282-12	<0.1 <0.1	LCS-1	106%
Total Kjeldahl Nitrogen	mg/kg	30	Ext-020	<30	19282-12	1700 [N/T]	[NR]	[NR]
Total Nitrogen in soil	mg/kg	10	LAB.66	<10	19282-12	1700 [N/T]	[NR]	[NR]
pH 1:5 soil:water	pH Units		LAB.1	[NT]	[NT]	[NT]	LCS-1	100%
Electrical Conductivity 1:5 soil:water	μS/cm	1	LAB.2	<1.0	[NT]	[NT]	LCS-1	102%
Salinity as NACL *	mg/kg	1	LAB.2	<1.0	[NT]	[NT]	LCS-1	102%
Resistivity in soil*	ohm m	1	LAB.2	<1.0	[NT]	[NT]	LCS-1	102%
Chloride 1:5 soil:water	mg/kg	100	LAB.11	<100	[NT]	[NT]	[NR]	[NR]
Sulphate, SO4 1:5 soil:water	mg/kg	25	LAB.9	<25	[NT]	[NT]	LCS-1	106%
QUALITY CONTROL Moisture	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD		
Date prepared	-			16/5/08	19282-2	16/05/2008 16/05/2008		
Date analysed	_			16/5/08	19282-2	16/05/2008 16/05/2008		
Moisture	%	0.1	LAB.8	<0.10	19282-2	10 10 RPD: 0		
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Herbicides in Soil						Base II Duplicate II %RPD		,
Dicamba	mg/kg	0.1	Ext-020	<0.1	[NT]	[NT]	LCS-1	98%
MCPA	mg/kg	0.1	Ext-020	<0.1	[NT]	[NT]	LCS-1	114%
Dichlorprop	mg/kg	0.1	Ext-020	<0.1	[NT]	[NT]	LCS-1	114%
2,4-D	mg/kg	0.1	Ext-020	<0.1	[NT]	[NT]	LCS-1	126%
2,4,5-T	mg/kg	0.1	Ext-020	<0.1	[NT]	[NT]	LCS-1	125%
2,4,5-TP	mg/kg	0.1	Ext-020	<0.1	[NT]	[NT]	LCS-1	112%
2,4-DB	mg/kg	0.1	Ext-020	<0.1	[NT]	[NT]	LCS-1	104%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Herbicides in Soil					3111#	Base II Duplicate II %RI	PD	Recovery
MCPP	mg/kg	0.1	Ext-020	<0.1	[NT]	[NT]	LCS-1	100%
Triclopyr	mg/kg	0.1	Ext-020	<0.1	[NT]	[NT]	LCS-1	136%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank				
Asbestos ID - materials								
Date analysed	-			[NT]				\neg
QUALITY CONTROL	UNITS	;	Dup. Sm#		Duplicate	Spike Sm#	Spike % Recovery	
VOC's in soil				Base + I	Duplicate + %RPD			
Date extracted	-		[NT]		[NT]	19282-11	16/5/08%	
Date analysed	-		[NT]		[NT]	19282-11	18/5/08%	
Dichlorodifluoromethane	mg/kg		[NT]		[NT]	[NR]	[NR]	
Chloromethane	mg/kg	ı	[NT]		[NT]	[NR]	[NR]	
Vinyl Chloride	mg/kg		[NT]		[NT]	[NR]	[NR]	
Bromomethane	mg/kg	1	[NT]		[NT]	[NR]	[NR]	
Chloroethane	mg/kg	1	[NT]		[NT]	[NR]	[NR]	
Trichlorofluoromethane	mg/kg	1	[NT]		[NT]	[NR]	[NR]	
1,1-Dichloroethene	mg/kg		[NT]		[NT]	[NR]	[NR]	
trans-1,2-dichloroethene	mg/kg	1	[NT]		[NT]	[NR]	[NR]	
1,1-dichloroethane	mg/kg	1	[NT]		[NT]	19282-11	89%	
cis-1,2-dichloroethene	mg/kg	1	[NT]		[NT]	[NR]	[NR]	
bromochloromethane	mg/kg	1	[NT]		[NT]	[NR]	[NR]	
chloroform	mg/kg	1	[NT]		[NT]	19282-11	80%	
2,2-dichloropropane	mg/kg	1	[NT]		[NT]	[NR]	[NR]	
1,2-dichloroethane	mg/kg	1	[NT]		[NT]	19282-11	83%	
1,1,1-trichloroethane	mg/kg	1	[NT]		[NT]	19282-11	79%	
1,1-dichloropropene	mg/kg		[NT]		[NT]	[NR]	[NR]	
carbon tetrachloride	mg/kg	1	[NT]		[NT]	[NR]	[NR]	
Benzene	mg/kg		[NT]		[NT]	[NR]	[NR]	
dibromomethane	mg/kg	1	[NT]		[NT]	[NR]	[NR]	
1,2-dichloropropane	mg/kg	1	[NT]		[NT]	[NR]	[NR]	
trichloroethene	mg/kg	1	[NT]		[NT]	19282-11	109%	
bromodichloromethane	mg/kg	1	[NT]		[NT]	19282-11	107%	
trans-1,3-dichloropropene	mg/kg	,	[NT]		[NT]	[NR]	[NR]	
cis-1,3-dichloropropene	mg/kg		[NT]		[NT]	[NR]	[NR]	
1,1,2-trichloroethane	mg/kg		[NT]		[NT]	[NR]	[NR]	
Toluene	mg/kg		[NT]		[NT]	[NR]	[NR]	
1,3-dichloropropane	mg/kg		[NT]		[NT]	[NR]	[NR]	
dibromochloromethane	mg/kg		[NT]		[NT]	19282-11	104%	
1,2-dibromoethane	mg/kg		[NT]		[NT]	[NR]	[NR]	

Envirolab Reference: 19282 Revision No: R 00

QUALITY CONTROL VOC's in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
VOC 5 III 50II			Base + Duplicate + /0KFD		
tetrachloroethene	mg/kg	[NT]	[NT]	19282-11	102%
1,1,1,2-tetrachloroethane	mg/kg	[NT]	[NT]	[NR]	[NR]
chlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
Ethylbenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
bromoform	mg/kg	[NT]	[NT]	[NR]	[NR]
m+p-xylene	mg/kg	[NT]	[NT]	[NR]	[NR]
styrene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,1,2,2-tetrachloroethane	mg/kg	[NT]	[NT]	[NR]	[NR]
o-Xylene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2,3-trichloropropane*	mg/kg	[NT]	[NT]	[NR]	[NR]
isopropylbenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
bromobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
n-propyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]
2-chlorotoluene	mg/kg	[NT]	[NT]	[NR]	[NR]
4-chlorotoluene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,3,5-trimethyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]
tert-butyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2,4-trimethyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,3-dichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
sec-butyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,4-dichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
4-isopropyl toluene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2-dichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
n-butyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2-dibromo-3- chloropropane	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2,4-trichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
hexachlorobutadiene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2,3-trichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate Dibromofluorometha	%	[NT]	[NT]	19282-11	81%
Surrogate aaa- Trifluorotoluene	%	[NT]	[NT]	19282-11	98%
Surrogate Toluene-da	%	[NT]	[NT]	19282-11	91%
Surrogate 4- Bromofluorobenzene	%	[NT]	[NT]	19282-11	69%

QUALITY CONTROL vTPH & BTEX in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recover
Date extracted	-	19282-47	16/05/2008 16/05/2008	19282-17	16/5/08%
Date analysed	-	19282-47	17/05/2008 17/05/2008	19282-17	17/5/08%
vTPH C6 - C9	mg/kg	19282-47	<25 <25	19282-17	104%
Benzene	mg/kg	19282-47	<0.5 <0.5	19282-17	111%
Toluene	mg/kg	19282-47	<0.5 <0.5	19282-17	106%
Ethylbenzene	mg/kg	19282-47	<1.0 <1.0	19282-17	97%
m+p-xylene	mg/kg	19282-47	<2.0 <2.0	19282-17	103%
o-Xylene	mg/kg	19282-47	<1.0 <1.0	19282-17	107%
Surrogate aaa- Trifluorotoluene	%	19282-47	91 90 RPD: 1	19282-17	92%
QUALITY CONTROL sTPH in Soil (C10-C36)	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	19282-46	16/05/2008 16/05/2008	19282-17	16/5/08%
Date analysed	-	19282-46	17/05/2008 17/05/2008	19282-17	17/5/08%
TPH C ₁₀ - C ₁₄	mg/kg	19282-46	<50 <50	19282-17	91%
TPH C ₁₅ - C ₂₈	mg/kg	19282-46	<100 <100	19282-17	86%
TPH C29 - C36	mg/kg	19282-46	<100 <100	19282-17	95%
Surrogate o-Terphenyl	%	19282-46	92 94 RPD: 2	19282-17	110%
QUALITY CONTROL PAHs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recover
Date extracted	-	19282-46	16/05/2008 16/05/2008	19282-7	16/5/08%
Date analysed	-	19282-46	17/05/2008 17/05/2008	19282-7	16/5/08%
Naphthalene	mg/kg	19282-46	<0.1 <0.1	19282-7	90%
Acenaphthylene	mg/kg	19282-46	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	19282-46	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	19282-46	<0.1 <0.1	19282-7	97%
Phenanthrene	mg/kg	19282-46	<0.1 <0.1	19282-7	100%
Anthracene	mg/kg	19282-46	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	19282-46	<0.1 <0.1	19282-7	99%
Pyrene	mg/kg	19282-46	<0.1 <0.1	19282-7	104%
Benzo(a)anthracene	mg/kg	19282-46	<0.1 <0.1	[NR]	[NR]
Chrysene	mg/kg	19282-46	<0.1 <0.1	19282-7	108%
Benzo(b+k)fluoranthene	mg/kg	19282-46	<0.2 <0.2	[NR]	[NR]
Benzo(a)pyrene	mg/kg	19282-46	<0.05 <0.05	19282-7	86%
Dibenzo(a,h)anthracene	mg/kg	19282-46	<0.1 <0.1	[NR]	[NR]
ndeno(1,2,3-c,d)pyrene	mg/kg	19282-46	<0.1 <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	19282-46	<0.1 <0.1	[NR]	[NR]
Surrogate p-Terphenyl-	%	19282-46	111 110 RPD: 1	19282-7	108%

QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	19282-12	16/5/08%
Date analysed	-	[NT]	[NT]	19282-12	16/5/08%
HCB	mg/kg	[NT]	[NT]	[NR]	[NR]
alpha-BHC	mg/kg	[NT]	[NT]	19282-12	101%
gamma-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]
beta-BHC	mg/kg	[NT]	[NT]	19282-12	110%
Heptachlor	mg/kg	[NT]	[NT]	19282-12	113%
delta-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]
Aldrin	mg/kg	[NT]	[NT]	19282-12	105%
Heptachlor Epoxide	mg/kg	[NT]	[NT]	19282-12	107%
gamma-Chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]
alpha-chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]
Endosulfan I	mg/kg	[NT]	[NT]	[NR]	[NR]
pp-DDE	mg/kg	[NT]	[NT]	19282-12	105%
Dieldrin	mg/kg	[NT]	[NT]	19282-12	107%
Endrin	mg/kg	[NT]	[NT]	19282-12	94%
pp-DDD	mg/kg	[NT]	[NT]	19282-12	96%
Endosulfan II	mg/kg	[NT]	[NT]	[NR]	[NR]
pp-DDT	mg/kg	[NT]	[NT]	[NR]	[NR]
Endrin Aldehyde	mg/kg	[NT]	[NT]	[NR]	[NR]
Endosulfan Sulphate	mg/kg	[NT]	[NT]	19282-12	95%
Methoxychlor	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%	[NT]	[NT]	19282-12	71%

QUALITY CONTROL Organophosphorus Pesticides	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	19282-12	16/5/08%
Date analysed	-	[NT]	[NT]	19282-12	16/5/08%
Diazinon	mg/kg	[NT]	[NT]	[NR]	[NR]
Dimethoate	mg/kg	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos-methyl	mg/kg	[NT]	[NT]	[NR]	[NR]
Ronnel	mg/kg	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos	mg/kg	[NT]	[NT]	19282-12	107%
Fenitrothion	mg/kg	[NT]	[NT]	19282-12	88%
Bromophos-ethyl	mg/kg	[NT]	[NT]	[NR]	[NR]
Ethion	mg/kg	[NT]	[NT]	19282-12	129%
Surrogate TCLMX	%	[NT]	[NT]	19282-12	75%
QUALITY CONTROL PCBs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	19282-12	16/5/08%
Date analysed	-	[NT]	[NT]	19282-12	16/5/08%
Arochlor 1016	mg/kg	[NT]	[NT]	[NR]	[NR]
Arochlor 1232	mg/kg	[NT]	[NT]	[NR]	[NR]
Arochlor 1242	mg/kg	[NT]	[NT]	[NR]	[NR]
Arochlor 1248	mg/kg	[NT]	[NT]	[NR]	[NR]
Arochlor 1254	mg/kg	[NT]	[NT]	19282-12	103%
Arochlor 1260	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%	[NT]	[NT]	19282-12	105%
QUALITY CONTROL Total Phenolics in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	19282-17	16/5/08%
Date analysed	-	[NT]	[NT]	19282-17	19/5/08%
Total Phenolics (as Phenol)	mg/kg	[NT]	[NT]	19282-17	100%
QUALITY CONTROL Acid Extractable metals in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date digested	-	19282-26	16/05/2008 16/05/2008	LCS-3	16/05/08%
Date analysed	-	19282-26	20/05/2008 20/05/2008	LCS-3	20/05/08%
Arsenic	mg/kg	[NT]	[NT]	LCS-3	92%
Cadmium	mg/kg	[NT]	[NT]	LCS-3	97%
Chromium	mg/kg	[NT]	[NT]	LCS-3	96%
Copper	mg/kg	[NT]	[NT]	LCS-3	99%
Lead	mg/kg	[NT]	[NT]	LCS-3	95%
Mercury	mg/kg	[NT]	[NT]	LCS-3	106%

QUALITY CONTROL Acid Extractable metals in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Nickel	mg/kg	[NT]	[NT]	LCS-3	96%
Zinc	mg/kg	[NT]	[NT]	LCS-3	96%
Phosphorus	mg/kg	19282-26	77 63 RPD: 20	LCS-3	87%
QUALITY CONTROL Miscellaneous Inorg - soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Ammonia as N in soil	mg/kg	[NT]	[NT]	19282-26	85%
Nitrate as N in soil	mg/kg	[NT]	[NT]	19282-26	90%
Nitrite as N in soil	mg/kg	[NT]	[NT]	19282-26	93%
Total Kjeldahl Nitrogen	mg/kg	[NT]	[NT]	[NR]	[NR]
Total Nitrogen in soil	mg/kg	[NT]	[NT]	[NR]	[NR]
pH 1:5 soil:water	pH Units	[NT]	[NT]	[NR]	[NR]
Electrical Conductivity 1:5 soil:water	μS/cm	[NT]	[NT]	[NR]	[NR]
Salinity as NACL *	mg/kg	[NT]	[NT]	[NR]	[NR]
Resistivity in soil*	ohm m	[NT]	[NT]	[NR]	[NR]
Chloride 1:5 soil:water	mg/kg	[NT]	[NT]	[NR]	[NR]
Sulphate, SO4 1:5 soil:water	mg/kg	[NT]	[NT]	[NR]	[NR]
QUALITY CONTROL Moisture	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD		
Date prepared	-	19282-8	16/05/2008 16/05/2008		
Date analysed	-	19282-8	16/05/2008 16/05/2008		
Moisture	%	19282-8	9.0 9.0 RPD: 0		
QUALITY CONTROL Acid Extractable metals in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date digested	-	19282-41	16/05/2008 16/05/2008	19282-5	16/05/08%
Date analysed	-	19282-41	20/05/2008 20/05/2008	19282-5	20/05/08%
Arsenic	mg/kg	19282-41	<4.0 <4.0	19282-5	100%
Cadmium	mg/kg	19282-41	<1.0 <1.0	19282-5	100%
Chromium	mg/kg	19282-41	3.3 2.9 RPD: 13	19282-5	102%
Copper	mg/kg	19282-41	1.2 1.1 RPD: 9	19282-5	105%
Lead	mg/kg	19282-41	1.1 1.2 RPD: 9	19282-5	99%
Mercury	mg/kg	19282-41	<0.10 <0.10	19282-5	105%
Nickel	mg/kg	19282-41	<1.0 <1.0	19282-5	102%
Zinc	mg/kg	19282-41	9.6 9.0 RPD: 6	19282-5	103%
Phosphorus	mg/kg	[NT]	[NT]	19282-5	99%

QUALITY CONTROL Moisture	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD		
Date prepared	-	19282-16	16/05/2008 16/05/2008		
Date analysed	_	19282-16	16/05/2008 16/05/2008		
Moisture	%	19282-16	21 21 RPD: 0		
QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil	55	Эср. Э	Base + Duplicate + %RPD	Cpillo Cillin	opine /arteserery
Date digested	-	19282-58	16/05/2008 16/05/2008	19282-43	16/05/08%
Date analysed	-	19282-58	20/05/2008 20/05/2008	19282-43	20/05/08%
Arsenic	mg/kg	19282-58	<4.0 5.2	19282-43	95%
Cadmium	mg/kg	19282-58	<1.0 <1.0	19282-43	98%
Chromium	mg/kg	19282-58	8.9 13 RPD: 37	19282-43	101%
Copper	mg/kg	19282-58	6.3 6.8 RPD: 8	19282-43	104%
Lead	mg/kg	19282-58	47 36 RPD: 27	19282-43	102%
Mercury	mg/kg	19282-58	<0.10 <0.10	19282-43	108%
Nickel	mg/kg	19282-58	1.7 2.2 RPD: 26	19282-43	100%
Zinc	mg/kg	19282-58	74 67 RPD: 10	19282-43	98%
Phosphorus	mg/kg	[NT]	[NT]	19282-43	#
QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate		
Moisture			Base + Duplicate + %RPD		
Date prepared	-	19282-26	16/05/2008 16/05/2008		
Date analysed	-	19282-26	16/05/2008 16/05/2008		
Moisture	%	19282-26	2.5 2.5 RPD: 0		
QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate		
Moisture			Base + Duplicate + %RPD		
Date prepared	-	19282-41	16/05/2008 16/05/2008		
Date analysed	-	19282-41	16/05/2008 16/05/2008		
Moisture	%	19282-41	24 24 RPD: 0		
QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate		
Moisture			Base + Duplicate + %RPD		
Date prepared	-	19282-46	16/05/2008 16/05/2008		
Date analysed	-	19282-46	16/05/2008 16/05/2008		
Moisture	%	19282-46	19 19 RPD: 0		
QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate		
Moisture			Base + Duplicate + %RPD		
Date prepared	-	19282-47	16/05/2008 16/05/2008		
Date analysed	-	19282-47	16/05/2008 16/05/2008		
Moisture	%	19282-47	18 18 RPD: 0		

QUALITY CONTROL Moisture	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD
Date prepared	-	19282-58	16/05/2008 16/05/2008
Date analysed	-	19282-58	16/05/2008 16/05/2008
Moisture	%	19282-58	14 14 RPD: 0

Report Comments:

Texture Classification:

26 = Sand

31 = Sandy Loam

48 = Sandy Loam

51 = Sandy Loam

57 = Sandy Loam

Trace Elements: An accurate spike could not be calculated due to the high level of this analyte in the sample.

TKN alaysed by NMI: Report Number - RN680565.

Asbestos was analysed by Approved Identifier: Joshua Lim

INS: Insufficient sample for this test NT: Not tested PQL: Practical Quantitation Limit RPD: Relative Percent Difference NA: Test not required LCS: Laboratory Control Sample

NR: Not requested <: Less than >: Greater than

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria:

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for

SVOC and speciated phenols is acceptable. Surrogates: 60-140% is acceptable for general organics and 10-140% for

SVOC and speciated phenols.

Envirolab Services Pty Ltd

Joshua Vim Chemist

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 19325

Client:

Consulting Earth Scientists

Suite 121, 26-32 Pirrama Rd Pyrmont NSW 2009

Attention: Luke Jenkins / Kelly Weir

Sample log in details:

Your Reference: CES050706-BCC Area A

No. of samples: 77 Soils, 1 Material

Date samples received: 14/05/08
Date completed instructions received: 14/05/08

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: 26/05/08

Date of Preliminary Report: Not Issued Issue Date: 26/05/08

NATA accreditation number 2901. This document shall not be reproduced except in full.

This document is issued in accordance with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Tests not covered by NATA are denoted with *.

R 00

Results Approved By:

Revision No:

Business Development & Quality Manager

Envirolab Reference: 19325 Page 1 of 41

VOC's in soil					
Our Reference:	UNITS	19325-8	19325-11	19325-12	19325-77
Your Reference		130508-283	130508-286	130508-287	Trip Blank
		-KW	-KW	-KW	
Depth		-	-	-	-
Date Sampled Type of sample		13/05/2008 Soil	13/05/2008 Soil	13/05/2008 Soil	13/05/2008 Soil
Sample Matrix Code		SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00
Date extracted	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	17/05/2008	17/05/2008	17/05/2008	17/05/2008
Dichlorodifluoromethane	mg/kg	<10	<10	<10	<10
Chloromethane	mg/kg	<10	<10	<10	<10
Vinyl Chloride	mg/kg	<10	<10	<10	<10
Bromomethane	mg/kg	<10	<10	<10	<10
Chloroethane	mg/kg	<10	<10	<10	<10
Trichlorofluoromethane	mg/kg	<10	<10	<10	<10
1,1-Dichloroethene	mg/kg	<1.0	<1.0	<1.0	<1.0
trans-1,2-dichloroethene	mg/kg	<1.0	<1.0	<1.0	<1.0
1,1-dichloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0
cis-1,2-dichloroethene	mg/kg	<1.0	<1.0	<1.0	<1.0
bromochloromethane	mg/kg	<1.0	<1.0	<1.0	<1.0
chloroform	mg/kg	<1.0	<1.0	<1.0	<1.0
2,2-dichloropropane	mg/kg	<1.0	<1.0	<1.0	<1.0
1,2-dichloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0
1,1,1-trichloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0
1,1-dichloropropene	mg/kg	<1.0	<1.0	<1.0	<1.0
carbon tetrachloride	mg/kg	<1.0	<1.0	<1.0	<1.0
Benzene	mg/kg	<0.5	<0.5	<0.5	<0.5
dibromomethane	mg/kg	<1.0	<1.0	<1.0	<1.0
1,2-dichloropropane	mg/kg	<1.0	<1.0	<1.0	<1.0
trichloroethene	mg/kg	<1.0	<1.0	<1.0	<1.0
bromodichloromethane	mg/kg	<1.0	<1.0	<1.0	<1.0
trans-1,3-dichloropropene	mg/kg	<1.0	<1.0	<1.0	<1.0
cis-1,3-dichloropropene	mg/kg	<1.0	<1.0	<1.0	<1.0
1,1,2-trichloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5
1,3-dichloropropane	mg/kg	<1.0	<1.0	<1.0	<1.0
dibromochloromethane	mg/kg	<1.0	<1.0	<1.0	<1.0
1,2-dibromoethane	mg/kg	<1.0	<1.0	<1.0	<1.0
tetrachloroethene	mg/kg	<1.0	<1.0	<1.0	<1.0
1,1,1,2-tetrachloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0
chlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0
Ethylbenzene	mg/kg	<1.0	<1.0	<1.0	<1.0
bromoform	mg/kg	<1.0	<1.0	<1.0	<1.0

VOC's in soil Our Reference:	UNITS	19325-8	19325-11	19325-12	19325-77
Your Reference		130508-283	130508-286	130508-287	Trip Blank
Depth		-KW	-KW -	-KW -	-
Date Sampled Type of sample Sample Matrix Code Time Sampled		13/05/2008 Soil SO 00:00	13/05/2008 Soil SO 00:00	13/05/2008 Soil SO 00:00	13/05/2008 Soil SO 00:00
m+p-xylene	mg/kg	<2.0	<2.0	<2.0	<2.0
styrene	mg/kg	<1.0	<1.0	<1.0	<1.0
1,1,2,2-tetrachloroethane	mg/kg	<1.0	<1.0	<1.0	<1.0
o-Xylene	mg/kg	<1.0	<1.0	<1.0	<1.0
1,2,3-trichloropropane*	mg/kg	<1.0	<1.0	<1.0	<1.0
isopropylbenzene	mg/kg	<1.0	<1.0	<1.0	<1.0
bromobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0
n-propyl benzene	mg/kg	<1.0	<1.0	<1.0	<1.0
2-chlorotoluene	mg/kg	<1.0	<1.0	<1.0	<1.0
4-chlorotoluene	mg/kg	<1.0	<1.0	<1.0	<1.0
1,3,5-trimethyl benzene	mg/kg	<1.0	<1.0	<1.0	<1.0
tert-butyl benzene	mg/kg	<1.0	<1.0	<1.0	<1.0
1,2,4-trimethyl benzene	mg/kg	<1.0	<1.0	<1.0	<1.0
1,3-dichlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0
sec-butyl benzene	mg/kg	<1.0	<1.0	<1.0	<1.0
1,4-dichlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0
4-isopropyl toluene	mg/kg	<1.0	<1.0	<1.0	<1.0
1,2-dichlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0
n-butyl benzene	mg/kg	<1.0	<1.0	<1.0	<1.0
1,2-dibromo-3-chloropropane	mg/kg	<1.0	<1.0	<1.0	<1.0
1,2,4-trichlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0
hexachlorobutadiene	mg/kg	<1.0	<1.0	<1.0	<1.0
1,2,3-trichlorobenzene	mg/kg	<1.0	<1.0	<1.0	<1.0
Surrogate Dibromofluorometha	%	88	91	84	75
Surrogate aaa-Trifluorotoluene	%	87	87	87	103
Surrogate Toluene-da	%	91	93	94	90
Surrogate 4-Bromofluorobenzene	%	78	77	75	79

vTPH & BTEX in Soil						
Our Reference:	UNITS	19325-2	19325-6	19325-24	19325-38	19325-43
Your Reference		130508-277	130508-281	130508-302	130508-316	130508-32
-		-KW	-KW	-KW	-KW	-KW
Depth		-	-	-	-	-
Date Sampled Type of sample		13/05/2008 Soil	13/05/2008 Soil	13/05/2008 Soil	13/05/2008 Soil	13/05/200 Soil
Sample Matrix Code		SO	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/200
Date analysed	_	17/05/2008	17/05/2008	17/05/2008	17/05/2008	17/05/200
vTPH C6 - C9	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
m+p-xylene	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0
o-Xylene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Surrogate aaa-Trifluorotoluene	%	94	92	109	107	93
vTPH & BTEX in Soil						
	UNITS	19325-45	19325-46	19325-51	19325-54	19325-7
Our Reference:						
Our Reference:					130508-300	
Our Reference: Your Reference		130508-323 -KW	130508-324 -KW	130508-329 -KW	130508-300 -KW	
		130508-323	130508-324	130508-329		
Your Reference		130508-323	130508-324	130508-329		Trip Blan
Your Reference Depth Date Sampled Type of sample		130508-323 -KW - 13/05/2008 Soil	130508-324 -KW - 13/05/2008 Soil	130508-329 -KW - 13/05/2008 Soil	-KW - 13/05/2008 Soil	Trip Blan - 13/05/200 Soil
Your Reference Depth Date Sampled Type of sample Sample Matrix Code		130508-323 -KW - 13/05/2008 Soil SO	130508-324 -KW - 13/05/2008 Soil SO	130508-329 -KW - 13/05/2008 Soil SO	-KW - 13/05/2008 Soil SO	Trip Blan - 13/05/200 Soil SO
Your Reference Depth Date Sampled Type of sample		130508-323 -KW - 13/05/2008 Soil	130508-324 -KW - 13/05/2008 Soil	130508-329 -KW - 13/05/2008 Soil	-KW - 13/05/2008 Soil	Trip Blan - 13/05/200 Soil
Your Reference Depth Date Sampled Type of sample Sample Matrix Code		130508-323 -KW - 13/05/2008 Soil SO	130508-324 -KW - 13/05/2008 Soil SO	130508-329 -KW - 13/05/2008 Soil SO	-KW - 13/05/2008 Soil SO	Trip Blan - 13/05/200 Soil SO 00:00
Your Reference Depth Date Sampled Type of sample Sample Matrix Code Time Sampled		130508-323 -KW - 13/05/2008 Soil SO 00:00	130508-324 -KW - 13/05/2008 Soil SO 00:00	130508-329 -KW - 13/05/2008 Soil SO 00:00	-KW - 13/05/2008 Soil SO 00:00	Trip Blan - 13/05/200 Soil SO 00:00
Your Reference Depth Date Sampled Type of sample Sample Matrix Code Time Sampled Date extracted		130508-323 -KW - 13/05/2008 Soil SO 00:00	130508-324 -KW - 13/05/2008 Soil SO 00:00	130508-329 -KW - 13/05/2008 Soil SO 00:00 16/05/2008	-KW - 13/05/2008 Soil SO 00:00	Trip Blan - 13/05/200 Soil SO 00:00
Pour Reference Depth Date Sampled Type of sample Sample Matrix Code Time Sampled Date extracted Date analysed		130508-323 -KW - 13/05/2008 Soil SO 00:00 16/05/2008 17/05/2008	130508-324 -KW - 13/05/2008 Soil SO 00:00 16/05/2008 17/05/2008	130508-329 -KW - 13/05/2008 Soil SO 00:00 16/05/2008 17/05/2008	-KW - 13/05/2008 Soil SO 00:00 16/05/2008 17/05/2008	Trip Blan - 13/05/200 Soil SO 00:00 16/05/200 17/05/200
Pour Reference Depth Date Sampled Type of sample Sample Matrix Code Time Sampled Date extracted Date analysed vTPH C6 - C9		130508-323 -KW - 13/05/2008 Soil SO 00:00 16/05/2008 17/05/2008 <25	130508-324 -KW - 13/05/2008 Soil SO 00:00 16/05/2008 17/05/2008 <25	130508-329 -KW - 13/05/2008 Soil SO 00:00 16/05/2008 17/05/2008 <25	-KW - 13/05/2008 Soil SO 00:00 16/05/2008 17/05/2008 <25	Trip Blan - 13/05/200 Soil SO 00:00 16/05/200 17/05/200 <25
Pour Reference Depth Date Sampled Type of sample Sample Matrix Code Time Sampled Date extracted Date analysed vTPH C6 - C9 Benzene	- - - mg/kg mg/kg	130508-323 -KW - 13/05/2008 Soil SO 00:00 16/05/2008 17/05/2008 <25 <0.5	130508-324 -KW - 13/05/2008 Soil SO 00:00 16/05/2008 17/05/2008 <25 <0.5	130508-329 -KW - 13/05/2008 Soil SO 00:00 16/05/2008 17/05/2008 <25 <0.5	-KW - 13/05/2008 Soil SO 00:00 16/05/2008 17/05/2008 <25 <0.5	Trip Blar - 13/05/200 Soil SO 00:00 16/05/200 17/05/200 <25 <0.5

<2.0

<1.0

123

<2.0

<1.0

110

<2.0

<1.0

111

<2.0

<1.0

97

Envirolab Reference: 19325 Revision No: R 00

m+p-xylene

o-Xylene

Surrogate aaa-Trifluorotoluene

mg/kg

mg/kg

%

<2.0

<1.0

103

vTPH & BTEX in Soil		
Our Reference:	UNITS	19325-78
Your Reference		Trip Spike
Depth		-
Date Sampled		13/05/2008
Type of sample		Soil
Sample Matrix Code		so
Time Sampled		00:00
Date extracted	-	16/05/2008
Date analysed	-	17/05/2008
Benzene	mg/kg	80%
Toluene	mg/kg	73%
Ethylbenzene	mg/kg	65%
m+p-xylene	mg/kg	65%
o-Xylene	mg/kg	60%
Surrogate aaa-Trifluorotoluene	%	96

sTPH in Soil (C10-C36)						
Our Reference:	UNITS	19325-2	19325-6	19325-24	19325-38	19325-43
Your Reference		130508-277	130508-281	130508-302	130508-316	130508-321
		-KW	-KW	-KW	-KW	-KW
Depth		-	-	-	-	-
Date Sampled		13/05/2008	13/05/2008	13/05/2008	13/05/2008	13/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
TPH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TPH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TPH C29 - C36	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	88	90	91	89	89

sTPH in Soil (C10-C36)					
Our Reference:	UNITS	19325-45	19325-46	19325-51	19325-54
Your Reference		130508-323 -KW	130508-324 -KW	130508-329 -KW	130508-300 -KW
Depth		-	-	-	-
Date Sampled		13/05/2008	13/05/2008	13/05/2008	13/05/2008
Type of sample		Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00
Date extracted	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008
TPH C10 - C14	mg/kg	<50	<50	<50	<50
TPH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100
TPH C29 - C36	mg/kg	<100	<100	<100	<100
Surrogate o-Terphenyl	%	88	86	88	88

PAHs in Soil						
Our Reference:	UNITS	19325-6	19325-8	19325-24	19325-31	19325-38
Your Reference		130508-281	130508-283	130508-302	130508-309	130508-316
Donth		-KW	-KW	-KW	-KW	-KW
Depth Date Sampled		13/05/2008	13/05/2008	13/05/2008	13/05/2008	13/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		so	so	so	so	so
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Naphthalene	mg/kg	<0.1	0.2	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	0.5	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	0.2	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	1.7	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	0.5	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	3.4	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	4.0	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	1.9	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	2.1	<0.1	<0.1	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2	3.9	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	2.5	<0.05	<0.05	<0.05
Dibenzo(a,h)anthracene	mg/kg	<0.1	0.2	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	2.0	0.2	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	1.6	0.2	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	106	107	103	106	107

PAHs in Soil Our Reference: Your Reference Depth Date Sampled Type of sample Sample Matrix Code Time Sampled	UNITS 	19325-43 130508-321 -KW - 13/05/2008 Soil SO 00:00	19325-45 130508-323 -KW - 13/05/2008 Soil SO 00:00	19325-46 130508-324 -KW - 13/05/2008 Soil SO 00:00	19325-47 130508-325 -KW - 13/05/2008 Soil SO 00:00	19325-48 130508-326 -KW - 13/05/2008 Soil SO 00:00
Date extracted	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.5
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	1.0
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	1.0
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.5
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.5
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	0.7
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	0.4
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2
Surrogate p-Terphenyl-d ₁₄	%	108	108	107	108	105

PAHs in Soil Our Reference: Your Reference Depth Date Sampled Type of sample Sample Matrix Code Time Sampled	UNITS 	19325-49 130508-327 -KW - 13/05/2008 Soil SO 00:00	19325-50 130508-328 -KW - 13/05/2008 Soil SO 00:00	19325-51 130508-329 -KW - 13/05/2008 Soil SO 00:00	19325-52 130508-330 -KW - 13/05/2008 Soil SO 00:00	19325-54 130508-300 -KW - 13/05/2008 Soil SO 00:00
Date extracted	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.8	<0.1	0.1	0.6	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	0.1	<0.1
Fluoranthene	mg/kg	2.7	<0.1	0.2	1.2	<0.1
Pyrene	mg/kg	2.8	<0.1	0.2	1.3	<0.1
Benzo(a)anthracene	mg/kg	1.3	<0.1	<0.1	0.6	<0.1
Chrysene	mg/kg	1.8	<0.1	0.1	0.5	<0.1
Benzo(b+k)fluoranthene	mg/kg	3.0	<0.2	0.2	0.9	<0.2
Benzo(a)pyrene	mg/kg	1.5	0.09	0.1	0.5	<0.05
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	mg/kg	1.2	<0.1	<0.1	0.3	<0.1
Benzo(g,h,i)perylene	mg/kg	1.1	<0.1	<0.1	0.3	<0.1
Surrogate p-Terphenyl-d ₁₄	%	101	110	110	109	108

Organochlorine Pesticides in soil						
Our Reference:	UNITS	19325-7	19325-13	19325-19	19325-26	19325-27
Your Reference		130508-282 -KW	130508-289 -KW	130508-296 -KW	130508-304 -KW	130508-305 -KW
Depth		-	-	-	-	-
Date Sampled		13/05/2008	13/05/2008	13/05/2008	13/05/2008	13/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code Time Sampled		SO 00:00	SO 00:00	SO 00:00	SO 00:00	SO 00:00
Time Sampled		00.00	00.00	00.00	00.00	00.00
Date extracted	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	77	77	79	77	88

Organochlorine Pesticides in soil Our Reference: Your Reference	UNITS	19325-30 130508-308 -KW	19325-36 130508-314 -KW	19325-41 130508-319 -KW	19325-44 130508-322 -KW
Depth Date Sampled Type of sample Sample Matrix Code Time Sampled		13/05/2008 Soil SO 00:00	13/05/2008 Soil SO 00:00	13/05/2008 Soil SO 00:00	13/05/2008 Soil SO 00:00
Date extracted	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	79	91	81	83

Organophosphorus Pesticides						
Our Reference:	UNITS	19325-7	19325-13	19325-19	19325-26	19325-27
Your Reference		130508-282 -KW	130508-289 -KW	130508-296 -KW	130508-304 -KW	130508-305 -KW
Depth		-r\vv	-r\vv			
Date Sampled Type of sample Sample Matrix Code Time Sampled		13/05/2008 Soil SO 00:00	13/05/2008 Soil SO 00:00	13/05/2008 Soil SO 00:00	13/05/2008 Soil SO 00:00	13/05/2008 Soil SO 00:00
Date extracted	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	77	77	79	77	88

Organophosphorus Pesticides					
Our Reference:	UNITS	19325-30	19325-36	19325-41	19325-44
Your Reference		130508-308 -KW	130508-314 -KW	130508-319 -KW	130508-322 -KW
Depth		-	-	-	-
Date Sampled		13/05/2008	13/05/2008	13/05/2008	13/05/2008
Type of sample		Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00
Date extracted	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	79	91	81	83

PCBs in Soil						
Our Reference:	UNITS	19325-7	19325-13	19325-19	19325-26	19325-27
Your Reference		130508-282 -KW	130508-289 -KW	130508-296 -KW	130508-304 -KW	130508-305 -KW
Depth			-r\vv	-NVV	-NVV	
Date Sampled		13/05/2008	13/05/2008	13/05/2008	13/05/2008	13/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		so	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Arochlor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	77	77	79	77	88

PCBs in Soil					
Our Reference:	UNITS	19325-30	19325-36	19325-41	19325-44
Your Reference		130508-308 -KW	130508-314 -KW	130508-319 -KW	130508-322 -KW
Depth		-	-	-	-
Date Sampled		13/05/2008	13/05/2008	13/05/2008	13/05/2008
Type of sample		Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00
Date extracted	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Arochlor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1
Arochlor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1
Arochlor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1
Arochlor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1
Arochlor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1
Arochlor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	79	91	81	83

Total Phenolics in Soil					
Our Reference:	UNITS	19325-38	19325-45	19325-46	19325-49
Your Reference		130508-316	130508-323	130508-324	130508-327
		-KW	-KW	-KW	-KW
Depth		-	-	-	-
Date Sampled		13/05/2008	13/05/2008	13/05/2008	13/05/2008
Type of sample		Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00
Date extracted	-	19/5/08	19/5/08	19/5/08	19/5/08
Date analysed	-	20/5/08	20/5/08	20/5/08	20/5/08
Total Phenolics (as Phenol)	mg/kg	<5.0	<5.0	<5.0	<5.0

Acid Extractable metals in soil						
Our Reference:	UNITS	19325-1	19325-5	19325-6	19325-7	19325-8
Your Reference		130508-276	130508-280	130508-281	130508-282	130508-283
		-KW	-KW	-KW	-KW	-KW
Depth		-	-	-	-	-
Date Sampled		13/05/2008	13/05/2008	13/05/2008	13/05/2008	13/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date digested	-	19/05/2008	19/05/2008	19/05/2008	19/05/2008	19/05/2008
Date analysed	-	21/05/2008	21/05/2008	21/05/2008	21/05/2008	21/05/2008
Arsenic	mg/kg	<4.0	12	<4.0	4.5	4.0
Cadmium	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Chromium	mg/kg	4.5	7.3	8.4	16	19
Copper	mg/kg	78	15	2.0	45	66
Lead	mg/kg	52	45	4.3	110	120
Mercury	mg/kg	0.37	0.15	<0.10	0.16	0.16
Nickel	mg/kg	8.8	3.9	1.1	11	18
Zinc	mg/kg	81	14	3.6	150	110
Phosphorus	mg/kg	[NA]	[NA]	[NA]	380	[NA]

Acid Extractable metals in soil						
Our Reference:	UNITS	19325-11	19325-12	19325-14	19325-16	19325-17
Your Reference		130508-286	130508-287	130508-290	130508-292	130508-293
		-KW	-KW	-KW	-KW	-KW
Depth		-	-	-	-	-
Date Sampled		13/05/2008	13/05/2008	13/05/2008	13/05/2008	13/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date digested	-	19/05/2008	19/05/2008	19/05/2008	19/05/2008	19/05/2008
Date analysed	-	21/05/2008	21/05/2008	21/05/2008	21/05/2008	21/05/2008
Arsenic	mg/kg	<4.0	<4.0	<4.0	<4.0	<4.0
Cadmium	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Chromium	mg/kg	<1.0	<1.0	1.9	5.3	2.8
Copper	mg/kg	<1.0	<1.0	2.3	8.6	3.7
Lead	mg/kg	<1.0	<1.0	5.5	25	13
Mercury	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Nickel	mg/kg	<1.0	<1.0	<1.0	2.5	<1.0
Zinc	mg/kg	3.5	1.3	6.5	38	17

Acid Extractable metals in soil Our Reference: Your Reference Depth Date Sampled Type of sample Sample Matrix Code	UNITS	19325-19 130508-296 -KW - 13/05/2008 Soil SO	19325-20 130508-297 -KW - 13/05/2008 Soil SO	19325-24 130508-302 -KW - 13/05/2008 Soil SO	19325-26 130508-304 -KW - 13/05/2008 Soil SO	19325-27 130508-305 -KW - 13/05/2008 Soil SO	
Time Sampled		00:00	00:00	00:00	00:00	00:00	
Date digested	-	19/05/2008	19/05/2008	19/05/2008	19/05/2008	19/05/2008	
Date analysed	-	21/05/2008	21/05/2008	21/05/2008	21/05/2008	21/05/2008	
Arsenic	mg/kg	[NA]	<4.0	<4.0	<4.0	<4.0	
Cadmium	mg/kg	[NA]	<1.0	<1.0	<1.0	<1.0	
Chromium	mg/kg	[NA]	1.0	<1.0	4.1	4.8	
Copper	mg/kg	[NA]	<1.0	<1.0	13	17	
Lead	mg/kg	[NA]	1.4	1.0	72	81	
Mercury	mg/kg	[NA]	<0.10	<0.10	0.12	0.18	
Nickel	mg/kg	[NA]	<1.0	<1.0	2.0	2.2	
Zinc	mg/kg	[NA]	5.2	1.7	120	110	
Phosphorus	mg/kg	200	[NA]	[NA]	340	340	
		I	Г	I	Г	Г	7
Acid Extractable metals in soil Our Reference:	UNITS	10225 20	10225 20	10225 21	10225 22	19325-34	
Your Reference	UNITS	19325-29 130508-307	19325-30 130508-308	19325-31 130508-309	19325-33 130508-311	130508-312	
rodi relololo		-KW	-KW	-KW	-KW	-KW	
Depth		-	-	-	-	-	
Date Sampled		13/05/2008	13/05/2008	13/05/2008	13/05/2008	13/05/2008	
Type of sample Sample Matrix Code		Soil SO	Soil SO	Soil SO	Soil SO	Soil SO	
Time Sampled		00:00	00:00	00:00	00:00	00:00	
Date digested	-	19/05/2008	19/05/2008	19/05/2008	19/05/2008	19/05/2008	1
Date analysed	-	21/05/2008	21/05/2008	21/05/2008	21/05/2008	21/05/2008	
Arsenic	mg/kg	24	12	<4.0	<4.0	<4.0	
Cadmium	mg/kg	1.3	<1.0	<1.0	<1.0	<1.0	
Chromium	mg/kg	59	8.8	<1.0	<1.0	<1.0	
Copper	mg/kg	36	20	1.8	1.3	<1.0	
Lead	mg/kg	92	36	<1.0	2.7	1.2	
Mercury	mg/kg	0.58	0.29	<0.10	<0.10	<0.10	
	1		I		I	I	

Envirolab Reference: 19325 Revision No: R 00

Nickel

Zinc

15

250

4.5

42

<1.0

<1.0

<1.0

5.1

mg/kg

mg/kg

<1.0

<1.0

Our Reference: Your Reference Depth Date Sampled Type of sample Sample Matrix Code Time Sampled	UNITS	19325-38 130508-316 -KW - 13/05/2008 Soil SO 00:00	19325-40 130508-318 -KW - 13/05/2008 Soil SO 00:00	19325-41 130508-319 -KW - 13/05/2008 Soil SO 00:00	19325-44 130508-322 -KW - 13/05/2008 Soil SO 00:00	19325-45 130508-323 -KW - 13/05/2008 Soil SO 00:00
Date digested	-	19/05/2008	19/05/2008	19/05/2008	19/05/2008	19/05/2008
Date analysed	-	21/05/2008	21/05/2008	21/05/2008	21/05/2008	21/05/2008
Arsenic	mg/kg	<4.0	<4.0	12	[NA]	<4.0
Cadmium	mg/kg	<1.0	<1.0	<1.0	[NA]	<1.0
Chromium	mg/kg	4.0	<1.0	12	[NA]	1.6
Copper	mg/kg	6.1	<1.0	20	[NA]	1.1
Lead	mg/kg	12	<1.0	21	[NA]	1.1
Mercury	mg/kg	<0.10	<0.10	<0.10	[NA]	<0.10
Nickel	mg/kg	<1.0	<1.0	2.6	[NA]	<1.0
Zinc	mg/kg	13	<1.0	36	[NA]	1.5
Phosphorus	mg/kg	[NA]	[NA]	[NA]	64	[NA]
Acid Extractable metals in soil	LINUTO	10005 10	10005 17	10005 10	40005 50	10005 50
Our Reference: Your Reference	UNITS	19325-46 130508-324	19325-47 130508-325	19325-49 130508-327	19325-50 130508-328	19325-52 130508-330
Tour Reference		-KW	-KW	-KW	-KW	-KW
Depth		-	-	-	-	-
Date Sampled		13/05/2008	13/05/2008	13/05/2008	13/05/2008	13/05/2008
Type of sample Sample Matrix Code		Soil SO	Soil SO	Soil SO	Soil SO	Soil SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
 Date digested	_	19/05/2008	19/05/2008	19/05/2008	19/05/2008	19/05/2008
Date analysed	_	21/05/2008	21/05/2008	21/05/2008	21/05/2008	21/05/2008
Arsenic	ma/ka	<4.0	<4.0	8.4	<4.0	19
Cadmium	mg/kg mg/kg	<4.0 <1.0	<1.0	<1.0	<4.0 <1.0	2.4
Chromium		<1.0	1.4	28	6.5	50
	mg/kg					
Copper	mg/kg	<1.0	1.1	14	9.4	40
Lead	mg/kg	<1.0	2.9	45	56	120

Envirolab Reference: 19325 Revision No: R 00

Mercury

Nickel

Zinc

mg/kg

mg/kg

mg/kg

<0.10

<1.0

<1.0

<0.10

1.3

9.7

<0.10

1.3

20

<0.10

3.6

42

Acid Extractable metals in soil

0.65

15

260

Acid Extractable metals in soil Our Reference: Your Reference	UNITS	19325-54 130508-300 -KW	
Depth Date Sampled Type of sample Sample Matrix Code Time Sampled		- 13/05/2008 Soil SO 00:00	
Date digested	-	19/05/2008	
Date analysed	-	21/05/2008	
Arsenic	mg/kg	4.2	
Cadmium	mg/kg	<1.0	
Chromium	mg/kg	13	
Copper	mg/kg	18	
Lead	mg/kg	41	
Mercury	mg/kg	<0.10	
Nickel	mg/kg	2.1	
Zinc	mg/kg	31	

Miscellaneous Inorg - soil						
Our Reference:	UNITS	19325-7	19325-10	19325-19	19325-22	19325-26
Your Reference		130508-282	130508-285	130508-296	130508-299	130508-304
		-KW	-KW	-KW	-KW	-KW
Depth		-	-	-	-	-
Date Sampled		13/05/2008	13/05/2008	13/05/2008	13/05/2008	13/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date analysed	-	19/05/2008	19/05/2008	19/05/2008	19/05/2008	19/05/2008
Ammonia as N in soil	mg/kg	1.6	[NA]	5.1	[NA]	<0.5
Nitrate as N in soil	mg/kg	<0.5	[NA]	2.3	[NA]	<0.5
Nitrite as N in soil	mg/kg	<0.1	[NA]	<0.1	[NA]	<0.1
Total Kjeldahl Nitrogen	mg/kg	610	[NA]	530	[NA]	480
Total Nitrogen in soil	mg/kg	610	[NA]	530	[NA]	480
pH 1:5 soil:water	pH Units	[NA]	7.3	[NA]	8.4	7.7
Electrical Conductivity 1:5 soil:water	μS/cm	[NA]	110	[NA]	90	110
Salinity as NACL *	mg/kg	[NA]	70	[NA]	58	70
Resistivity in soil*	ohm m	[NA]	91	[NA]	110	91
Chloride 1:5 soil:water	mg/kg	[NA]	<100	[NA]	<100	<100
Sulphate, SO4 1:5 soil:water	mg/kg	[NA]	<25	[NA]	<25	<25

Miscellaneous Inorg - soil			
Our Reference:	UNITS	19325-27	19325-44
Your Reference		130508-305	130508-322
		-KW	-KW
Depth		-	-
Date Sampled		13/05/2008	13/05/2008
Type of sample		Soil	Soil
Sample Matrix Code		SO 00:00	SO 00:00
Time Sampled		00.00	00.00
Date analysed	-	19/05/2008	19/05/2008
Ammonia as N in soil	mg/kg	0.6	2.2
Nitrate as N in soil	mg/kg	<0.5	<0.5
Nitrite as N in soil	mg/kg	<0.1	<0.1
Total Kjeldahl Nitrogen	mg/kg	560	300
Total Nitrogen in soil	mg/kg	560	300
pH 1:5 soil:water	pH Units	7.7	[NA]
Electrical Conductivity 1:5 soil:water	μS/cm	110	[NA]
Salinity as NACL *	mg/kg	70	[NA]
Resistivity in soil*	ohm m	91	[NA]
Chloride 1:5 soil:water	mg/kg	<100	[NA]
Sulphate, SO4 1:5 soil:water	mg/kg	<25	[NA]

Moisture						
Our Reference:	UNITS	19325-1	19325-2	19325-5	19325-6	19325-7
Your Reference		130508-276	130508-277	130508-280	130508-281	130508-282
		-KW	-KW	-KW	-KW	-KW
Depth		_	_	_	-	-
Date Sampled		13/05/2008	13/05/2008	13/05/2008	13/05/2008	13/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Sample Matrix Code		so	so	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date prepared	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Moisture	%	29	16	38	31	7.8
Moisture	LINUTO	40005.0	40005.44	10005 10	10005 10	40005.44
Our Reference:	UNITS	19325-8	19325-11	19325-12	19325-13	19325-14
Your Reference		130508-283 -KW	130508-286 -KW	130508-287 -KW	130508-289 -KW	130508-290 -KW
Depth		-r\vv	-r\v	-r.vv	-r.vv	-1.00
Date Sampled		13/05/2008	13/05/2008	13/05/2008	13/05/2008	13/05/2008
Type of sample		Soil	13/05/2006 Soil	Soil	Soil	Soil
Sample Matrix Code		SO	SO	SO	SO	SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date prepared	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Moisture	%	7.9	12	12	6.8	3.7
Moisture						
Our Reference:	UNITS	19325-16	19325-17	19325-19	19325-20	19325-24
Your Reference		130508-292	130508-293	130508-296	130508-297	130508-302
D ::		-KW	-KW	-KW	-KW	-KW
Depth		-	-	-	-	-
Date Sampled		13/05/2008	13/05/2008	13/05/2008	13/05/2008	13/05/2008
Type of sample Sample Matrix Code		Soil SO	Soil SO	Soil SO	Soil SO	Soil SO
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date prepared	_	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed		16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Moisture	%	10	8.9	61	15	1.9

Moisture Our Reference: Your Reference Depth Date Sampled Type of sample Sample Matrix Code Time Sampled	UNITS	19325-26 130508-304 -KW - 13/05/2008 Soil SO 00:00	19325-27 130508-305 -KW - 13/05/2008 Soil SO 00:00	19325-29 130508-307 -KW - 13/05/2008 Soil SO 00:00	19325-30 130508-308 -KW - 13/05/2008 Soil SO 00:00	19325-31 130508-309 -KW - 13/05/2008 Soil SO 00:00
Date prepared	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Moisture	%	5.7	4.8	56	4.0	1.8
Moisture Our Reference: Your Reference Depth Date Sampled Type of sample Sample Matrix Code Time Sampled Date prepared Date analysed Moisture	UNITS	19325-33 130508-311 -KW - 13/05/2008 Soil SO 00:00 16/05/2008 16/05/2008	19325-34 130508-312 -KW - 13/05/2008 Soil SO 00:00 16/05/2008 16/05/2008	19325-36 130508-314 -KW - 13/05/2008 Soil SO 00:00 16/05/2008 16/05/2008 8.3	19325-38 130508-316 -KW - 13/05/2008 Soil SO 00:00 16/05/2008 16/05/2008	19325-40 130508-318 -KW - 13/05/2008 Soil SO 00:00 16/05/2008 16/05/2008 4.2
Moisture Our Reference: Your Reference Depth Date Sampled Type of sample Sample Matrix Code Time Sampled	UNITS	19325-41 130508-319 -KW - 13/05/2008 Soil SO 00:00	19325-43 130508-321 -KW - 13/05/2008 Soil SO 00:00	19325-44 130508-322 -KW - 13/05/2008 Soil SO 00:00	19325-45 130508-323 -KW - 13/05/2008 Soil SO 00:00	19325-46 130508-324 -KW - 13/05/2008 Soil SO 00:00
Date prepared		16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date prepared Date analysed	_	16/05/2008	16/05/2008	16/05/2008	16/05/2008	16/05/2008
Date allalyseu	_	10/03/2000	10/03/2000	10/03/2000	10/03/2000	10/03/2000

Moisture Our Reference: Your Reference	UNITS	19325-47 130508-325 -KW	19325-48 130508-326 -KW	19325-49 130508-327 -KW	19325-50 130508-328 -KW	19325-51 130508-329 -KW
Depth Date Sampled Type of sample Sample Matrix Code Time Sampled		- 13/05/2008 Soil SO 00:00	- 13/05/2008 Soil SO 00:00	- 13/05/2008 Soil SO 00:00	- 13/05/2008 Soil SO 00:00	- 13/05/2008 Soil SO 00:00
Date prepared Date analysed		16/05/2008 16/05/2008	16/05/2008 16/05/2008	16/05/2008 16/05/2008	16/05/2008 16/05/2008	16/05/2008 16/05/2008
Moisture	%	3.8	24	13	7.5	26

Moisture				
Our Reference:	UNITS	19325-52	19325-54	19325-77
Your Reference		130508-330	130508-300	Trip Blank
		-KW	-KW	
Depth		-	-	-
Date Sampled		13/05/2008	13/05/2008	13/05/2008
Type of sample		Soil	Soil	Soil
Sample Matrix Code		SO	SO	so
Time Sampled		00:00	00:00	00:00
Date prepared	-	16/05/2008	16/05/2008	16/05/2008
Date analysed	-	16/05/2008	16/05/2008	16/05/2008
Moisture	%	47	19	0.10

Herbicides in Soil						
Our Reference:	UNITS	19325-10	19325-22	19325-26	19325-27	19325-44
Your Reference		130508-285 -KW	130508-299 -KW	130508-304 -KW	130508-305 -KW	130508-322 -KW
Depth		-	-	-	-	-
Date Sampled Type of sample Sample Matrix Code Time Sampled		13/05/2008 Soil SO 00:00	13/05/2008 Soil SO 00:00	13/05/2008 Soil SO 00:00	13/05/2008 Soil SO 00:00	13/05/2008 Soil SO 00:00
Date analysed	-	20/05/2008	20/05/2008	20/05/2008	20/05/2008	20/05/2008
Date Extracted	-	22/05/2008	22/05/2008	22/05/2008	22/05/2008	22/05/2008
Dicamba	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
MCPA	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorprop	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
2,4-D	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
2,4,5-T	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
2,4,5-TP	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
2,4-DB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
MCPP	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Triclopyr	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1

Asbestos ID - materials		
Our Reference:	UNITS	19325-53
Your Reference		130508-A1-
		KW
Depth		-
Date Sampled		13/05/2008
Type of sample		Material
Sample Matrix Code		SO
Time Sampled		00:00
Date analysed	-	16/05/2008
Sample Description	-	60x80x4mm
		fibre cement
		sheet
Asbestos ID in materials	-	Chrysotile
		asbestos
		detected

sPOCAS						
Our Reference:	UNITS	19325-59	19325-67	19325-68	19325-75	19325-76
Your Reference		ABH255	ABH278	ABH274	ABH273	ABH276
Depth		2.4-2.6	2.6-2.8	2.5-2.7	2.4-2.6	2.6-2.8
Date Sampled		8/05/2008	13/05/2008	13/05/2008	13/05/2008	13/05/2008
Type of sample		Soil SO	Soil	Soil SO	Soil	Soil SO
Sample Matrix Code Time Sampled		00:00	SO 00:00	00:00	SO 00:00	00:00
pH kcl	pH units	8.4	5.8	7.1	6.8	6.4
TAA pH 6.5	moles H ⁺ /	<5	<5	<5	<5	<5
TAA PITO.S	tonne					23
s-TAA pH 6.5	%w/w S	<0.01	<0.01	<0.01	<0.01	<0.01
pH ox	pH units	2.5	2.3	2.4	2.2	2.3
TPA pH 6.5	moles H ⁺ / tonne	213	240	338	505	418
s-TPA pH 6.5	%w/w S	0.34	0.39	0.54	0.81	0.67
TSA pH 6.5	moles H ⁺ / tonne	213	240	338	505	418
s-TSA pH 6.5	%w/w S	0.34	0.39	0.54	0.81	0.67
ANCE	% CaCO ₃	<0.05	<0.05	<0.05	<0.05	<0.05
a-ANCe	moles H ⁺ / tonne	<5	<5	<5	<5	<5
s-ANCe	%w/w S	<0.05	<0.05	<0.05	<0.05	<0.05
Skci	%w/w	0.072	0.038	0.031	0.034	0.058
Sp	%w/w	0.58	0.68	0.81	1.1	1.2
Spos	%w/w	0.51	0.65	0.78	1.0	1.1
a-Spos	moles H ⁺ / tonne	317	402	489	645	692
Саксі	%w/w	0.19	0.082	0.14	0.21	0.10
Сар	%w/w	0.25	0.090	0.20	0.26	0.10
Сад	%w/w	0.060	0.008	0.056	0.049	<0.005
Mgkcı	%w/w	0.034	0.005	0.062	0.060	0.037
МдР	%w/w	0.027	0.007	0.073	0.065	0.039
MgA	%w/w	<0.005	<0.005	0.010	0.005	<0.005
SRAS	%w/w	<0.005	<0.005	<0.005	<0.005	<0.005
SHCI	%w/w	0.057	0.029	0.057	0.041	0.058
Snas	%w/w	<0.005	<0.005	0.026	0.007	<0.005
a-Snas	moles H ⁺ / tonne	<5	<5	12	<5	<5
s-Snas	%w/w S	<0.01	<0.01	0.019	<0.01	<0.01
a-Net Acidity	moles H ⁺ / tonne	247	402	388	552	692
Liming rate	kg CaCO3/ton ne	19	30	29	41	52

Method ID	Methodology Summary
GC.14	Soil samples extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
GC.16	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS.
GC.3	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
GC.12 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
GC-5	Soil samples are extracted with hexane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
GC.8	Soil samples are extracted with hexane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
GC-6	Soil samples are extracted with hexane/acetone and waters with dichloromethane and analysed by GC-ECD.
LAB.30	Total Phenolics - determined colorimetrically following disitillation.
Metals.20 ICP- AES	Determination of various metals by ICP-AES.
Metals.21 CV- AAS	Determination of Mercury by Cold Vapour AAS.
LAB.57	Ammonia water extractable - determined colourimetrically based on EPA103A.
LAB.55	Nitrate water extractable - determined colourimetrically based on EPA114A.
LAB.56	Nitrite water extractable - determined colourimetrically based on EPA116A.
Ext-020	Analysis subcontracted to Australian Government - National Measurement Institute. NATA Accreditation No: 198
LAB.66	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen.
LAB.1	pH - Measured using pH meter and electrode in accordance with APHA 20th ED, 4500-H+.
LAB.2	Conductivity and Salinity - measured using a conductivity cell and dedicated meter, in accordance with APHA2510 20th ED and Rayment & Higginson.
LAB.11	Chloride determined by argentometric titration.
LAB.9	Sulphate determined turbidimetrically.
LAB.8	Moisture content determined by heating at 105 deg C for a minimum of 4 hours.
AS4964-2004	Qualitative identification of asbestos type fibres in bulk using Polarised Light Microscopy and Dispersion Staining Techniques.
LAB.64	sPOCAS determined using titrimetric and ICP-AES techniques. Based on Acid Sulfate Soils Laboratory Methods Guidelines, Version 2.1 - June 2004.

Method ID	Methodology Summary

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
VOC's in soil						Base II Duplicate II %RPD		Recovery
Date extracted	-			16/5/08	19325-8	16/05/2008 16/05/2008	LCS-2	16/5/08%
Date analysed	-			17/5/08	19325-8	17/05/2008 17/05/2008	LCS-2	17/5/08%
Dichlorodifluoromethane	mg/kg	10	GC.14	<10	19325-8	<10 <10	[NR]	[NR]
Chloromethane	mg/kg	10	GC.14	<10	19325-8	<10 <10	[NR]	[NR]
Vinyl Chloride	mg/kg	10	GC.14	<10	19325-8	<10 <10	[NR]	[NR]
Bromomethane	mg/kg	10	GC.14	<10	19325-8	<10 <10	[NR]	[NR]
Chloroethane	mg/kg	10	GC.14	<10	19325-8	<10 <10	[NR]	[NR]
Trichlorofluoromethane	mg/kg	10	GC.14	<10	19325-8	<10 <10	[NR]	[NR]
1,1-Dichloroethene	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	[NR]	[NR]
trans-1,2-dichloroethene	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	[NR]	[NR]
1,1-dichloroethane	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	LCS-2	93%
cis-1,2-dichloroethene	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	[NR]	[NR]
bromochloromethane	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	[NR]	[NR]
chloroform	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	LCS-2	84%
2,2-dichloropropane	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	[NR]	[NR]
1,2-dichloroethane	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	LCS-2	87%
1,1,1-trichloroethane	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	LCS-2	81%
1,1-dichloropropene	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	[NR]	[NR]
carbon tetrachloride	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	[NR]	[NR]
Benzene	mg/kg	0.5	GC.14	<0.5	19325-8	<0.5 <0.5	[NR]	[NR]
dibromomethane	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	[NR]	[NR]
1,2-dichloropropane	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	[NR]	[NR]
trichloroethene	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	LCS-2	116%
bromodichloromethane	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	LCS-2	114%
trans-1,3- dichloropropene	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	[NR]	[NR]
cis-1,3-dichloropropene	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	[NR]	[NR]
1,1,2-trichloroethane	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	[NR]	[NR]
Toluene	mg/kg	0.5	GC.14	<0.5	19325-8	<0.5 <0.5	[NR]	[NR]
1,3-dichloropropane	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	[NR]	[NR]
dibromochloromethane	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	LCS-2	111%
1,2-dibromoethane	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	[NR]	[NR]
tetrachloroethene	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	LCS-2	111%
1,1,1,2- tetrachloroethane	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	[NR]	[NR]
chlorobenzene	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	[NR]	[NR]
Ethylbenzene	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	[NR]	[NR]
bromoform	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	[NR]	[NR]
m+p-xylene	mg/kg	2	GC.14	<2.0	19325-8	<2.0 <2.0	[NR]	[NR]
styrene	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	[NR]	[NR]
1,1,2,2- tetrachloroethane	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	[NR]	[NR]
o-Xylene	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	[NR]	[NR]

QUALITY CONTROL VOC's in soil	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery
1,2,3-trichloropropane*	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	[NR]	[NR]
isopropylbenzene	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	[NR]	[NR]
bromobenzene	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	[NR]	[NR]
n-propyl benzene	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	[NR]	[NR]
2-chlorotoluene	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	[NR]	[NR]
4-chlorotoluene	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	[NR]	[NR]
1,3,5-trimethyl benzene	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	[NR]	[NR]
tert-butyl benzene	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	[NR]	[NR]
1,2,4-trimethyl benzene	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	[NR]	[NR]
1,3-dichlorobenzene	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	[NR]	[NR]
sec-butyl benzene	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	[NR]	[NR]
1,4-dichlorobenzene	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	[NR]	[NR]
4-isopropyl toluene	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	[NR]	[NR]
1,2-dichlorobenzene	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	[NR]	[NR]
n-butyl benzene	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	[NR]	[NR]
1,2-dibromo-3- chloropropane	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	[NR]	[NR]
1,2,4-trichlorobenzene	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	[NR]	[NR]
hexachlorobutadiene	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	[NR]	[NR]
1,2,3-trichlorobenzene	mg/kg	1	GC.14	<1.0	19325-8	<1.0 <1.0	[NR]	[NR]
Surrogate Dibromofluorometha	%		GC.14	87	19325-8	88 85 RPD: 3	LCS-2	85%
Surrogate aaa- Trifluorotoluene	%		GC.14	89	19325-8	87 93 RPD: 7	LCS-2	105%
Surrogate Toluene-d8	%		GC.14	94	19325-8	91 90 RPD: 1	LCS-2	92%
Surrogate 4- Bromofluorobenzene	%		GC.14	93	19325-8	78 75 RPD: 4	LCS-2	70%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTPH & BTEX in Soil					Jili#	Base II Duplicate II %RPD		Necovery
Date extracted	-			16/5/08	19325-2	16/05/2008 16/05/2008	LCS-3	16/5/08%
Date analysed	-			17/5/08	19325-2	17/05/2008 17/05/2008	LCS-3	17/5/08%
vTPH C6 - C9	mg/kg	25	GC.16	<25	19325-2	<25 <25	LCS-3	112%
Benzene	mg/kg	0.5	GC.14	<0.5	19325-2	<0.5 <0.5	LCS-3	115%
Toluene	mg/kg	0.5	GC.14	<0.5	19325-2	<0.5 <0.5	LCS-3	122%
Ethylbenzene	mg/kg	1	GC.14	<1.0	19325-2	<1.0 <1.0	LCS-3	113%
m+p-xylene	mg/kg	2	GC.14	<2.0	19325-2	<2.0 <2.0	LCS-3	125%
o-Xylene	mg/kg	1	GC.14	<1.0	19325-2	<1.0 <1.0	LCS-3	127%
Surrogate aaa- Trifluorotoluene	%		GC.14	94	19325-2	94 93 RPD: 1	LCS-3	78%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
sTPH in Soil (C10-C36)						Base II Duplicate II %RPD		
Date extracted	-			16/5/08	19325-6	16/05/2008 16/05/2008	LCS-3	16/5/08%
Date analysed	-			16/5/08	19325-6	16/05/2008 16/05/2008	LCS-3	16/5/08%
TPH C ₁₀ - C ₁₄	mg/kg	50	GC.3	<50	19325-6	<50 <50	LCS-3	75%
TPH C ₁₅ - C ₂₈	mg/kg	100	GC.3	<100	19325-6	<100 <100	LCS-3	81%
TPH C ₂₉ - C ₃₆	mg/kg	100	GC.3	<100	19325-6	<100 <100	LCS-3	92%
Surrogate o-Terphenyl	%		GC.3	94	19325-6	90 88 RPD: 2	LCS-3	87%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II %RPD		
Date extracted	-			16/5/08	19325-6	16/05/2008 16/05/2008	LCS-3	16/5/08%
Date analysed	-			16/5/08	19325-6	16/05/2008 16/05/2008	LCS-3	16/5/08%
Naphthalene	mg/kg	0.1	GC.12 subset	<0.1	19325-6	<0.1 <0.1	LCS-3	108%
Acenaphthylene	mg/kg	0.1	GC.12 subset	<0.1	19325-6	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	0.1	GC.12 subset	<0.1	19325-6	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	0.1	GC.12 subset	<0.1	19325-6	<0.1 <0.1	LCS-3	104%
Phenanthrene	mg/kg	0.1	GC.12 subset	<0.1	19325-6	<0.1 <0.1	LCS-3	105%
Anthracene	mg/kg	0.1	GC.12 subset	<0.1	19325-6	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	0.1	GC.12 subset	<0.1	19325-6	<0.1 <0.1	LCS-3	107%
Pyrene	mg/kg	0.1	GC.12 subset	<0.1	19325-6	<0.1 <0.1	LCS-3	110%
Benzo(a)anthracene	mg/kg	0.1	GC.12 subset	<0.1	19325-6	<0.1 <0.1	[NR]	[NR]
Chrysene	mg/kg	0.1	GC.12 subset	<0.1	19325-6	<0.1 <0.1	LCS-3	113%
Benzo(b+k)fluoranthene	mg/kg	0.2	GC.12 subset	<0.2	19325-6	<0.2 <0.2	[NR]	[NR]

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
DALIG !:: O-!!					Sm#	Base II Dumlisses II 0/ BBB		Recovery
PAHs in Soil						Base II Duplicate II %RPD		
Benzo(a)pyrene	mg/kg	0.05	GC.12 subset	<0.05	19325-6	<0.05 <0.05	LCS-3	108%
Dibenzo(a,h)anthracene	mg/kg	0.1	GC.12 subset	<0.1	19325-6	<0.1 <0.1	[NR]	[NR]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	GC.12 subset	<0.1	19325-6	<0.1 <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	GC.12 subset	<0.1	19325-6	<0.1 <0.1	[NR]	[NR]
Surrogate p-Terphenyl- d ₁₄	%		GC.12 subset	113	19325-6	106 107 RPD: 1	LCS-3	109%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
Organochlorine Pesticides in soil						Base II Duplicate II %RPD		Recovery
Date extracted	-			16/5/08	19325-7	16/05/2008 16/05/2008	LCS-3	16/5/08%
Date analysed	-			16/5/08	19325-7	16/05/2008 16/05/2008	LCS-3	16/5/08%
НСВ	mg/kg	0.1	GC-5	<0.1	19325-7	<0.1 <0.1	[NR]	[NR]
alpha-BHC	mg/kg	0.1	GC-5	<0.1	19325-7	<0.1 <0.1	LCS-3	91%
gamma-BHC	mg/kg	0.1	GC-5	<0.1	19325-7	<0.1 <0.1	[NR]	[NR]
beta-BHC	mg/kg	0.1	GC-5	<0.1	19325-7	<0.1 <0.1	LCS-3	106%
Heptachlor	mg/kg	0.1	GC-5	<0.1	19325-7	<0.1 <0.1	LCS-3	101%
delta-BHC	mg/kg	0.1	GC-5	<0.1	19325-7	<0.1 <0.1	[NR]	[NR]
Aldrin	mg/kg	0.1	GC-5	<0.1	19325-7	<0.1 <0.1	LCS-3	98%
Heptachlor Epoxide	mg/kg	0.1	GC-5	<0.1	19325-7	<0.1 <0.1	LCS-3	100%
gamma-Chlordane	mg/kg	0.1	GC-5	<0.1	19325-7	<0.1 <0.1	[NR]	[NR]
alpha-chlordane	mg/kg	0.1	GC-5	<0.1	19325-7	<0.1 <0.1	[NR]	[NR]
Endosulfan I	mg/kg	0.1	GC-5	<0.1	19325-7	<0.1 <0.1	[NR]	[NR]
pp-DDE	mg/kg	0.1	GC-5	<0.1	19325-7	<0.1 <0.1	LCS-3	103%
Dieldrin	mg/kg	0.1	GC-5	<0.1	19325-7	<0.1 <0.1	LCS-3	103%
Endrin	mg/kg	0.1	GC-5	<0.1	19325-7	<0.1 <0.1	LCS-3	94%
pp-DDD	mg/kg	0.1	GC-5	<0.1	19325-7	<0.1 <0.1	LCS-3	107%
Endosulfan II	mg/kg	0.1	GC-5	<0.1	19325-7	<0.1 <0.1	[NR]	[NR]
pp-DDT	mg/kg	0.1	GC-5	<0.1	19325-7	<0.1 <0.1	[NR]	[NR]
Endrin Aldehyde	mg/kg	0.1	GC-5	<0.1	19325-7	<0.1 <0.1	[NR]	[NR]
Endosulfan Sulphate	mg/kg	0.1	GC-5	<0.1	19325-7	<0.1 <0.1	LCS-3	100%
Methoxychlor	mg/kg	0.1	GC-5	<0.1	19325-7	<0.1 <0.1	[NR]	[NR]
Surrogate TCLMX	%		GC-5	81	19325-7	77 78 RPD: 1	LCS-3	84%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organophosphorus Pesticides					Jili#	Base II Duplicate II %RPD		ROCOVELY
Date extracted	-			16/5/08	19325-7	16/05/2008 16/05/2008	LCS-3	16/5/08%
Date analysed	-			16/5/08	19325-7	16/05/2008 16/05/2008	LCS-3	16/5/08%
Diazinon	mg/kg	0.1	GC.8	<0.1	19325-7	<0.1 <0.1	[NR]	[NR]
Dimethoate	mg/kg	0.1	GC.8	<0.1	19325-7	<0.1 <0.1	[NR]	[NR]
Chlorpyriphos-methyl	mg/kg	0.1	GC.8	<0.1	19325-7	<0.1 <0.1	[NR]	[NR]
Ronnel	mg/kg	0.1	GC.8	<0.1	19325-7	<0.1 <0.1	[NR]	[NR]
Chlorpyriphos	mg/kg	0.1	GC.8	<0.1	19325-7	<0.1 <0.1	LCS-3	100%
Fenitrothion	mg/kg	0.1	GC.8	<0.1	19325-7	<0.1 <0.1	LCS-3	91%
Bromophos-ethyl	mg/kg	0.1	GC.8	<0.1	19325-7	<0.1 <0.1	[NR]	[NR]
Ethion	mg/kg	0.1	GC.8	<0.1	19325-7	<0.1 <0.1	LCS-3	122%
Surrogate TCLMX	%		GC.8	81	19325-7	77 78 RPD: 1	LCS-3	88%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PCBs in Soil						Base II Duplicate II %RPD		
Date extracted	-			16/5/08	19325-7	16/05/2008 16/05/2008	LCS-3	16/5/08%
Date analysed	-			16/5/08	19325-7	16/05/2008 16/05/2008	LCS-3	16/5/08%
Arochlor 1016	mg/kg	0.1	GC-6	<0.1	19325-7	<0.1 <0.1	[NR]	[NR]
Arochlor 1232	mg/kg	0.1	GC-6	<0.1	19325-7	<0.1 <0.1	[NR]	[NR]
Arochlor 1242	mg/kg	0.1	GC-6	<0.1	19325-7	<0.1 <0.1	[NR]	[NR]
Arochlor 1248	mg/kg	0.1	GC-6	<0.1	19325-7	<0.1 <0.1	[NR]	[NR]
Arochlor 1254	mg/kg	0.1	GC-6	<0.1	19325-7	<0.1 <0.1	LCS-3	95%
Arochlor 1260	mg/kg	0.1	GC-6	<0.1	19325-7	<0.1 <0.1	[NR]	[NR]
Surrogate TCLMX	%		GC-6	81	19325-7	77 78 RPD: 1	LCS-3	130%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Total Phenolics in Soil						Base II Duplicate II %RPD		
Date extracted	-			19/5/08	[NT]	[NT]	LCS-1	19/5/08%
Date analysed	-			20/5/08	[NT]	[NT]	LCS-1	20/5/08%
Total Phenolics (as Phenol)	mg/kg	5	LAB.30	<5.0	[NT]	[NT]	LCS-1	115%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil						Base II Duplicate II %RPD		
Date digested	-			19/05/0 8	19325-1	19/05/2008 19/05/2008	LCS-3	19/05/08%
Date analysed	-			21/05/0 8	19325-1	21/05/2008 21/05/2008	LCS-3	21/05/08%
Arsenic	mg/kg	4	Metals.20 ICP-AES	<4.0	19325-1	<4.0 <4.0	LCS-3	97%
Cadmium	mg/kg	1	Metals.20 ICP-AES	<1.0	19325-1	<1.0 <1.0	LCS-3	102%
Chromium	mg/kg	1	Metals.20 ICP-AES	<1.0	19325-1	4.5 4.6 RPD: 2	LCS-3	102%

Envirolab Reference: 19325 Revision No: R 00

Page 32 of 41

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil					3111#	Base II Duplicate II %RPD		Recovery
Copper	mg/kg	1	Metals.20 ICP-AES	<1.0	19325-1	78 79 RPD: 1	LCS-3	103%
Lead	mg/kg	1	Metals.20 ICP-AES	<1.0	19325-1	52 54 RPD: 4	LCS-3	98%
Mercury	mg/kg	0.1	Metals.21 CV-AAS	<0.10	19325-1	0.37 0.45 RPD: 20	LCS-3	109%
Nickel	mg/kg	1	Metals.20 ICP-AES	<1.0	19325-1	8.8 9.2 RPD: 4	LCS-3	102%
Zinc	mg/kg	1	Metals.20 ICP-AES	<1.0	19325-1	81 87 RPD: 7	LCS-3	101%
Phosphorus	mg/kg	10	Metals.20 ICP-AES	<10	[NT]	[NT]	LCS-3	96%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Miscellaneous Inorg - soil						Base II Duplicate II %RPD		-
Ammonia as N in soil	mg/kg	0.5	LAB.57	<0.5	[NT]	[NT]	LCS-1	84%
Nitrate as N in soil	mg/kg	0.5	LAB.55	<0.5	[NT]	[NT]	LCS-1	101%
Nitrite as N in soil	mg/kg	0.1	LAB.56	<0.1	[NT]	[NT]	LCS-1	104%
Total Kjeldahl Nitrogen	mg/kg	30	Ext-020	<30	[NT]	[NT]	LCS-1	116%
Total Nitrogen in soil	mg/kg	10	LAB.66	<10	[NT]	[NT]	[NR]	[NR]
pH 1:5 soil:water	pH Units		LAB.1	[NT]	19325-10	7.3 7.3 RPD: 0	LCS-1	100%
Electrical Conductivity 1:5 soil:water	μS/cm	1	LAB.2	<1.0	19325-10	110 110 RPD: 0	LCS-1	104%
Salinity as NACL *	mg/kg	1	LAB.2	<1.0	19325-10	70 70 RPD: 0	[NR]	[NR]
Resistivity in soil*	ohm m	1	LAB.2	<1.0	19325-10	91 91 RPD: 0	[NR]	[NR]
Chloride 1:5 soil:water	mg/kg	100	LAB.11	<100	19325-10	<100 [N/T]	LCS-1	109%
Sulphate, SO4 1:5 soil:water	mg/kg	25	LAB.9	<25	19325-10	<25 [N/T]	LCS-1	109%
QUALITY CONTROL Moisture	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD		
Date prepared	-			16/5/08	19325-2	16/05/2008 16/05/2008	1	
Date analysed	-			16/5/08	19325-2	16/05/2008 16/05/2008		
Moisture	%	0.1	LAB.8	<0.10	19325-2	16 16 RPD: 0		
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Herbicides in Soil						Base II Duplicate II %RPD		,
Dicamba	mg/kg	0.1	Ext-020	<0.1	[NT]	[NT]	LCS-1	98%
MCPA	mg/kg	0.1	Ext-020	<0.1	[NT]	[NT]	LCS-1	114%
Dichlorprop	mg/kg	0.1	Ext-020	<0.1	[NT]	[NT]	LCS-1	114%
2,4-D	mg/kg	0.1	Ext-020	<0.1	[NT]	[NT]	LCS-1	126%
2,4,5-T	mg/kg	0.1	Ext-020	<0.1	[NT]	[NT]	LCS-1	125%
2,4,5-TP	mg/kg	0.1	Ext-020	<0.1	[NT]	[NT]	LCS-1	112%
2,4-DB	mg/kg	0.1	Ext-020	<0.1	[NT]	[NT]	LCS-1	104%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Herbicides in Soil					3111#	Base II Duplicate II %RPD		Recovery
MCPP	mg/kg	0.1	Ext-020	<0.1	[NT]	[NT]	LCS-1	100%
Triclopyr	mg/kg	0.1	Ext-020	<0.1	[NT]	[NT]	LCS-1	136%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank				
Asbestos ID - materials								
Date analysed	-			16/5/08				
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
sPOCAS						Base II Duplicate II %RPD		Recovery
pH kcl	pH units		LAB.64	[NT]	[NT]	[NT]	LCS	100%
TAA pH 6.5	moles H ⁺ / tonne	5	LAB.64	<5	[NT]	[NT]	LCS	91%
s-TAA pH 6.5	%w/w S	0.01	LAB.64	<0.01	[NT]	[NT]	[NR]	[NR]
pH ox	pH units		LAB.64	[NT]	[NT]	[NT]	LCS	96%
TPA pH 6.5	moles H ⁺ / tonne	5	LAB.64	<5.0	[NT]	[NT]	LCS	92%
s-TPA pH 6.5	%w/w S	0.01	LAB.64	<0.01	[NT]	[NT]	[NR]	[NR]
TSA pH 6.5	moles H ⁺ / tonne	5	LAB.64	<5.0	[NT]	[NT]	LCS	92%
s-TSA pH 6.5	%w/w S	0.01	LAB.64	<0.01	[NT]	[NT]	[NR]	[NR]
ANCE	% CaCO ₃	0.05	LAB.64	<0.05	[NT]	[NT]	[NR]	[NR]
a-ANCE	moles H ⁺ / tonne	5	LAB.64	<5	[NT]	[NT]	[NR]	[NR]
s-ANCe	%w/w S	0.05	LAB.64	<0.05	[NT]	[NT]	[NR]	[NR]
Skci	%w/w	0.005	LAB.64	<0.005	[NT]	[NT]	LCS	93%
Sp	%w/w	0.005	LAB.64	<0.005	[NT]	[NT]	LCS	94%
Spos	%w/w	0.005	LAB.64	<0.005	[NT]	[NT]	[NR]	[NR]
a-Spos	moles H ⁺ / tonne	5	LAB.64	<5.0	[NT]	[NT]	[NR]	[NR]
Саксі	%w/w	0.005	LAB.64	<0.005	[NT]	[NT]	LCS	97%
Сар	%w/w	0.005	LAB.64	<0.005	[NT]	[NT]	LCS	100%
Сал	%w/w	0.005	LAB.64	<0.005	[NT]	[NT]	[NR]	[NR]
Мдксі	%w/w	0.005	LAB.64	<0.005	[NT]	[NT]	LCS	92%
MgP	%w/w	0.005	LAB.64	<0.005	[NT]	[NT]	LCS	93%
MgA	%w/w	0.005	LAB.64	<0.005	[NT]	[NT]	[NR]	[NR]
SRAS	%w/w	0.005	LAB.64	<0.005	[NT]	[NT]	[NR]	[NR]

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	i	Spike Sm#	Spike % Recovery
sPOCAS					O.III.	Base II Duplicate II %F	RPD		Recovery
Shci	%w/w	0.005	LAB.64	<0.005	[NT]	[NT]		LCS	92%
Snas	%w/w	0.005	LAB.64	<0.005	[NT]	[NT]		[NR]	[NR]
a-Snas	moles H ⁺ / tonne	5	LAB.64	<5	[NT]	[NT]		[NR]	[NR]
s-Snas	%w/w S	0.01	LAB.64	<0.01	[NT]	[NT]		[NR]	[NR]
a-Net Acidity	moles H ⁺ / tonne	10	LAB.64	<10	[NT]	[NT]		LCS	94%
Liming rate	kg CaCO3 /tonne	0.75	LAB.64	<0.75	[NT]	[NT]		[NR]	[NR]
QUALITY CONTROL	UNITS		Dup. Sm#		Duplicate	Spike Sm#	Spik	ke % Recovery	
vTPH & BTEX in Soil				Base + [Ouplicate + %RPD				
Date extracted	-		[NT]		[NT]	19325-6		16/5/08%	
Date analysed	-		[NT]		[NT]	19325-6		17/5/08%	
vTPH C6 - C9	mg/kg		[NT]		[NT]	19325-6	103%		
Benzene	mg/kg		[NT]		[NT]	19325-6		108%	
Toluene	mg/kg		[NT]		[NT]	19325-6		112%	
Ethylbenzene	mg/kg		[NT]		[NT]	19325-6		106%	
m+p-xylene	mg/kg		[NT]		[NT]	19325-6		113%	
o-Xylene	mg/kg		[NT]		[NT]	19325-6		115%	
Surrogate aaa- Trifluorotoluene	%		[NT]		[NT]	19325-6		89%	
QUALITY CONTROL sTPH in Soil (C10-C36)	UNITS	1	Oup. Sm#		Duplicate Duplicate + %RPD	Spike Sm#	Spik	ke % Recovery	
Date extracted	-		[NT]		[NT]	19325-24		16/5/08%	
Date analysed	-		[NT]		[NT]	19325-24		16/5/08%	
TPH C ₁₀ - C ₁₄	mg/kg		[NT]		[NT]	19325-24		77%	
TPH C ₁₅ - C ₂₈	mg/kg		[NT]		[NT]	19325-24		83%	
TPH C ₂₉ - C ₃₆	mg/kg		[NT]		[NT]	19325-24		94%	
Surrogate o-Terphenyl	%		[NT]		[NT]	19325-24		90%	
QUALITY CONTROL	UNITS	1	Dup. Sm#		Duplicate	Spike Sm#	Spik	e % Recovery	
PAHs in Soil				Base + [Ouplicate + %RPD				
Date extracted	-	,	19325-49	16/05/2	008 16/05/2008	19325-24		16/5/08%	
Date analysed	-		19325-49	16/05/2	008 16/05/2008	19325-24		16/5/08%	
Naphthalene	mg/kg	, ,	19325-49	-	<0.1 <0.1	19325-24		105%	
Acenaphthylene	mg/kg	, .	19325-49	<	<0.1 <0.1	[NR]		[NR]	
Acenaphthene	mg/kg	, .	19325-49	<	<0.1 <0.1	[NR]		[NR]	
Fluorene	mg/kg		19325-49		<0.1 0.1	19325-24		104%	

Envirolab Reference: 19325 Revision No: R 00

QUALITY CONTROL PAHs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery	
Phenanthrene	mg/kg	19325-49	0.8 1.4 RPD: 55	19325-24	107%	
Anthracene	mg/kg	19325-49	0.1 0.3 RPD: 100	[NR]	[NR]	
Fluoranthene	mg/kg	19325-49	2.7 3.9 RPD: 36	19325-24	107%	
Pyrene	mg/kg	19325-49	2.8 4.1 RPD: 38	19325-24	110%	
Benzo(a)anthracene	mg/kg	19325-49	1.3 2.1 RPD: 47	[NR]	[NR]	
Chrysene	mg/kg	19325-49	1.8 2.6 RPD: 36	19325-24	117%	
Benzo(b+k)fluoranthene	mg/kg	19325-49	3.0 4.6 RPD: 42 [NR]		[NR]	
Benzo(a)pyrene	mg/kg	19325-49	1.5 2.5 RPD: 50	19325-24	111%	
Dibenzo(a,h)anthracene	mg/kg	19325-49	<0.1 0.1	[NR]	[NR]	
Indeno(1,2,3-c,d)pyrene	mg/kg	19325-49	1.2 2.1 RPD: 55	[NR]	[NR]	
Benzo(g,h,i)perylene	mg/kg	19325-49	1.1 1.8 RPD: 48	[NR]	[NR]	
Surrogate p-Terphenyl-	%	19325-49	101 60 RPD: 51	19325-24	107%	
QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery	
Date extracted	-	[NT]	[NT]	19325-13	16/5/08%	
Date analysed	-	[NT]	[NT]	19325-13	16/5/08%	
HCB	mg/kg	[NT]	[NT]	[NR]	[NR]	
alpha-BHC	mg/kg	[NT]	[NT]	19325-13	98%	
gamma-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]	
beta-BHC	mg/kg	[NT]	[NT]	19325-13	108%	
Heptachlor	mg/kg	[NT]	[NT]	19325-13	108%	
delta-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]	
Aldrin	mg/kg	[NT]	[NT]	19325-13	102%	
Heptachlor Epoxide	mg/kg	[NT]	[NT]	19325-13	102%	
gamma-Chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]	
alpha-chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]	
Endosulfan I	mg/kg	[NT]	[NT]	[NR]	[NR]	
pp-DDE	mg/kg	[NT]	[NT]	19325-13	100%	
Dieldrin	mg/kg	[NT]	[NT]	19325-13	102%	
Endrin	mg/kg	[NT]	[NT]	19325-13	96%	
pp-DDD	mg/kg	[NT]	[NT]	19325-13	101%	
Endosulfan II	mg/kg	[NT]	[NT]	[NR]	[NR]	
pp-DDT	mg/kg	[NT]	[NT]	[NR]	[NR]	
Endrin Aldehyde	mg/kg	[NT]	[NT]	[NR]	[NR]	
Endosulfan Sulphate	mg/kg	[NT]	[NT]	19325-13	95%	
Methoxychlor	mg/kg	[NT]	[NT]	[NR]	[NR]	
Surrogate TCLMX	%	[NT]	[NT]	19325-13	91%	

QUALITY CONTROL Organophosphorus Pesticides	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	19325-13	16/5/08%
Date analysed	-	[NT]	[NT]	19325-13	16/5/08%
Diazinon	mg/kg	[NT]	[NT]	[NR]	[NR]
Dimethoate	mg/kg	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos-methyl	mg/kg	[NT]	[NT]	[NR]	[NR]
Ronnel	mg/kg	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos	mg/kg	[NT]	[NT]	19325-13	86%
Fenitrothion	mg/kg	[NT]	[NT]	19325-13	78%
Bromophos-ethyl	mg/kg	[NT]	[NT]	[NR]	[NR]
Ethion	mg/kg	[NT]	[NT]	19325-13	103%
Surrogate TCLMX	%	[NT]	[NT]	19325-13	81%
QUALITY CONTROL PCBs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	19325-13	16/5/08%
Date analysed	-	[NT]	[NT]	19325-13	16/5/08%
Arochlor 1016	mg/kg	[NT]	[NT]	[NR]	[NR]
Arochlor 1232	mg/kg	[NT]	[NT]	[NR]	[NR]
Arochlor 1242	mg/kg	[NT]	[NT]	[NR]	[NR]
Arochlor 1248	mg/kg	[NT]	[NT]	[NR]	[NR]
Arochlor 1254	mg/kg	[NT]	[NT]	19325-13	80%
Arochlor 1260	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%	[NT]	[NT]	19325-13	121%
QUALITY CONTROL Acid Extractable metals in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date digested	-	19325-19	19/05/2008 19/05/2008	LCS-4	19/05/08%
Date analysed	-	19325-19	21/05/2008 21/05/2008	LCS-4	21/05/08%
Arsenic	mg/kg	[NT]	[NT]	LCS-4	98%
Cadmium	mg/kg	[NT]	[NT]	LCS-4	103%
Chromium	mg/kg	[NT]	[NT]	LCS-4	103%
Copper	mg/kg	[NT]	[NT]	LCS-4	103%
Lead	mg/kg	[NT]	[NT]	LCS-4	99%
Mercury	mg/kg	[NT]	[NT]	LCS-4	107%
Nickel	mg/kg	[NT]	[NT]	LCS-4	103%
Zinc	mg/kg	[NT]	[NT]	LCS-4	101%
Phosphorus	mg/kg	19325-19	200 200 RPD: 0	LCS-4	96%

QUALITY CONTROL Miscellaneous Inorg - soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Ammonia as N in soil	mg/kg	19325-7	1.6 1.6 RPD: 0	19325-19	81%
Nitrate as N in soil	mg/kg	19325-7	<0.5 <0.5	19325-19	91%
Nitrite as N in soil	mg/kg	19325-7	<0.1 <0.1	19325-19	100%
pH 1:5 soil:water	pH Units	[NT]	[NT]	[NR]	[NR]
Electrical Conductivity 1:5 soil:water	μS/cm	[NT]	[NT]	[NR]	[NR]
Salinity as NACL *	mg/kg	[NT]	[NT]	[NR]	[NR]
Resistivity in soil*	ohm m	[NT]	[NT] [NR]		[NR]
Chloride 1:5 soil:water	mg/kg	[NT]	[NT]	[NR]	[NR]
Sulphate, SO4 1:5 soil:water	mg/kg	[NT]	[NT]	[NR]	[NR]
QUALITY CONTROL Moisture	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD		
Date prepared	-	19325-6	16/05/2008 16/05/2008		
Date analysed	-	19325-6	16/05/2008 16/05/2008		
Moisture	%	19325-6	31 31 RPD: 0		
QUALITY CONTROL Acid Extractable metals in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date digested	-	19325-38	19/05/2008 19/05/2008	19325-5	19/05/08%
Date analysed	-	19325-38	21/05/2008 21/05/2008	19325-5	21/05/08%
Arsenic	mg/kg	19325-38	<4.0 <4.0	19325-5	106%
Cadmium	mg/kg	19325-38	<1.0 <1.0	19325-5	102%
Chromium	mg/kg	19325-38	4.0 3.2 RPD: 22	19325-5	107%
Copper	mg/kg	19325-38	6.1 6.5 RPD: 6	19325-5	105%
Lead	mg/kg	19325-38	12 12 RPD: 0	12 12 RPD: 0 19325-5	
Mercury	mg/kg	19325-38	<0.10 <0.10	19325-5	102%
Nickel	mg/kg	19325-38	<1.0 <1.0	<1.0 <1.0	
Zinc	mg/kg	19325-38	13 17 RPD: 27	19325-5	105%
Phosphorus	mg/kg	[NT]	[NT]	[NR]	[NR]

QUALITY CONTROL Moisture	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD		
Date prepared	-	19325-7	16/05/2008 16/05/2008		
Date analysed	-	19325-7	16/05/2008 16/05/2008		
Moisture	%	19325-7	7.8 7.8 RPD: 0		
QUALITY CONTROL Acid Extractable metals in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date digested	-	19325-54	19/05/2008 19/05/2008	19325-40	19/05/08%
Date analysed	-	19325-54	21/05/2008 21/05/2008	19325-40	21/05/08%
Arsenic	mg/kg	19325-54	4.2 <4.0	19325-40	116%
Cadmium	mg/kg	19325-54	<1.0 <1.0	19325-40	103%
Chromium	mg/kg	19325-54	13 12 RPD: 8	19325-40	108%
Copper	mg/kg	19325-54	18 22 RPD: 20	19325-40	113%
Lead	mg/kg	19325-54	41 50 RPD: 20	19325-40	101%
Mercury	mg/kg	19325-54	<0.10 <0.10	19325-40	112%
Nickel	mg/kg	19325-54	2.1 3.2 RPD: 42	19325-40	104%
Zinc	mg/kg	19325-54	31 44 RPD: 35	19325-40	101%
Phosphorus	mg/kg	[NT]	[NT]	[NR]	[NR]
QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate		
Moisture			Base + Duplicate + %RPD		
Date prepared	-	19325-8	16/05/2008 16/05/2008		
Date analysed	-	19325-8	16/05/2008 16/05/2008		
Moisture	%	19325-8	7.9 7.9 RPD: 0		
QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate		
Moisture			Base + Duplicate + %RPD		
Date prepared	-	19325-49	16/05/2008 16/05/2008		
Date analysed	-	19325-49	16/05/2008 16/05/2008		
Moisture	%	19325-49	13 13 RPD: 0		
QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate		
Moisture			Base + Duplicate + %RPD		
Date prepared	-	19325-1	16/05/2008 16/05/2008		
Date analysed	-	19325-1	16/05/2008 16/05/2008		
Moisture	%	19325-1	29 29 RPD: 0		
QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate		
Moisture			Base + Duplicate + %RPD		
Date prepared	-	19325-19	16/05/2008 16/05/2008		
Date analysed	-	19325-19	16/05/2008 16/05/2008		
Moisture	%	19325-19	61 61 RPD: 0		

QUALITY CONTROL Moisture	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD
			•
Date prepared	-	19325-38	16/05/2008 16/05/2008
Date analysed	-	19325-38	16/05/2008 16/05/2008
Moisture	%	19325-38	16 16 RPD: 0
QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate
Moisture			Base + Duplicate + %RPD
Date prepared	-	19325-54	16/05/2008 16/05/2008
Date analysed	-	19325-54	16/05/2008 16/05/2008
Moisture	%	19325-54	19 19 RPD: 0

Report Comments:

Texture Classification:

10 = Sandy Loam

22 = Sandy Loam

26 = Sandy Loam

27 = Sandy Loam

TKN and Herbicides analysed by NMI: Report Number - RN680686

Asbestos was analysed by Approved Identifier: Joshua Lim

INS: Insufficient sample for this test NT: Not tested PQL: Practical Quantitation Limit RPD: Relative Percent Difference NA: Test not required LCS: Laboratory Control Sample

NR: Not requested <: Less than >: Greater than

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank

sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria:

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for

SVOC and speciated phenols is acceptable. Surrogates: 60-140% is acceptable for general organics and 10-140% for

SVOC and speciated phenols.

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 19429

Client:

Consulting Earth Scientists

Suite 121, 26-32 Pirrama Rd Pyrmont NSW 2009

Attention: Kelly Weir / Luke Jenkins

Sample log in details:

Your Reference: CES050706-BCC Area A

No. of samples:34 SoilsDate samples received:16/05/08Date completed instructions received:16/05/08

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by:

Date of Preliminary Report:

Issue Date:

23/05/08

not issued
20/05/08

NATA accreditation number 2901. This document shall not be reproduced except in full.

This document is issued in accordance with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Tests not covered by NATA are denoted with *.

Results Approved By:

Steve Dale

Approved identifier & Signatory

Asbestos ID - soils						
Our Reference:	UNITS	19429-1	19429-2	19429-3	19429-4	19429-5
Your Reference		060508-52-K	090508-208-	060508-46-K	080508-161-	090508-207-
		W	KW	W	KW	KW
Date Sampled		6/05/2008	9/05/2008	6/05/2008	8/05/2008	9/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	20/05/2008	20/05/2008	20/05/2008	20/05/2008	20/05/2008
Sample Description	-	30g soil	30g soil	30g soil	30g soil	30g soil
Asbestos ID in soil	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Trace Analysis	-	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected
Asbestos ID - soils						
Aspestos ID - soils Our Reference:	UNITS	19429-6	19429-7	19429-8	19429-9	19429-10
Your Reference		070508-70-K	060508-43-K	060508-04-K	080508-158-	070508-76-K
		W	W	W	KW	W
Date Sampled		7/05/2008	6/05/2008	6/05/2008	8/05/2008	7/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	20/05/2008	20/05/2008	20/05/2008	20/05/2008	20/05/2008
Sample Description	-	30g soil	30g soil	30g soil	30g soil	30g soil
Asbestos ID in soil	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Trace Analysis	-	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected
Asbestos ID - soils						
Our Reference:	UNITS	19429-11	19429-12	19429-13	19429-14	19429-15
Your Reference		060508-33-K W	060508-10-K W	080508-151- KW	080508-141- KW	080508-102- KW
Date Sampled		6/05/2008	6/05/2008	8/05/2008	8/05/2008	8/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	20/05/2008	20/05/2008	20/05/2008	20/05/2008	20/05/2008
Sample Description	-	30g soil	30g soil	30g soil	30g soil	30g soil
Asbestos ID in soil	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Trace Analysis	-	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected

Asbestos ID - soils Our Reference: Your Reference Date Sampled Type of sample Date analysed	UNITS	19429-16 080508-116- KW 8/05/2008 Soil	19429-17 070508-84-K W 7/05/2008 Soil	19429-18 080508-136- KW 8/05/2008 Soil	19429-19 080508-105- KW 8/05/2008 Soil	19429-20 120508-261- KW 12/05/2008 Soil
Sample Description	-	30g soil	30g soil	30g soil	30g soil	30g soil
Asbestos ID in soil	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Trace Analysis	-	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected
Asbestos ID - soils						
Our Reference:	UNITS	19429-21	19429-22	19429-23	19429-24	19429-25
Your Reference		1250508-254- KW	120508-263- KW	120508-228- KW	130508-282- KW	130508-308- KW
Date Sampled		12/05/2008	12/05/2008	12/05/2008	13/05/2008	13/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	20/05/2008	20/05/2008	20/05/2008	20/05/2008	20/05/2008
Sample Description	-	30g soil	30g soil	30g soil	30g soil	30g soil
Asbestos ID in soil	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Trace Analysis	-	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected
Asbestos ID - soils						
Our Reference:	UNITS	19429-26	19429-27	19429-28	19429-29	19429-30
Your Reference		150508-391- KW	130508-328- KW	130508-289- KW	130508-317- KW	130508-302- KW
Date Sampled		15/05/2008	13/05/2008	13/05/2008	13/05/2008	13/05/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	20/05/2008	20/05/2008	20/05/2008	20/05/2008	20/05/2008
Sample Description	-	30g soil	30g soil	30g soil	30g soil	30g soil
Asbestos ID in soil	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Trace Analysis	-	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected

Asbestos ID - soils Our Reference: Your Reference Date Sampled Type of sample	UNITS	19429-31 150508-381- KW 15/05/2008 Soil	19429-32 150508-378/3 79-KW 15/05/2008 Soil	19429-33 150508-352/3 53/354-KW 15/05/2008 Soil	19429-34 150508-367- KW 15/05/2008 Soil
Date analysed	-	20/05/2008	20/05/2008	20/05/2008	20/05/2008
Sample Description	-	30g soil	30g soil	30g soil	30g soil
Asbestos ID in soil	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Trace Analysis	-	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected

Method ID	Methodology Summary				
ASB.1	Qualitative identification of asbestos type fibres in bulk using Polarised Light Microscopy and Dispersion Staining Techniques.				

Report Comments:

Asbestos: A portion of the supplied sample was sub-sampled for asbestos according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample.

Envirolab recommends supplying 30-40g of sample in it's own container.

Asbestos was analysed by Approved Identifier: Steven Dale

INS: Insufficient sample for this test NT: Not tested PQL: Practical Quantitation Limit RPD: Relative Percent Difference NA: Test not required LCS: Laboratory Control Sample

NR: Not requested <: Less than >: Greater than

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria:

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for

SVOC and speciated phenols is acceptable. Surrogates: 60-140% is acceptable for general organics and 10-140% for

SVOC and speciated phenols.

Envirolab Services Pty Ltd ABN 37 112 535 645 shley St Chatswood NSW 2067

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 19432-A

Client:

Consulting Earth Scientists

Suite 121, 26-32 Pirrama Rd Pyrmont NSW 2009

Attention: Luke Jenkins / Kelly Weir

Sample log in details:

Your Reference: CES050706-BCC Area A

No. of samples: Additional Testing on 2 Soils

Date samples received: 16/05/08
Date completed instructions received: 29/05/08

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: 5/06/08

Date of Preliminary Report: Not Issued Issue Date: 3/06/08

NATA accreditation number 2901. This document shall not be reproduced except in full.

This document is issued in accordance with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst Operations Manager

vTPH & BTEX in Soil			
Our Reference:	UNITS	19432-A-8	19432-A-16
Your Reference		150508-347-	150508-346-
		KW	KW
Date Sampled		15/05/2008	15/05/2008
Type of sample		Soil	Soil
Sample Matrix Code		SO	SO
Time Sampled		00:00	00:00
Date extracted	-	30/05/2008	30/05/2008
Date analysed	-	31/05/2008	31/05/2008
vTPH C6 - C9	mg/kg	<25	<25
Benzene	mg/kg	<0.5	<0.5
Toluene	mg/kg	<0.5	<0.5
Ethylbenzene	mg/kg	<1.0	<1.0
m+p-xylene	mg/kg	<2.0	<2.0
o-Xylene	mg/kg	<1.0	<1.0
Surrogate aaa-Trifluorotoluene	%	92	61

sTPH in Soil (C10-C36)			
Our Reference:	UNITS	19432-A-8	19432-A-16
Your Reference		150508-347- KW	150508-346- KW
Date Sampled		15/05/2008	15/05/2008
Type of sample		Soil	Soil
Sample Matrix Code		SO	SO
Time Sampled		00:00	00:00
Date extracted	-	30/05/2008	30/05/2008
Date analysed	-	30/05/2008	30/05/2008
TPH C ₁₀ - C ₁₄	mg/kg	<50	<50
TPH C ₁₅ - C ₂₈	mg/kg	<100	<100
TPH C29 - C36	mg/kg	<100	<100
Surrogate o-Terphenyl	%	83	79

Moisture			
Our Reference:	UNITS	19432-A-8	19432-A-16
Your Reference		150508-347- KW	150508-346- KW
Date Sampled		15/05/2008	15/05/2008
Type of sample		Soil	Soil
Sample Matrix Code		SO	SO
Time Sampled		00:00	00:00
Date prepared	-	30/05/2008	30/05/2008
Date analysed	-	30/05/2008	30/05/2008
Moisture	%	18	22

Method ID	Methodology Summary
GC.16	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS.
GC.14	Soil samples extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
GC.3	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
LAB.8	Moisture content determined by heating at 105 deg C for a minimum of 4 hours.

							1	
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTPH & BTEX in Soil						Base II Duplicate II %RPD		
Date extracted	-			30/5/08	[NT]	[NT]	LCS-2	30/5/08%
Date analysed	-			31/5/08	[NT]	[NT]	LCS-2	31/5/08%
vTPH C6 - C9	mg/kg	25	GC.16	<25	[NT]	[NT]	LCS-2	117%
Benzene	mg/kg	0.5	GC.14	<0.5	[NT]	[NT]	LCS-2	103%
Toluene	mg/kg	0.5	GC.14	<0.5	[NT]	[NT]	LCS-2	135%
Ethylbenzene	mg/kg	1	GC.14	<1.0	[NT]	[NT]	LCS-2	117%
m+p-xylene	mg/kg	2	GC.14	<2.0	[NT]	[NT]	LCS-2	114%
o-Xylene	mg/kg	1	GC.14	<1.0	[NT]	[NT]	LCS-2	118%
Surrogate aaa-Trifluorotoluene	%		GC.14	110	[NT]	[NT]	LCS-2	113%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
sTPH in Soil (C10-C36)						Base II Duplicate II %RPD		Recovery
Date extracted	-			30/5/08	[NT]	[NT]	LCS-2	30/5/08%
Date analysed	-			30/5/08	[NT]	[NT]	LCS-2	30/5/08%
TPH C ₁₀ - C ₁₄	mg/kg	50	GC.3	<50	[NT]	[NT]	LCS-2	88%
TPH C ₁₅ - C ₂₈	mg/kg	100	GC.3	<100	[NT]	[NT]	LCS-2	88%
TPH C29 - C36	mg/kg	100	GC.3	<100	[NT]	[NT]	LCS-2	104%
Surrogate o-Terphenyl	%		GC.3	82	[NT]	[NT]	LCS-2	81%
QUALITY CONTROL Moisture	UNITS	PQL	METHOD	Blank				
Moisture								
Date prepared	-			30/5/08				
Date analysed	-			30/5/08				
Moisture	%	0.1	LAB.8	<0.10				

Report Comments:

Asbestos was analysed by Approved Identifier: Not applicable for this job

INS: Insufficient sample for this test NT: Not tested PQL: Practical Quantitation Limit RPD: Relative Percent Difference NA: Test not required LCS: Laboratory Control Sample

NR: Not requested <: Less than >: Greater than

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. **LCS (Laboratory Control Sample)**: This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria:

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for

SVOC and speciated phenols is acceptable. Surrogates: 60-140% is acceptable for general organics and 10-140% for

SVOC and speciated phenols.

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 19834

Client:

Consulting Earth Scientists

Suite 121, 26-32 Pirrama Rd Pyrmont NSW 2009

Attention: Luke Jenkins

Sample log in details:

Your Reference: CES050706-BCC, Area A Water

No. of samples:15 WatersDate samples received:30/05/08Date completed instructions received:30/05/08

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: 10/06/08

Date of Preliminary Report: Not Issued Issue Date: 10/06/08

NATA accreditation number 2901. This document shall not be reproduced except in full.

This document is issued in accordance with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Tests not covered by NATA are denoted with *.

Results Approved By:

David Springer

Business Development & Quality Manager

VOCs in water						
Our Reference:	UNITS	19834-1	19834-4	19834-5	19834-6	19834-7
Your Reference		290508-01-	290508-04-	290508-05-	290508-06-	290508-08-
Date Sampled		29/05/2008	29/05/2008	29/05/2008	29/05/2008	29/05/2008
Type of sample Sample Matrix Code		Water WG	Water WG	Water WG	Water WG	Water WG
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008	3/06/2008
Date analysed	_	4/06/2008	4/06/2008	4/06/2008	4/06/2008	4/06/2008
Dichlorodifluoromethane	μg/L	<10	<10	<10	<10	<10
Chloromethane	μg/L	<10	<10	<10	<10	<10
Vinyl Chloride	µg/L	<10	<10	<10	<10	<10
Bromomethane	μg/L	<10	<10	<10	<10	<10
Chloroethane	µg/L	<10	<10	<10	<10	<10
Trichlorofluoromethane	μg/L	<10	<10	<10	<10	<10
1,1-Dichloroethene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Trans-1,2-dichloroethene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-dichloroethane	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Cis-1,2-dichloroethene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Bromochloromethane	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2,2-dichloropropane	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichloroethane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1-trichloroethane	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-dichloropropene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Carbon tetrachloride	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Dibromomethane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichloropropane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Trichloroethene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Bromodichloromethane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,3-dichloropropene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,3-dichloropropene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-trichloroethane	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Toluene	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-dichloropropane	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Dibromochloromethane	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dibromoethane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Tetrachloroethene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1,2-tetrachloroethane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Chlorobenzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Ethylbenzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Bromoform	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
m+p-xylene	μg/L	<2.0	<2.0	<2.0	<2.0	<2.0

VOCs in water Our Reference: Your Reference Date Sampled Type of sample Sample Matrix Code Time Sampled	UNITS 	19834-1 290508-01- 29/05/2008 Water WG 00:00	19834-4 290508-04- 29/05/2008 Water WG 00:00	19834-5 290508-05- 29/05/2008 Water WG 00:00	19834-6 290508-06- 29/05/2008 Water WG 00:00	19834-7 290508-08- 29/05/2008 Water WG 00:00
Styrene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-tetrachloroethane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
o-xylene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-trichloropropane*	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Isopropylbenzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Bromobenzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
n-propyl benzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2-chlorotoluene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
4-chlorotoluene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,3,5-trimethyl benzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Tert-butyl benzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-trimethyl benzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-dichlorobenzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Sec-butyl benzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,4-dichlorobenzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
4-isopropyl toluene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichlorobenzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
n-butyl benzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dibromo-3-chloropropane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-trichlorobenzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Hexachlorobutadiene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-trichlorobenzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Surrogate Dibromofluoromethane	%	92	92	89	86	85
Surrogate toluene-d8	%	92	93	94	92	87
Surrogate 4-BFB	%	86	89	84	89	73

VOCs in water	LIMITO	10024.0	10024.0	10024 40	10024 44
Our Reference: Your Reference	UNITS	19834-8 290508-09-	19834-9 290508-10-	19834-10 290508-11-	19834-11 290508-12-
Date Sampled		30/05/2008	30/05/2008	30/05/2008	30/05/2008
Type of sample		Water	Water	Water	Water
Sample Matrix Code		WG	WG	WG	WG
Time Sampled		00:00	00:00	00:00	00:00
Date extracted	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008
Date analysed	-	4/06/2008	4/06/2008	4/06/2008	4/06/2008
Dichlorodifluoromethane	μg/L	<10	<10	<10	<10
Chloromethane	μg/L	<10	<10	<10	<10
Vinyl Chloride	μg/L	<10	<10	<10	<10
Bromomethane	μg/L	<10	<10	<10	<10
Chloroethane	μg/L	<10	<10	<10	<10
Trichlorofluoromethane	μg/L	<10	<10	<10	<10
1,1-Dichloroethene	μg/L	<1.0	<1.0	<1.0	<1.0
Trans-1,2-dichloroethene	μg/L	<1.0	<1.0	<1.0	<1.0
1,1-dichloroethane	μg/L	<1.0	<1.0	<1.0	<1.0
Cis-1,2-dichloroethene	μg/L	<1.0	<1.0	<1.0	<1.0
Bromochloromethane	μg/L	<1.0	<1.0	<1.0	<1.0
Chloroform	μg/L	<1.0	<1.0	<1.0	<1.0
2,2-dichloropropane	μg/L	<1.0	<1.0	<1.0	<1.0
1,2-dichloroethane	μg/L	<1.0	<1.0	<1.0	<1.0
1,1,1-trichloroethane	μg/L	<1.0	<1.0	<1.0	<1.0
1,1-dichloropropene	μg/L	<1.0	<1.0	<1.0	<1.0
Carbon tetrachloride	μg/L	<1.0	<1.0	<1.0	<1.0
Benzene	μg/L	<1.0	<1.0	<1.0	<1.0
Dibromomethane	μg/L	<1.0	<1.0	<1.0	<1.0
1,2-dichloropropane	μg/L	<1.0	<1.0	<1.0	<1.0
Trichloroethene	μg/L	<1.0	<1.0	<1.0	<1.0
Bromodichloromethane	μg/L	<1.0	<1.0	<1.0	<1.0
trans-1,3-dichloropropene	μg/L	<1.0	<1.0	<1.0	<1.0
cis-1,3-dichloropropene	μg/L	<1.0	<1.0	<1.0	<1.0
1,1,2-trichloroethane	μg/L	<1.0	<1.0	<1.0	<1.0
Toluene	μg/L	<1.0	<1.0	<1.0	<1.0
1,3-dichloropropane	μg/L	<1.0	<1.0	<1.0	<1.0
Dibromochloromethane	μg/L	<1.0	<1.0	<1.0	<1.0
1,2-dibromoethane	μg/L	<1.0	<1.0	<1.0	<1.0
Tetrachloroethene	μg/L	<1.0	<1.0	<1.0	<1.0
1,1,1,2-tetrachloroethane	μg/L	<1.0	<1.0	<1.0	<1.0
Chlorobenzene	μg/L	<1.0	<1.0	<1.0	<1.0
Ethylbenzene	μg/L	<1.0	<1.0	<1.0	<1.0
Bromoform	μg/L	<1.0	<1.0	<1.0	<1.0
m+p-xylene	μg/L	<2.0	<2.0	<2.0	<2.0
Styrene	μg/L	<1.0	<1.0	<1.0	<1.0

VOCs in water Our Reference: Your Reference Date Sampled Type of sample Sample Matrix Code Time Sampled	UNITS	19834-8 290508-09- 30/05/2008 Water WG 00:00	19834-9 290508-10- 30/05/2008 Water WG 00:00	19834-10 290508-11- 30/05/2008 Water WG 00:00	19834-11 290508-12- 30/05/2008 Water WG 00:00
1,1,2,2-tetrachloroethane	μg/L	<1.0	<1.0	<1.0	<1.0
o-xylene	μg/L	<1.0	<1.0	<1.0	<1.0
1,2,3-trichloropropane*	μg/L	<1.0	<1.0	<1.0	<1.0
Isopropylbenzene	μg/L	<1.0	<1.0	<1.0	<1.0
Bromobenzene	μg/L	<1.0	<1.0	<1.0	<1.0
n-propyl benzene	μg/L	<1.0	<1.0	<1.0	<1.0
2-chlorotoluene	μg/L	<1.0	<1.0	<1.0	<1.0
4-chlorotoluene	μg/L	<1.0	<1.0	<1.0	<1.0
1,3,5-trimethyl benzene	μg/L	<1.0	<1.0	<1.0	<1.0
Tert-butyl benzene	μg/L	<1.0	<1.0	<1.0	<1.0
1,2,4-trimethyl benzene	μg/L	<1.0	<1.0	<1.0	<1.0
1,3-dichlorobenzene	μg/L	<1.0	<1.0	<1.0	<1.0
Sec-butyl benzene	μg/L	<1.0	<1.0	<1.0	<1.0
1,4-dichlorobenzene	μg/L	<1.0	<1.0	<1.0	<1.0
4-isopropyl toluene	μg/L	<1.0	<1.0	<1.0	<1.0
1,2-dichlorobenzene	μg/L	<1.0	<1.0	<1.0	<1.0
n-butyl benzene	μg/L	<1.0	<1.0	<1.0	<1.0
1,2-dibromo-3-chloropropane	μg/L	<1.0	<1.0	<1.0	<1.0
1,2,4-trichlorobenzene	μg/L	<1.0	<1.0	<1.0	<1.0
Hexachlorobutadiene	μg/L	<1.0	<1.0	<1.0	<1.0
1,2,3-trichlorobenzene	μg/L	<1.0	<1.0	<1.0	<1.0
Surrogate Dibromofluoromethane	%	85	86	95	86
Surrogate toluene-d8	%	89	92	88	90
Surrogate 4-BFB	%	79	83	84	80

vTPH & BTEX in Water						
Our Reference:	UNITS	19834-1	19834-2	19834-3	19834-4	19834-5
Your Reference		290508-01-	290508-02-	290508-03-	290508-04-	290508-05
Date Sampled		29/05/2008	29/05/2008	29/05/2008	29/05/2008	29/05/2008
Type of sample		Water	Water	Water	Water	Water
Sample Matrix Code Time Sampled		WG 00:00	WG 00:00	WG 00:00	WG 00:00	WG 00:00
·						
Date extracted	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008	3/06/2008
Date analysed	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008	3/06/2008
TPH C6 - C9	μg/L	<10	650	72	<10	<10
Benzene	μg/L	[NA]	190	3.8	[NA]	[NA]
Toluene	μg/L	[NA]	70	<1.0	[NA]	[NA]
Ethylbenzene	μg/L	[NA]	60	1.0	[NA]	[NA]
m+p-xylene	μg/L	[NA]	150	18	[NA]	[NA]
o-xylene	μg/L	[NA]	30	8.0	[NA]	[NA]
Surrogate Dibromofluoromethane	%	92	81	75	92	89
Surrogate toluene-d8	%	92	108	108	93	94
Surrogate 4-BFB	%	86	100	98	89	84
vTPH & BTEX in Water						
Our Reference:	UNITS	19834-6	19834-7	19834-8	19834-9	19834-10
Your Reference		290508-06-	290508-08-	290508-09-	290508-10-	290508-1
Date Sampled		29/05/2008	29/05/2008	30/05/2008	30/05/2008	30/05/200
Type of sample		Water	Water	Water	Water	Water
Sample Matrix Code		WG	WG	WG	WG	WG
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008	3/06/2008
Date analysed	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008	3/06/2008
TPH C ₆ - C ₉	μg/L	<10	<10	<10	<10	<10
Surrogate Dibromofluoromethane	%	86	85	85	86	95
Surrogate toluene-d8	%	92	87	89	92	88
Surrogate 4-BFB	%	89	73	79	83	84
vTPH & BTEX in Water						
Our Reference:	UNITS	19834-11	19834-12	19834-13	19834-14	19834-15
Your Reference		290508-12-	290508-13-	290508-14-	Trip Spike	Trip Blanl
Date Sampled		30/05/2008	30/05/2008	30/05/2008	30/05/2008	30/05/200
Type of sample		Water	Water	Water	Water	Water
Sample Matrix Code		WG	WG	WG	WG	WG
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008	3/06/2008
Date analysed	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008	3/06/2008
TPH C6 - C9	μg/L	<10	<10	<10	[NA]	[NA]
Benzene	μg/L	[NA]	<1.0	<1.0	89%	<1.0
Toluene	μg/L	[NA]	<1.0	<1.0	121%	<1.0
Ethylbenzene	μg/L	[NA]	<1.0	<1.0	123%	<1.0
m+p-xylene	μg/L	[NA]	<2.0	<2.0	122%	<2.0

vTPH & BTEX in Water Our Reference: Your Reference Date Sampled Type of sample Sample Matrix Code Time Sampled	UNITS	19834-11 290508-12- 30/05/2008 Water WG 00:00	19834-12 290508-13- 30/05/2008 Water WG 00:00	19834-13 290508-14- 30/05/2008 Water WG 00:00	19834-14 Trip Spike 30/05/2008 Water WG 00:00	19834-15 Trip Blank 30/05/2008 Water WG 00:00
o-xylene	μg/L	[NA]	<1.0	<1.0	123%	<1.0
Surrogate Dibromofluoromethane	%	86	78	76	81	85
Surrogate toluene-d8	%	90	102	98	103	100
Surrogate 4-BFB	%	80	99	95	96	100

sTPH in Water (C10-C36)						
Our Reference:	UNITS	19834-1	19834-2	19834-3	19834-4	19834-5
Your Reference		290508-01-	290508-02-	290508-03-	290508-04-	290508-05-
Date Sampled		29/05/2008	29/05/2008	29/05/2008	29/05/2008	29/05/2008
Type of sample		Water	Water	Water	Water	Water
Sample Matrix Code		WG	WG	WG	WG	WG
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	3/06/2008	3/06/2008	4/06/2008	3/06/2008	3/06/2008
Date analysed	-	3/06/2008	3/06/2008	4/06/2008	3/06/2008	3/06/2008
TPH C10 - C14	μg/L	<50	550	<50	<50	<50
TPH C ₁₅ - C ₂₈	μg/L	<100	<100	<100	<100	<100
TPH C29 - C36	μg/L	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	118	137	102	102	111

sTPH in Water (C10-C36)						
Our Reference:	UNITS	19834-6	19834-7	19834-8	19834-9	19834-10
Your Reference		290508-06-	290508-08-	290508-09-	290508-10-	290508-11-
Date Sampled		29/05/2008	29/05/2008	30/05/2008	30/05/2008	30/05/2008
Type of sample		Water	Water	Water	Water	Water
Sample Matrix Code		WG	WG	WG	WG	WG
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008	3/06/2008
Date analysed	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008	3/06/2008
TPH C10 - C14	μg/L	<50	<50	<50	<50	<50
TPH C ₁₅ - C ₂₈	μg/L	<100	<100	<100	<100	<100
TPH C29 - C36	μg/L	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	119	63	99	88	83

sTPH in Water (C10-C36)		
Our Reference:	UNITS	19834-11
Your Reference		290508-12-
Date Sampled		30/05/2008
Type of sample		Water
Sample Matrix Code		WG
Time Sampled		00:00
Date extracted	-	3/06/2008
Date analysed	-	3/06/2008
TPH C ₁₀ - C ₁₄	μg/L	<50
TPH C ₁₅ - C ₂₈	μg/L	<100
TPH C29 - C36	μg/L	<100
Surrogate o-Terphenyl	%	91

PAHs in Water						
Our Reference:	UNITS	19834-1	19834-4	19834-5	19834-6	19834-7
Your Reference		290508-01-	290508-04-	290508-05-	290508-06-	290508-08-
Date Sampled		29/05/2008	29/05/2008	29/05/2008	29/05/2008	29/05/2008
Type of sample		Water	Water	Water	Water	Water
Sample Matrix Code		WG	WG	WG	WG	WG
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008	3/06/2008
Date analysed	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008	3/06/2008
Naphthalene	μg/L	<1	<1	<1	<1	<1
Acenaphthylene	μg/L	<1	<1	<1	<1	<1
Acenaphthene	μg/L	<1	<1	<1	<1	<1
Fluorene	μg/L	<1	<1	<1	<1	<1
Phenanthrene	μg/L	<1	<1	<1	<1	<1
Anthracene	μg/L	<1	<1	<1	<1	<1
Fluoranthene	μg/L	<1	<1	<1	<1	<1
Pyrene	μg/L	<1	<1	<1	<1	<1
Benzo(a)anthracene	μg/L	<1	<1	<1	<1	<1
Chrysene	μg/L	<1	<1	<1	<1	<1
Benzo(b+k)fluoranthene	μg/L	<2	<2	<2	<2	<2
Benzo(a)pyrene	μg/L	<1	<1	<1	<1	<1
Indeno(1,2,3-c,d)pyrene	μg/L	<1	<1	<1	<1	<1
Dibenzo(a,h)anthracene	μg/L	<1	<1	<1	<1	<1
Benzo(g,h,i)perylene	μg/L	<1	<1	<1	<1	<1
Surrogate p-Terphenyl-d14	%	91	104	100	109	87

PAHs in Water Our Reference: Your Reference Date Sampled Type of sample Sample Matrix Code Time Sampled	UNITS	19834-8 290508-09- 30/05/2008 Water WG 00:00	19834-9 290508-10- 30/05/2008 Water WG 00:00	19834-10 290508-11- 30/05/2008 Water WG 00:00	19834-11 290508-12- 30/05/2008 Water WG 00:00
Date extracted	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008
Date analysed	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008
Naphthalene	μg/L	<1	<1	<1	<1
Acenaphthylene	μg/L	<1	<1	<1	<1
Acenaphthene	μg/L	<1	<1	<1	<1
Fluorene	μg/L	<1	<1	<1	<1
Phenanthrene	μg/L	<1	<1	<1	<1
Anthracene	μg/L	<1	<1	<1	<1
Fluoranthene	μg/L	<1	<1	<1	<1
Pyrene	μg/L	<1	<1	<1	<1
Benzo(a)anthracene	μg/L	<1	<1	<1	<1
Chrysene	μg/L	<1	<1	<1	<1
Benzo(b+k)fluoranthene	μg/L	<2	<2	<2	<2
Benzo(a)pyrene	μg/L	<1	<1	<1	<1
Indeno(1,2,3-c,d)pyrene	μg/L	<1	<1	<1	<1
Dibenzo(a,h)anthracene	μg/L	<1	<1	<1	<1
Benzo(g,h,i)perylene	μg/L	<1	<1	<1	<1
Surrogate p-Terphenyl-d ₁₄	%	115	116	99	95

OCP in water						
Our Reference:	UNITS	19834-1	19834-4	19834-5	19834-6	19834-7
Your Reference		290508-01-	290508-04-	290508-05-	290508-06-	290508-08-
Date Sampled		29/05/2008	29/05/2008	29/05/2008	29/05/2008	29/05/2008
Type of sample		Water	Water	Water	Water	Water
Sample Matrix Code Time Sampled		WG 00:00	WG 00:00	WG 00:00	WG 00:00	WG 00:00
·						
Date extracted	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008	3/06/2008
Date analysed	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008	3/06/2008
HCB	μg/L	<0.2	<2	<0.2	<0.2	<0.2
alpha-BHC	μg/L	<0.2	<2	<0.2	<0.2	<0.2
gamma-BHC	μg/L	<0.2	<2	<0.2	<0.2	<0.2
beta-BHC	μg/L	<0.2	<2	<0.2	<0.2	<0.2
Heptachlor	μg/L	<0.2	<2	<0.2	<0.2	<0.2
delta-BHC	μg/L	<0.2	<2	<0.2	<0.2	<0.2
Aldrin	μg/L	<0.2	<2	<0.2	<0.2	<0.2
Heptachlor Epoxide	μg/L	<0.2	<2	<0.2	<0.2	<0.2
gamma-Chlordane	μg/L	<0.2	<2	<0.2	<0.2	<0.2
alpha-Chlordane	μg/L	<0.2	<2	<0.2	<0.2	<0.2
Endosulfan I	μg/L	<0.2	<2	<0.2	<0.2	<0.2
pp-DDE	μg/L	<0.2	<2	<0.2	<0.2	<0.2
Dieldrin	μg/L	<0.2	<2	<0.2	<0.2	<0.2
Endrin	μg/L	<0.2	<2	<0.2	<0.2	<0.2
pp-DDD	μg/L	<0.2	<2	<0.2	<0.2	<0.2
Endosulfan II	μg/L	<0.2	<2	<0.2	<0.2	<0.2
DDT	μg/L	<0.2	<2	<0.2	<0.2	<0.2
Endrin Aldehyde	µg/L	<0.2	<2	<0.2	<0.2	<0.2
Endosulfan Sulphate	μg/L	<0.2	<2	<0.2	<0.2	<0.2
Methoxychlor	μg/L	<0.2	<2	<0.2	<0.2	<0.2
Surrogate TCLMX	%	95	82	92	94	65

OCP in water Our Reference: Your Reference Date Sampled Type of sample Sample Matrix Code Time Sampled	UNITS 	19834-8 290508-09- 30/05/2008 Water WG 00:00	19834-9 290508-10- 30/05/2008 Water WG 00:00	19834-10 290508-11- 30/05/2008 Water WG 00:00	19834-11 290508-12- 30/05/2008 Water WG 00:00
Date extracted	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008
Date analysed	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008
HCB	μg/L	<0.2	<0.2	<0.2	<0.2
alpha-BHC	μg/L	<0.2	<0.2	<0.2	<0.2
gamma-BHC	μg/L	<0.2	<0.2	<0.2	<0.2
beta-BHC	μg/L	<0.2	<0.2	<0.2	<0.2
Heptachlor	μg/L	<0.2	<0.2	<0.2	<0.2
delta-BHC	μg/L	<0.2	<0.2	<0.2	<0.2
Aldrin	μg/L	<0.2	<0.2	<0.2	<0.2
Heptachlor Epoxide	μg/L	<0.2	<0.2	<0.2	<0.2
gamma-Chlordane	μg/L	<0.2	<0.2	<0.2	<0.2
alpha-Chlordane	μg/L	<0.2	<0.2	<0.2	<0.2
Endosulfan I	μg/L	<0.2	<0.2	<0.2	<0.2
pp-DDE	μg/L	<0.2	<0.2	<0.2	<0.2
Dieldrin	μg/L	<0.2	<0.2	<0.2	<0.2
Endrin	μg/L	<0.2	<0.2	<0.2	<0.2
pp-DDD	μg/L	<0.2	<0.2	<0.2	<0.2
Endosulfan II	μg/L	<0.2	<0.2	<0.2	<0.2
DDT	μg/L	<0.2	<0.2	<0.2	<0.2
Endrin Aldehyde	μg/L	<0.2	<0.2	<0.2	<0.2
Endosulfan Sulphate	μg/L	<0.2	<0.2	<0.2	<0.2
Methoxychlor	μg/L	<0.2	<0.2	<0.2	<0.2
Surrogate TCLMX	%	101	93	91	107

OP Pesticides in water						
Our Reference:	UNITS	19834-1	19834-4	19834-5	19834-6	19834-7
Your Reference		290508-01-	290508-04-	290508-05-	290508-06-	290508-08-
Date Sampled		29/05/2008	29/05/2008	29/05/2008	29/05/2008	29/05/2008
Type of sample		Water	Water	Water	Water	Water
Sample Matrix Code		WG	WG	WG	WG	WG
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008	3/06/2008
Date analysed	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008	3/06/2008
Diazinon	μg/L	<0.2	<2	<0.2	<0.2	<0.2
Dimethoate	μg/L	<0.2	<2	<0.2	<0.2	<0.2
Chlorpyriphos-methyl	μg/L	<0.2	<2	<0.2	<0.2	<0.2
Ronnel	μg/L	<0.2	<2	<0.2	<0.2	<0.2
Chlorpyriphos	μg/L	<0.2	<2	<0.2	<0.2	<0.2
Fenitrothion	μg/L	<0.2	<2	<0.2	<0.2	<0.2
Bromophos ethyl	μg/L	<0.2	<2	<0.2	<0.2	<0.2
Ethion	μg/L	<0.2	<2	<0.2	<0.2	<0.2
Surrogate TCLMX	%	95	82	92	94	65

OP Pesticides in water					
Our Reference:	UNITS	19834-8	19834-9	19834-10	19834-11
Your Reference		290508-09-	290508-10-	290508-11-	290508-12-
Date Sampled		30/05/2008	30/05/2008	30/05/2008	30/05/2008
Type of sample		Water	Water	Water	Water
Sample Matrix Code		WG	WG	WG	WG
Time Sampled		00:00	00:00	00:00	00:00
Date extracted	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008
Date analysed	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008
Diazinon	μg/L	<0.2	<0.2	<0.2	<0.2
Dimethoate	μg/L	<0.2	<0.2	<0.2	<0.2
Chlorpyriphos-methyl	μg/L	<0.2	<0.2	<0.2	<0.2
Ronnel	μg/L	<0.2	<0.2	<0.2	<0.2
Chlorpyriphos	μg/L	<0.2	<0.2	<0.2	<0.2
Fenitrothion	μg/L	<0.2	<0.2	<0.2	<0.2
Bromophos ethyl	μg/L	<0.2	<0.2	<0.2	<0.2
Ethion	μg/L	<0.2	<0.2	<0.2	<0.2
Surrogate TCLMX	%	101	93	91	107

PCBs in Water						
Our Reference:	UNITS	19834-1	19834-4	19834-5	19834-6	19834-7
Your Reference		290508-01-	290508-04-	290508-05-	290508-06-	290508-08-
Date Sampled		29/05/2008	29/05/2008	29/05/2008	29/05/2008	29/05/2008
Type of sample		Water	Water	Water	Water	Water
Sample Matrix Code		WG	WG	WG	WG	WG
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008	3/06/2008
Date analysed	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008	3/06/2008
Arochlor 1016	μg/L	<2	<20	<2	<2	<2
Arochlor 1232	μg/L	<2	<20	<2	<2	<2
Arochlor 1242	μg/L	<2	<20	<2	<2	<2
Arochlor 1248	μg/L	<2	<20	<2	<2	<2
Arochlor 1254	μg/L	<2	<20	<2	<2	<2
Arochlor 1260	μg/L	<2	<20	<2	<2	<2
Surrogate TCLMX	%	95	82	92	94	65

PCBs in Water					
Our Reference:	UNITS	19834-8	19834-9	19834-10	19834-11
Your Reference		290508-09-	290508-10-	290508-11-	290508-12-
Date Sampled		30/05/2008	30/05/2008	30/05/2008	30/05/2008
Type of sample		Water	Water	Water	Water
Sample Matrix Code		WG	WG	WG	WG
Time Sampled		00:00	00:00	00:00	00:00
Date extracted	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008
Date analysed	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008
Arochlor 1016	μg/L	<2	<2	<2	<2
Arochlor 1232	μg/L	<2	<2	<2	<2
Arochlor 1242	μg/L	<2	<2	<2	<2
Arochlor 1248	μg/L	<2	<2	<2	<2
Arochlor 1254	μg/L	<2	<2	<2	<2
Arochlor 1260	μg/L	<2	<2	<2	<2
Surrogate TCLMX	%	101	93	91	107

Total Phenolics in Water		
Our Reference:	UNITS	19834-1
Your Reference		290508-01-
Date Sampled		29/05/2008
Type of sample Sample Matrix Code Time Sampled		Water WG 00:00
Date extracted	-	2/06/2008
Date analysed	-	3/06/2008
Total Phenolics (as Phenol)	mg/L	<0.050

Ion Balance						
Our Reference:	UNITS	19834-1	19834-4	19834-5	19834-6	19834-7
Your Reference		290508-01-	290508-04-	290508-05-	290508-06-	290508-08-
Date Sampled		29/05/2008	29/05/2008	29/05/2008	29/05/2008	29/05/2008
Type of sample Sample Matrix Code Time Sampled		Water WG 00:00	Water WG 00:00	Water WG 00:00	Water WG 00:00	Water WG 00:00
Date prepared	-	2/06/2008	2/06/2008	2/06/2008	2/06/2008	2/06/2008
Date analysed	-	2/06/2008	2/06/2008	2/06/2008	2/06/2008	2/06/2008
Calcium - Dissolved	mg/L	320	260	81	78	230
Potassium - Dissolved	mg/L	63	43	19	19	47
Sodium - Dissolved	mg/L	2,000	760	120	120	620
Magnesium - Dissolved	mg/L	220	89	24	24	110
Carbonate Alkalinity as CaCO ₃	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Bicarbonate Alkalinity as CaCO ₃	mg/L	630	540	150	150	490
Sulphate, SO4	mg/L	360	410	140	130	650
Chloride (titration) - water	mg/L	3,300	1,300	210	230	1,100

Ion Balance					
Our Reference:	UNITS	19834-8	19834-9	19834-10	19834-11
Your Reference		290508-09-	290508-10-	290508-11-	290508-12-
Date Sampled		30/05/2008	30/05/2008	30/05/2008	30/05/2008
Type of sample		Water	Water	Water	Water
Sample Matrix Code		WG	WG	WG	WG
Time Sampled		00:00	00:00	00:00	00:00
Date prepared	-	2/06/2008	2/06/2008	2/06/2008	2/06/2008
Date analysed	-	2/06/2008	2/06/2008	2/06/2008	2/06/2008
Calcium - Dissolved	mg/L	600	610	610	110
Potassium - Dissolved	mg/L	130	93	92	68
Sodium - Dissolved	mg/L	4,600	1,600	1,500	2,100
Magnesium - Dissolved	mg/L	450	330	320	230
Carbonate Alkalinity as CaCO ₃	mg/L	<0.1	<0.1	<0.1	<0.1
Bicarbonate Alkalinity as CaCO ₃	mg/L	470	810	810	110
Sulphate, SO4	mg/L	1,300	2,300	2,400	390
Chloride (titration) - water	mg/L	8,900	2,000	2,100	3,300

HM in water - dissolved						
Our Reference:	UNITS	19834-1	19834-2	19834-3	19834-4	19834-5
Your Reference		290508-01-	290508-02-	290508-03-	290508-04-	290508-05-
Date Sampled		29/05/2008	29/05/2008	29/05/2008	29/05/2008	29/05/2008
Type of sample Sample Matrix Code Time Sampled		Water WG 00:00	Water WG 00:00	Water WG 00:00	Water WG 00:00	Water WG 00:00
Date prepared	-	6/06/2008	6/06/2008	6/06/2008	6/06/2008	6/06/2008
Date analysed	-	6/06/2008	6/06/2008	6/06/2008	6/06/2008	6/06/2008
Arsenic-Dissolved	μg/L	9.5	[NA]	[NA]	5.6	11
Cadmium-Dissolved	μg/L	0.20	[NA]	[NA]	<0.10	<0.10
Chromium-Dissolved	μg/L	<1.0	[NA]	[NA]	2.7	<1.0
Copper-Dissolved	μg/L	3.9	[NA]	[NA]	2.1	<1.0
Lead-Dissolved	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Mercury-Dissolved	μg/L	<0.50	[NA]	[NA]	<0.50	<0.50
Nickel-Dissolved	μg/L	5.9	[NA]	[NA]	2.6	1.1
Zinc-Dissolved	μg/L	<1.0	[NA]	[NA]	1.2	<1.0

HM in water - dissolved						
Our Reference:	UNITS	19834-6	19834-7	19834-8	19834-9	19834-10
Your Reference		290508-06-	290508-08-	290508-09-	290508-10-	290508-11-
Date Sampled		29/05/2008	29/05/2008	30/05/2008	30/05/2008	30/05/2008
Type of sample		Water	Water	Water	Water	Water
Sample Matrix Code		WG	WG	WG	WG	WG
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date prepared	-	6/06/2008	6/06/2008	6/06/2008	6/06/2008	6/06/2008
Date analysed	-	6/06/2008	6/06/2008	6/06/2008	6/06/2008	6/06/2008
Arsenic-Dissolved	μg/L	11	6.1	14	5.7	5.5
Cadmium-Dissolved	μg/L	<0.10	0.30	0.20	0.20	0.10
Chromium-Dissolved	μg/L	1.1	5.3	11	1.5	1.5
Copper-Dissolved	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Lead-Dissolved	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Mercury-Dissolved	μg/L	<0.50	<0.50	<0.50	<0.50	<0.50
Nickel-Dissolved	μg/L	1.0	4.4	64	11	11
Zinc-Dissolved	μg/L	<1.0	5.9	82	5.9	5.7

HM in water - dissolved Our Reference: Your Reference Date Sampled Type of sample Sample Matrix Code Time Sampled	UNITS	19834-11 290508-12- 30/05/2008 Water WG 00:00	19834-13 290508-14- 30/05/2008 Water WG 00:00
Date prepared	-	6/06/2008	6/06/2008
Date analysed	-	6/06/2008	6/06/2008
Arsenic-Dissolved	μg/L	4.9	[NA]
Cadmium-Dissolved	μg/L	0.10	[NA]
Chromium-Dissolved	μg/L	1.6	[NA]
Copper-Dissolved	μg/L	<1.0	[NA]
Lead-Dissolved	μg/L	<1.0	<1.0
Mercury-Dissolved	μg/L	<0.50	[NA]
Nickel-Dissolved	μg/L	<1.0	[NA]
Zinc-Dissolved	μg/L	<1.0	[NA]

Miscellaneous Inorganics						
Our Reference:	UNITS	19834-1	19834-4	19834-5	19834-6	19834-7
Your Reference		290508-01-	290508-04-	290508-05-	290508-06-	290508-08-
Date Sampled		29/05/2008	29/05/2008	29/05/2008	29/05/2008	29/05/2008
Type of sample		Water	Water	Water	Water	Water
Sample Matrix Code		WG	WG	WG	WG	WG
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date prepared	-	31/05/2008	31/05/2008	31/05/2008	31/05/2008	31/05/2008
Date analysed	-	31/05/2008	31/05/2008	31/05/2008	31/05/2008	31/05/2008
Ammonia as N in water	mg/L	4.1	2.4	2.0	2.1	7.2
Total Nitrogen	mg/L	5.0	5.1	3.4	3.4	6.0
Phosphorus - Total	mg/L	0.87	0.81	1.3	1.1	0.28
Salinity as NaCl	g/L	7.0	3.3	<1.0	<1.0	2.9
Total Dissolved Solids (grav)	mg/L	7,500	3,600	800	900	3,600

Miscellaneous Inorganics					
Our Reference:	UNITS	19834-8	19834-9	19834-10	19834-11
Your Reference		290508-09-	290508-10-	290508-11-	290508-12-
Date Sampled		30/05/2008	30/05/2008	30/05/2008	30/05/2008
Type of sample Sample Matrix Code Time Sampled		Water WG 00:00	Water WG 00:00	Water WG 00:00	Water WG 00:00
Date prepared	-	31/05/2008	31/05/2008	31/05/2008	31/05/2008
Date analysed	-	31/05/2008	31/05/2008	31/05/2008	31/05/2008
Ammonia as N in water	mg/L	5.1	3.1	3.1	1.9
Total Nitrogen	mg/L	7.8	7.0	6.9	2.7
Phosphorus - Total	mg/L	0.24	1.1	1.3	<0.05
Salinity as NaCl	g/L	15	6.2	6.1	6.4
Total Dissolved Solids (grav)	mg/L	16,000	8,900	7,600	8,600

Method ID	Methodology Summary
GC.13	Water samples are analysed directly by purge and trap GC-MS.
GC.16	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS.
GC.3	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
GC.12 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
GC-5	Soil samples are extracted with hexane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
GC.8	Soil samples are extracted with hexane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
GC-6	Soil samples are extracted with hexane/acetone and waters with dichloromethane and analysed by GC-ECD.
LAB.30	Total Phenolics - determined colorimetrically following disitillation.
Metals.20 ICP-AES	Determination of various metals by ICP-AES.
LAB.6	Alkalinity - determined titrimetrically in accordance with APHA 20th ED, 2320-B.
LAB.9	Sulphate determined turbidimetrically.
LAB.11	Chloride determined by argentometric titration.
Metals.22 ICP-MS	Determination of various metals by ICP-MS.
Metals.21 CV-AAS	Determination of Mercury by Cold Vapour AAS.
LAB.57	Ammonia water extractable - determined colourimetrically based on EPA103A.
Ext-020	Analysis subcontracted to Australian Government - National Measurement Institute. NATA Accreditation No: 198
LAB.2	Conductivity and Salinity - measured using a conductivity cell and dedicated meter, in accordance with APHA2510 20th ED and Rayment & Higginson.
LAB.18	Total Dissolved Solids - determined gravimetrically by drying the sample, in accordance with APHA 20th ED, 2540-C.

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
VOCs in water						Base II Duplicate II %RPD		Recovery
Date extracted	-			3/6/08	[NT]	[NT]	LCS-W1	3/6/08%
Date analysed	-			4/6/08	[NT]	[NT]	LCS-W1	4/6/08%
Dichlorodifluoromethane	μg/L	10	GC.13	<10	[NT]	[NT]	[NR]	[NR]
Chloromethane	μg/L	10	GC.13	<10	[NT]	[NT]	[NR]	[NR]
Vinyl Chloride	μg/L	10	GC.13	<10	[NT]	[NT]	[NR]	[NR]
Bromomethane	μg/L	10	GC.13	<10	[NT]	[NT]	[NR]	[NR]
Chloroethane	μg/L	10	GC.13	<10	[NT]	[NT]	[NR]	[NR]
Trichlorofluoromethane	μg/L	10	GC.13	<10	[NT]	[NT]	[NR]	[NR]
1,1-Dichloroethene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Trans-1,2-dichloroethen e	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,1-dichloroethane	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	72%
Cis-1,2-dichloroethene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Bromochloromethane	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Chloroform	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	84%
2,2-dichloropropane	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,2-dichloroethane	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	92%
1,1,1-trichloroethane	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	90%
1,1-dichloropropene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Carbon tetrachloride	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Benzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Dibromomethane	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,2-dichloropropane	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Trichloroethene	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	93%
Bromodichloromethane	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	108%
trans-1,3-dichloropropen e	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
cis-1,3-dichloropropene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,1,2-trichloroethane	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Toluene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,3-dichloropropane	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Dibromochloromethane	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	115%
1,2-dibromoethane	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Tetrachloroethene	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	120%
1,1,1,2-tetrachloroethan e	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Chlorobenzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Ethylbenzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Bromoform	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
m+p-xylene	μg/L	2	GC.13	<2.0	[NT]	[NT]	[NR]	[NR]
Styrene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,1,2,2-tetrachloroethan e	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
					Sm#			Recovery
VOCs in water						Base II Duplicate II %RPD		
o-xylene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,2,3-trichloropropane*	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Isopropylbenzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Bromobenzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
n-propyl benzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
2-chlorotoluene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
4-chlorotoluene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,3,5-trimethyl benzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Tert-butyl benzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,2,4-trimethyl benzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,3-dichlorobenzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Sec-butyl benzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,4-dichlorobenzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
4-isopropyl toluene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,2-dichlorobenzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
n-butyl benzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,2-dibromo-3-chloropro	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
pane 1,2,4-trichlorobenzene	//	1	GC.13	<1.0	[NT]	INITI	[NR]	[NR]
Hexachlorobutadiene	μg/L		GC.13	<1.0		[NT]		
	μg/L	1	GC.13 GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,2,3-trichlorobenzene	μg/L	1			[NT]	[NT]	[NR]	[NR]
Surrogate Dibromofluoromethane	%		GC.13	128	[NT]	[NT]	LCS-W1	87%
Surrogate toluene-d8	%		GC.13	89	[NT]	[NT]	LCS-W1	110%
Surrogate 4-BFB	%		GC.13	87	[NT]	[NT]	LCS-W1	97%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTPH & BTEX in Water						Base II Duplicate II %RPD		·
Date extracted	-			3/6/08	[NT]	[NT]	LCS-W1	3/6/08%
Date analysed	-			3/6/08	[NT]	[NT]	LCS-W1	3/6/08%
TPH C6 - C9	μg/L	10	GC.16	<10	[NT]	[NT]	LCS-W1	117%
Benzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	96%
Toluene	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	121%
Ethylbenzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	123%
m+p-xylene	μg/L	2	GC.13	<2.0	[NT]	[NT]	LCS-W1	123%
o-xylene	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	124%
Surrogate Dibromofluoromethane	%		GC.13	128	[NT]	[NT]	LCS-W1	87%
Surrogate toluene-d8	%		GC.13	89	[NT]	[NT]	LCS-W1	105%
Surrogate 4-BFB	%		GC.13	87	[NT]	[NT]	LCS-W1	105%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
sTPH in Water (C10-C36)						Base II Duplicate II %RPD		
Date extracted	-			3/6/08	[NT]	[NT]	LCS-W1	3/6/08%
Date analysed	-			3/6/08	[NT]	[NT]	LCS-W1	3/6/08%
TPH C ₁₀ - C ₁₄	μg/L	50	GC.3	<50	[NT]	[NT]	LCS-W1	85%
TPH C ₁₅ - C ₂₈	μg/L	100	GC.3	<100	[NT]	[NT]	LCS-W1	99%
TPH C29 - C36	μg/L	100	GC.3	<100	[NT]	[NT]	LCS-W1	106%
Surrogate o-Terphenyl	%		GC.3	111	[NT]	[NT]	LCS-W1	119%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
PAHs in Water						Base II Duplicate II %RPD		Recovery
Date extracted	-			3/6/08	[NT]	[NT]	LCS-W1	3/6/08%
Date analysed	-			3/6/08	[NT]	[NT]	LCS-W1	3/6/08%
Naphthalene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	LCS-W1	99%
Acenaphthylene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	[NR]	[NR]
Fluorene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	LCS-W1	76%
Phenanthrene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	LCS-W1	96%
Anthracene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	LCS-W1	92%
Pyrene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	LCS-W1	97%
Benzo(a)anthracene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	[NR]	[NR]

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
PAHs in Water					Sm#	Base II Duplicate II %RPD		Recovery
Chrysene	µg/L	1	GC.12 subset	<1	[NT]	[NT]	LCS-W1	115%
Benzo(b+k)fluoranthene	μg/L	2	GC.12 subset	<2	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	LCS-W1	82%
Indeno(1,2,3-c,d)pyrene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl-d ₁₄	%		GC.12 subset	140	[NT]	[NT]	LCS-W1	107%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
OCP in water						Base II Duplicate II %RPD		Recovery
Date extracted	-			3/6/08	[NT]	[NT]	LCS-W1	3/6/08%
Date analysed	-			3/6/08	[NT]	[NT]	LCS-W1	3/6/08%
HCB	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	[NR]	[NR]
alpha-BHC	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	LCS-W1	128%
gamma-BHC	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	[NR]	[NR]
beta-BHC	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	LCS-W1	114%
Heptachlor	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	LCS-W1	96%
delta-BHC	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	[NR]	[NR]
Aldrin	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	LCS-W1	95%
Heptachlor Epoxide	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	LCS-W1	97%
gamma-Chlordane	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	[NR]	[NR]
alpha-Chlordane	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	[NR]	[NR]
Endosulfan I	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	[NR]	[NR]
pp-DDE	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	LCS-W1	110%
Dieldrin	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	LCS-W1	99%
Endrin	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	LCS-W1	112%
pp-DDD	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	LCS-W1	121%
Endosulfan II	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	[NR]	[NR]
DDT	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	[NR]	[NR]
Endrin Aldehyde	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	[NR]	[NR]
Endosulfan Sulphate	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	LCS-W1	101%
Methoxychlor	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%		GC-5	89	[NT]	[NT]	LCS-W1	101%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
OP Pesticides in water					Ollim	Base II Duplicate II %RPD		1.COOVELY
Date extracted	-			3/6/08	[NT]	[NT]	LCS-W1	3/6/08%
Date analysed	-			3/6/08	[NT]	[NT]	LCS-W1	3/6/08%
Diazinon	μg/L	0.2	GC.8	<0.2	[NT]	[NT]	[NR]	[NR]
Dimethoate	μg/L	0.2	GC.8	<0.2	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos-methyl	μg/L	0.2	GC.8	<0.2	[NT]	[NT]	[NR]	[NR]
Ronnel	μg/L	0.2	GC.8	<0.2	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos	μg/L	0.2	GC.8	<0.2	[NT]	[NT]	LCS-W1	103%
Fenitrothion	μg/L	0.2	GC.8	<0.2	[NT]	[NT]	LCS-W1	79%
Bromophos ethyl	μg/L	0.2	GC.8	<0.2	[NT]	[NT]	[NR]	[NR]
Ethion	μg/L	0.2	GC.8	<0.2	[NT]	[NT]	LCS-W1	129%
Surrogate TCLMX	%		GC.8	89	[NT]	[NT]	LCS-W1	110%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
PCBs in Water						Base II Duplicate II %RPD		Recovery
Date extracted	-			3/6/08	[NT]	[NT]	LCS-W1	3/6/08%
Date analysed	-			3/6/08	[NT]	[NT]	LCS-W1	3/6/08%
Arochlor 1016	μg/L	2	GC-6	<2	[NT]	[NT]	[NR]	[NR]
Arochlor 1232	μg/L	2	GC-6	<2	[NT]	[NT]	[NR]	[NR]
Arochlor 1242	μg/L	2	GC-6	<2	[NT]	[NT]	[NR]	[NR]
Arochlor 1248	μg/L	2	GC-6	<2	[NT]	[NT]	[NR]	[NR]
Arochlor 1254	μg/L	2	GC-6	<2	[NT]	[NT]	LCS-W1	88%
Arochlor 1260	μg/L	2	GC-6	<2	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%		GC-6	89	[NT]	[NT]	LCS-W1	71%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Total Phenolics in Water						Base II Duplicate II %RPD		
Date extracted	-			2/6/08	[NT]	[NT]	LCS-W1	2/6/08%
Date analysed	-			3/6/08	[NT]	[NT]	LCS-W1	3/6/08%
Total Phenolics (as Phenol)	mg/L	0.05	LAB.30	<0.050	[NT]	[NT]	LCS-W1	107%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Ion Balance						Base II Duplicate II %RPD		
Date prepared	-			2/6/08	19834-1	2/06/2008 2/06/2008	LCS-W1	2/6/08%
Date analysed	-			2/6/08	19834-1	2/06/2008 2/06/2008	LCS-W1	2/6/08%
Calcium - Dissolved	mg/L	0.03	Metals.20 ICP-AES	<0.03	19834-1	320 [N/T]	LCS-W1	105%
Potassium - Dissolved	mg/L	0.03	Metals.20 ICP-AES	<0.03	19834-1	63 [N/T]	LCS-W1	103%
Sodium - Dissolved	mg/L	0.03	Metals.20 ICP-AES	<0.03	19834-1	2000 [N/T]	LCS-W1	107%
Magnesium - Dissolved	mg/L	0.03	Metals.20 ICP-AES	<0.03	19834-1	220 [N/T]	LCS-W1	104%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
Ion Balance					Sm#	Base II Duplicate II %RPD		Recovery
Carbonate Alkalinity as CaCO ₃	mg/L	0.1	LAB.6	<0.1	19834-1	<0.1 <0.1	LCS-W1	100%
Bicarbonate Alkalinity as CaCO ₃	mg/L	0.1	LAB.6	<0.1	19834-1	630 610 RPD: 3	LCS-W1	100%
Sulphate, SO4	mg/L	5	LAB.9	<5	19834-1	360 360 RPD: 0	LCS-W1	110%
Chloride (titration) - water	mg/L	20	LAB.11	<20	19834-1	3300 3300 RPD: 0	LCS-W1	105%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
HM in water - dissolved						Base II Duplicate II %RPD		•
Date prepared	-			6/6/08	[NT]	[NT]	LCS-W1	6/6/08%
Date analysed	-			6/6/08	[NT]	[NT]	LCS-W1	6/6/08%
Arsenic-Dissolved	μg/L	1	Metals.22 ICP-MS	<1.0	[NT]	[NT]	LCS-W1	104%
Cadmium-Dissolved	μg/L	0.1	Metals.22 ICP-MS	<0.10	[NT]	[NT]	LCS-W1	107%
Chromium-Dissolved	μg/L	1	Metals.22 ICP-MS	<1.0	[NT]	[NT]	LCS-W1	102%
Copper-Dissolved	μg/L	1	Metals.22 ICP-MS	<1.0	[NT]	[NT]	LCS-W1	103%
Lead-Dissolved	μg/L	1	Metals.22 ICP-MS	<1.0	[NT]	[NT]	LCS-W1	102%
Mercury-Dissolved	μg/L	0.5	Metals.21 CV-AAS	<0.50	[NT]	[NT]	LCS-W1	82%
Nickel-Dissolved	μg/L	1	Metals.22 ICP-MS	<1.0	[NT]	[NT]	LCS-W1	100%
Zinc-Dissolved	μg/L	1	Metals.22 ICP-MS	<1.0	[NT]	[NT]	LCS-W1	114%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	3	Spike Sm#	Spike % Recovery
Miscellaneous Inorganics					Giiiii	Base II Duplicate II %I	RPD		Recovery
Date prepared	-			31/5/08	19834-1	31/05/2008 31/05/20	800	LCS-W1	31/5/08%
Date analysed	-			31/5/08	19834-1	31/05/2008 31/05/20	800	LCS-W1	31/5/08%
Ammonia as N in water	mg/L	0.1	LAB.57	<0.1	19834-1	4.1 3.9 RPD: 5		LCS-W1	113%
Total Nitrogen	mg/L	0.05	Ext-020	<0.05	19834-1	5.0 4.6 RPD: 8		LCS-W1	102%
Phosphorus - Total	mg/L	0.05	Metals.20 ICP-AES	<0.05	19834-1	0.87 0.80 RPD: 8	}	LCS-W1	94%
Salinity as NaCl	g/L	1	LAB.2	<1.0	19834-1	7.0 7.0 RPD: 0		LCS-W1	103%
Total Dissolved Solids (grav)	mg/L	5	LAB.18	<5	19834-1	7500 [N/T]		LCS-W1	95%
QUALITY CONTROL	UNITS		Dup. Sm#		Duplicate				
Ion Balance				Base + I	Ouplicate + %RPD				
Date prepared	-		19834-8	2/06/2	008 2/06/2008				
Date analysed	-		19834-8	2/06/2	008 2/06/2008				
Calcium - Dissolved	mg/L		19834-8	600	610 RPD: 2				
Potassium - Dissolved	mg/L		19834-8	130	130 RPD: 0				
Sodium - Dissolved	mg/L		19834-8	4600	4600 RPD: 0				
Magnesium - Dissolved	mg/L		19834-8	450	450 RPD: 0				
QUALITY CONTROL	UNITS		Dup. Sm#		Duplicate	Spike Sm#	Spik	ke % Recovery	
Miscellaneous Inorganics				Base + I	Ouplicate + %RPD				
Date prepared	-		[NT]		[NT]	19834-1		31/5/08%	
Date analysed	-		[NT]		[NT]	19834-1		31/5/08%	
Ammonia as N in water	mg/L		[NT]		[NT]	[NR]		[NR]	
Total Nitrogen	mg/L		[NT]		[NT]	19834-1		104%	
Phosphorus - Total	mg/L		[NT]		[NT]	[NR]		[NR]	
Salinity as NaCl	g/L		[NT]		[NT]	[NR]		[NR]	
Total Dissolved Solids (grav)	mg/L		[NT]		[NT]	[NR]		[NR]	

Report Comments:

Nitrate and Nitrite: PQL raised due to matrix interferences.

OCP/OP/PCB's in soil: Sample 4 - PQL raised due to sample matrix.

Total Nitrogen as N analysed by NMI: Report Nummber - RN682954.

Ammonia in water: Spike recovery failed due to high amount of analyte present in the sample.

Asbestos was analysed by Approved Identifier: Not applicable for this job

INS: Insufficient sample for this test NT: Not tested PQL: Practical Quantitation Limit RPD: Relative Percent Difference NA: Test not required LCS: Laboratory Control Sample

NR: Not requested <: Less than >: Greater than

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria:

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for

SVOC and speciated phenols is acceptable. Surrogates: 60-140% is acceptable for general organics and 10-140% for

SVOC and speciated phenols.

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 19834

Client:

Consulting Earth Scientists

Suite 121, 26-32 Pirrama Rd Pyrmont NSW 2009

Attention: Luke Jenkins

Sample log in details:

Your Reference: CES050706-BCC, Area A Water

No. of samples:15 WatersDate samples received:30/05/08Date completed instructions received:30/05/08

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: 10/06/08

Date of Preliminary Report: Not Issued Issue Date: 16/06/08

NATA accreditation number 2901. This document shall not be reproduced except in full.

This document is issued in accordance with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst David Springer

Operations Manager Business Development & Quality Manager

VOCs in water						
Our Reference:	UNITS	19834-1	19834-4	19834-5	19834-6	19834-7
Your Reference		290508-01-LJ	290508-04-LJ	290508-05-LJ	290508-06-LJ	290508-08-LJ
Date Sampled Type of sample		29/05/2008 Water	29/05/2008 Water	29/05/2008 Water	29/05/2008 Water	29/05/2008 Water
Sample Matrix Code		WG	WG	WG	WG	WG
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008	3/06/2008
Date analysed	-	4/06/2008	4/06/2008	4/06/2008	4/06/2008	4/06/2008
Dichlorodifluoromethane	μg/L	<10	<10	<10	<10	<10
Chloromethane	μg/L	<10	<10	<10	<10	<10
Vinyl Chloride	μg/L	<10	<10	<10	<10	<10
Bromomethane	μg/L	<10	<10	<10	<10	<10
Chloroethane	μg/L	<10	<10	<10	<10	<10
Trichlorofluoromethane	μg/L	<10	<10	<10	<10	<10
1,1-Dichloroethene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Trans-1,2-dichloroethene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-dichloroethane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Cis-1,2-dichloroethene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Bromochloromethane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2,2-dichloropropane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichloroethane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1-trichloroethane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-dichloropropene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Carbon tetrachloride	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Dibromomethane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichloropropane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Trichloroethene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Bromodichloromethane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,3-dichloropropene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,3-dichloropropene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-trichloroethane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Toluene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-dichloropropane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Dibromochloromethane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dibromoethane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Tetrachloroethene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1,2-tetrachloroethane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Chlorobenzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Ethylbenzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Bromoform	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
m+p-xylene	μg/L	<2.0	<2.0	<2.0	<2.0	<2.0

VOCs in water Our Reference: Your Reference	UNITS	19834-1 290508-01-L	19834-4 290508-04-L	19834-5 290508-05-L	19834-6 290508-06-L	19834-7 290508-08-L
Date Sampled Type of sample Sample Matrix Code Time Sampled		J 29/05/2008 Water WG 00:00	J 29/05/2008 Water WG 00:00	J 29/05/2008 Water WG 00:00	J 29/05/2008 Water WG 00:00	J 29/05/2008 Water WG 00:00
Styrene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-tetrachloroethane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
o-xylene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-trichloropropane*	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Isopropylbenzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Bromobenzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
n-propyl benzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2-chlorotoluene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
4-chlorotoluene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,3,5-trimethyl benzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Tert-butyl benzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-trimethyl benzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-dichlorobenzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Sec-butyl benzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,4-dichlorobenzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
4-isopropyl toluene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichlorobenzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
n-butyl benzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dibromo-3-chloropropane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-trichlorobenzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Hexachlorobutadiene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-trichlorobenzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Surrogate Dibromofluoromethane	%	92	92	89	86	85
Surrogate toluene-d8	%	92	93	94	92	87
Surrogate 4-BFB	%	86	89	84	89	73

VOCs in water					
Our Reference:	UNITS	19834-8	19834-9	19834-10	19834-11
Your Reference		290508-09-L	290508-10-L	290508-11-L	290508-12-L
Date Sampled		J 30/05/2008	J 30/05/2008	J 30/05/2008	J 30/05/2008
Type of sample		Water	Water	Water	Water
Sample Matrix Code		WG	WG	WG	WG
Time Sampled		00:00	00:00	00:00	00:00
Date extracted	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008
Date analysed	-	4/06/2008	4/06/2008	4/06/2008	4/06/2008
Dichlorodifluoromethane	μg/L	<10	<10	<10	<10
Chloromethane	μg/L	<10	<10	<10	<10
Vinyl Chloride	μg/L	<10	<10	<10	<10
Bromomethane	μg/L	<10	<10	<10	<10
Chloroethane	μg/L	<10	<10	<10	<10
Trichlorofluoromethane	μg/L	<10	<10	<10	<10
1,1-Dichloroethene	μg/L	<1.0	<1.0	<1.0	<1.0
Trans-1,2-dichloroethene	μg/L	<1.0	<1.0	<1.0	<1.0
1,1-dichloroethane	μg/L	<1.0	<1.0	<1.0	<1.0
Cis-1,2-dichloroethene	μg/L	<1.0	<1.0	<1.0	<1.0
Bromochloromethane	μg/L	<1.0	<1.0	<1.0	<1.0
Chloroform	μg/L	<1.0	<1.0	<1.0	<1.0
2,2-dichloropropane	μg/L	<1.0	<1.0	<1.0	<1.0
1,2-dichloroethane	μg/L	<1.0	<1.0	<1.0	<1.0
1,1,1-trichloroethane	μg/L	<1.0	<1.0	<1.0	<1.0
1,1-dichloropropene	μg/L	<1.0	<1.0	<1.0	<1.0
Carbon tetrachloride	μg/L	<1.0	<1.0	<1.0	<1.0
Benzene	μg/L	<1.0	<1.0	<1.0	<1.0
Dibromomethane	μg/L	<1.0	<1.0	<1.0	<1.0
1,2-dichloropropane	μg/L	<1.0	<1.0	<1.0	<1.0
Trichloroethene	μg/L	<1.0	<1.0	<1.0	<1.0
Bromodichloromethane	μg/L	<1.0	<1.0	<1.0	<1.0
trans-1,3-dichloropropene	μg/L	<1.0	<1.0	<1.0	<1.0
cis-1,3-dichloropropene	μg/L	<1.0	<1.0	<1.0	<1.0
1,1,2-trichloroethane	μg/L	<1.0	<1.0	<1.0	<1.0
Toluene	μg/L	<1.0	<1.0	<1.0	<1.0
1,3-dichloropropane	μg/L	<1.0	<1.0	<1.0	<1.0
Dibromochloromethane	μg/L	<1.0	<1.0	<1.0	<1.0
1,2-dibromoethane	μg/L	<1.0	<1.0	<1.0	<1.0
Tetrachloroethene	μg/L	<1.0	<1.0	<1.0	<1.0
1,1,1,2-tetrachloroethane	μg/L	<1.0	<1.0	<1.0	<1.0
Chlorobenzene	μg/L	<1.0	<1.0	<1.0	<1.0
Ethylbenzene	μg/L	<1.0	<1.0	<1.0	<1.0
Bromoform	μg/L	<1.0	<1.0	<1.0	<1.0
m+p-xylene	μg/L	<2.0	<2.0	<2.0	<2.0

VOCs in water Our Reference: Your Reference Date Sampled Type of sample Sample Matrix Code Time Sampled	UNITS	19834-8 290508-09-L J 30/05/2008 Water WG 00:00	19834-9 290508-10-L J 30/05/2008 Water WG 00:00	19834-10 290508-11-L J 30/05/2008 Water WG 00:00	19834-11 290508-12-L J 30/05/2008 Water WG 00:00
Styrene	μg/L	<1.0	<1.0	<1.0	<1.0
1,1,2,2-tetrachloroethane	μg/L	<1.0	<1.0	<1.0	<1.0
o-xylene	μg/L	<1.0	<1.0	<1.0	<1.0
1,2,3-trichloropropane*	μg/L	<1.0	<1.0	<1.0	<1.0
Isopropylbenzene	μg/L	<1.0	<1.0	<1.0	<1.0
Bromobenzene	μg/L	<1.0	<1.0	<1.0	<1.0
n-propyl benzene	μg/L	<1.0	<1.0	<1.0	<1.0
2-chlorotoluene	μg/L	<1.0	<1.0	<1.0	<1.0
4-chlorotoluene	μg/L	<1.0	<1.0	<1.0	<1.0
1,3,5-trimethyl benzene	μg/L	<1.0	<1.0	<1.0	<1.0
Tert-butyl benzene	μg/L	<1.0	<1.0	<1.0	<1.0
1,2,4-trimethyl benzene	μg/L	<1.0	<1.0	<1.0	<1.0
1,3-dichlorobenzene	μg/L	<1.0	<1.0	<1.0	<1.0
Sec-butyl benzene	μg/L	<1.0	<1.0	<1.0	<1.0
1,4-dichlorobenzene	μg/L	<1.0	<1.0	<1.0	<1.0
4-isopropyl toluene	μg/L	<1.0	<1.0	<1.0	<1.0
1,2-dichlorobenzene	μg/L	<1.0	<1.0	<1.0	<1.0
n-butyl benzene	μg/L	<1.0	<1.0	<1.0	<1.0
1,2-dibromo-3-chloropropane	μg/L	<1.0	<1.0	<1.0	<1.0
1,2,4-trichlorobenzene	μg/L	<1.0	<1.0	<1.0	<1.0
Hexachlorobutadiene	μg/L	<1.0	<1.0	<1.0	<1.0
1,2,3-trichlorobenzene	μg/L	<1.0	<1.0	<1.0	<1.0
Surrogate Dibromofluoromethane	%	85	86	95	86
Surrogate toluene-d8	%	89	92	88	90
Surrogate 4-BFB	%	79	83	84	80

vTPH & BTEX in Water						
Our Reference:	UNITS	19834-1	19834-2	19834-3	19834-4	19834-5
Your Reference		290508-01-LJ	290508-02-LJ	290508-03-LJ	290508-04-LJ	290508-05-L
Date Sampled		29/05/2008	29/05/2008	29/05/2008	29/05/2008	29/05/2008
Type of sample		Water	Water	Water	Water	Water
Sample Matrix Code		WG	WG	WG	WG	WG
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008	3/06/2008
Date analysed	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008	3/06/2008
TPH C6 - C9	μg/L	<10	650	72	<10	<10
Benzene	μg/L	[NA]	190	3.8	[NA]	[NA]
Toluene	μg/L	[NA]	70	<1.0	[NA]	[NA]
Ethylbenzene	μg/L	[NA]	60	1.0	[NA]	[NA]
m+p-xylene	μg/L	[NA]	150	18	[NA]	[NA]
o-xylene	μg/L	[NA]	30	8.0	[NA]	[NA]
Surrogate Dibromofluoromethane	%	92	81	75	92	89
Surrogate toluene-d8	%	92	108	108	93	94
Surrogate 4-BFB	%	86	100	98	89	84
vTPH & BTEX in Water						
Our Reference:	UNITS	19834-6	19834-7	19834-8	19834-9	19834-10
Your Reference	UNITS	290508-06-LJ	290508-08-LJ	290508-09-LJ	290508-10-LJ	290508-11-L
Date Sampled		29/05/2008	29/05/2008	30/05/2008	30/05/2008	30/05/2008
Type of sample		Water	Water	Water	Water	Water
Sample Matrix Code		WG	WG	WG	WG	WG
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008	3/06/2008
Date analysed	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008	3/06/2008
TPH C ₆ - C ₉	μg/L	<10	<10	<10	<10	<10
Surrogate Dibromofluoromethane	%	86	85	85	86	95
Surrogate toluene-d8	%	92	87	89	92	88
Surrogate 4-BFB	%	89	73	79	83	84
vTPH & BTEX in Water						
Our Reference:	UNITS	19834-11	19834-12	19834-13	19834-14	19834-15
Your Reference		290508-12-LJ	290508-13-LJ	290508-14-LJ	Trip Spike	Trip Blank
Date Sampled		30/05/2008	30/05/2008	30/05/2008	30/05/2008	30/05/2008
Type of sample		Water	Water	Water	Water	Water
Sample Matrix Code		WG	WG	WG	WG	WG
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008	3/06/2008
	1	1	1	l .	Ī	I

Your Reference		290508-12-LJ	290508-13-LJ	290508-14-LJ	Trip Spike	Trip Blank
Date Sampled		30/05/2008	30/05/2008	30/05/2008	30/05/2008	30/05/2008
Type of sample		Water	Water	Water	Water	Water
Sample Matrix Code		WG	WG	WG	WG	WG
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008	3/06/2008
Date analysed	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008	3/06/2008
TPH C6 - C9	μg/L	<10	<10	<10	[NA]	[NA]
Benzene	μg/L	[NA]	<1.0	<1.0	89%	<1.0
Toluene	μg/L	[NA]	<1.0	<1.0	121%	<1.0
Ethylbenzene	μg/L	[NA]	<1.0	<1.0	123%	<1.0
m+p-xylene	μg/L	[NA]	<2.0	<2.0	122%	<2.0

vTPH & BTEX in Water Our Reference: Your Reference Date Sampled Type of sample Sample Matrix Code Time Sampled	UNITS	19834-11 290508-12-L J 30/05/2008 Water WG 00:00	19834-12 290508-13-L J 30/05/2008 Water WG 00:00	19834-13 290508-14-L J 30/05/2008 Water WG 00:00	19834-14 Trip Spike 30/05/2008 Water WG 00:00	19834-15 Trip Blank 30/05/2008 Water WG 00:00
o-xylene	μg/L	[NA]	<1.0	<1.0	123%	<1.0
Surrogate Dibromofluoromethane	%	86	78	76	81	85
Surrogate toluene-d8	%	90	102	98	103	100
Surrogate 4-BFB	%	80	99	95	96	100

sTPH in Water (C10-C36)						
Our Reference:	UNITS	19834-1	19834-2	19834-3	19834-4	19834-5
Your Reference		290508-01-LJ	290508-02-LJ	290508-03-LJ	290508-04-LJ	290508-05-LJ
Date Sampled		29/05/2008	29/05/2008	29/05/2008	29/05/2008	29/05/2008
Type of sample		Water	Water	Water	Water	Water
Sample Matrix Code		WG	WG	WG	WG	WG
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	3/06/2008	3/06/2008	4/06/2008	3/06/2008	3/06/2008
Date analysed	-	3/06/2008	3/06/2008	4/06/2008	3/06/2008	3/06/2008
TPH C ₁₀ - C ₁₄	μg/L	<50	550	<50	<50	<50
TPH C ₁₅ - C ₂₈	μg/L	<100	<100	<100	<100	<100
TPH C ₂₉ - C ₃₆	μg/L	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	118	137	102	102	111

sTPH in Water (C10-C36)						
Our Reference:	UNITS	19834-6	19834-7	19834-8	19834-9	19834-10
Your Reference		290508-06-LJ	290508-08-LJ	290508-09-LJ	290508-10-LJ	290508-11-LJ
Date Sampled		29/05/2008	29/05/2008	30/05/2008	30/05/2008	30/05/2008
Type of sample		Water	Water	Water	Water	Water
Sample Matrix Code		WG	WG	WG	WG	WG
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008	3/06/2008
Date analysed	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008	3/06/2008
TPH C10 - C14	μg/L	<50	<50	<50	<50	<50
TPH C ₁₅ - C ₂₈	μg/L	<100	<100	<100	<100	<100
TPH C29 - C36	μg/L	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	119	63	99	88	83

sTPH in Water (C10-C36)			
Our Reference:	UNITS	19834-11	19834-13
Your Reference		290508-12-LJ	290508-14-LJ
Date Sampled		30/05/2008	30/05/2008
Type of sample		Water	Water
Sample Matrix Code		WG	WG
Time Sampled		00:00	00:00
Date extracted	-	3/06/2008	13/06/2008
Date analysed	-	3/06/2008	13/06/2008
TPH C10 - C14	μg/L	<50	<50
TPH C ₁₅ - C ₂₈	μg/L	<100	<100
TPH C29 - C36	μg/L	<100	<100
Surrogate o-Terphenyl	%	91	103

PAHs in Water						
Our Reference:	UNITS	19834-1	19834-4	19834-5	19834-6	19834-7
Your Reference		290508-01-LJ	290508-04-LJ	290508-05-LJ	290508-06-LJ	290508-08-LJ
Date Sampled		29/05/2008	29/05/2008	29/05/2008	29/05/2008	29/05/2008
Type of sample		Water	Water	Water	Water	Water
Sample Matrix Code		WG	WG	WG	WG	WG
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008	3/06/2008
Date analysed	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008	3/06/2008
Naphthalene	μg/L	<1	<1	<1	<1	<1
Acenaphthylene	μg/L	<1	<1	<1	<1	<1
Acenaphthene	μg/L	<1	<1	<1	<1	<1
Fluorene	μg/L	<1	<1	<1	<1	<1
Phenanthrene	μg/L	<1	<1	<1	<1	<1
Anthracene	μg/L	<1	<1	<1	<1	<1
Fluoranthene	μg/L	<1	<1	<1	<1	<1
Pyrene	μg/L	<1	<1	<1	<1	<1
Benzo(a)anthracene	μg/L	<1	<1	<1	<1	<1
Chrysene	μg/L	<1	<1	<1	<1	<1
Benzo(b+k)fluoranthene	μg/L	<2	<2	<2	<2	<2
Benzo(a)pyrene	μg/L	<1	<1	<1	<1	<1
Indeno(1,2,3-c,d)pyrene	μg/L	<1	<1	<1	<1	<1
Dibenzo(a,h)anthracene	μg/L	<1	<1	<1	<1	<1
Benzo(g,h,i)perylene	μg/L	<1	<1	<1	<1	<1
Surrogate p-Terphenyl-d ₁₄	%	91	104	100	109	87

PAHs in Water Our Reference: Your Reference Date Sampled Type of sample Sample Matrix Code Time Sampled	UNITS	19834-8 290508-09-L J 30/05/2008 Water WG 00:00	19834-9 290508-10-L J 30/05/2008 Water WG 00:00	19834-10 290508-11-L J 30/05/2008 Water WG 00:00	19834-11 290508-12-L J 30/05/2008 Water WG 00:00
Date extracted	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008
Date analysed	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008
Naphthalene	μg/L	<1	<1	<1	<1
Acenaphthylene	μg/L	<1	<1	<1	<1
Acenaphthene	μg/L	<1	<1	<1	<1
Fluorene	μg/L	<1	<1	<1	<1
Phenanthrene	μg/L	<1	<1	<1	<1
Anthracene	μg/L	<1	<1	<1	<1
Fluoranthene	μg/L	<1	<1	<1	<1
Pyrene	μg/L	<1	<1	<1	<1
Benzo(a)anthracene	μg/L	<1	<1	<1	<1
Chrysene	μg/L	<1	<1	<1	<1
Benzo(b+k)fluoranthene	μg/L	<2	<2	<2	<2
Benzo(a)pyrene	μg/L	<1	<1	<1	<1
Indeno(1,2,3-c,d)pyrene	μg/L	<1	<1	<1	<1
Dibenzo(a,h)anthracene	μg/L	<1	<1	<1	<1
Benzo(g,h,i)perylene	μg/L	<1	<1	<1	<1
Surrogate p-Terphenyl-d ₁₄	%	115	116	99	95

OCP in water						
Our Reference:	UNITS	19834-1	19834-4	19834-5	19834-6	19834-7
Your Reference		290508-01-LJ	290508-04-LJ	290508-05-LJ	290508-06-LJ	290508-08-LJ
Date Sampled		29/05/2008	29/05/2008	29/05/2008	29/05/2008	29/05/2008
Type of sample		Water	Water	Water	Water	Water
Sample Matrix Code Time Sampled		WG 00:00	WG 00:00	WG 00:00	WG 00:00	WG 00:00
Date extracted	=	3/06/2008	3/06/2008	3/06/2008	3/06/2008	3/06/2008
Date analysed	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008	3/06/2008
HCB	μg/L	<0.2	<2	<0.2	<0.2	<0.2
alpha-BHC	μg/L	<0.2	<2	<0.2	<0.2	<0.2
gamma-BHC	μg/L	<0.2	<2	<0.2	<0.2	<0.2
beta-BHC	μg/L	<0.2	<2	<0.2	<0.2	<0.2
Heptachlor	μg/L	<0.2	<2	<0.2	<0.2	<0.2
delta-BHC	μg/L	<0.2	<2	<0.2	<0.2	<0.2
Aldrin	μg/L	<0.2	<2	<0.2	<0.2	<0.2
Heptachlor Epoxide	μg/L	<0.2	<2	<0.2	<0.2	<0.2
gamma-Chlordane	μg/L	<0.2	<2	<0.2	<0.2	<0.2
alpha-Chlordane	μg/L	<0.2	<2	<0.2	<0.2	<0.2
Endosulfan I	μg/L	<0.2	<2	<0.2	<0.2	<0.2
pp-DDE	μg/L	<0.2	<2	<0.2	<0.2	<0.2
Dieldrin	μg/L	<0.2	<2	<0.2	<0.2	<0.2
Endrin	μg/L	<0.2	<2	<0.2	<0.2	<0.2
pp-DDD	μg/L	<0.2	<2	<0.2	<0.2	<0.2
Endosulfan II	μg/L	<0.2	<2	<0.2	<0.2	<0.2
DDT	μg/L	<0.2	<2	<0.2	<0.2	<0.2
Endrin Aldehyde	μg/L	<0.2	<2	<0.2	<0.2	<0.2
Endosulfan Sulphate	μg/L	<0.2	<2	<0.2	<0.2	<0.2
Methoxychlor	μg/L	<0.2	<2	<0.2	<0.2	<0.2
Surrogate TCLMX	%	95	82	92	94	65

OCP in water Our Reference: Your Reference Date Sampled Type of sample Sample Matrix Code	UNITS	19834-8 290508-09-L J 30/05/2008 Water WG	19834-9 290508-10-L J 30/05/2008 Water WG	19834-10 290508-11-L J 30/05/2008 Water WG	19834-11 290508-12-L J 30/05/2008 Water WG
Time Sampled		00:00	00:00	00:00	00:00
Date extracted	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008
Date analysed	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008
HCB	μg/L	<0.2	<0.2	<0.2	<0.2
alpha-BHC	μg/L	<0.2	<0.2	<0.2	<0.2
gamma-BHC	μg/L	<0.2	<0.2	<0.2	<0.2
beta-BHC	μg/L	<0.2	<0.2	<0.2	<0.2
Heptachlor	μg/L	<0.2	<0.2	<0.2	<0.2
delta-BHC	μg/L	<0.2	<0.2	<0.2	<0.2
Aldrin	μg/L	<0.2	<0.2	<0.2	<0.2
Heptachlor Epoxide	μg/L	<0.2	<0.2	<0.2	<0.2
gamma-Chlordane	μg/L	<0.2	<0.2	<0.2	<0.2
alpha-Chlordane	μg/L	<0.2	<0.2	<0.2	<0.2
Endosulfan I	μg/L	<0.2	<0.2	<0.2	<0.2
pp-DDE	μg/L	<0.2	<0.2	<0.2	<0.2
Dieldrin	μg/L	<0.2	<0.2	<0.2	<0.2
Endrin	μg/L	<0.2	<0.2	<0.2	<0.2
pp-DDD	μg/L	<0.2	<0.2	<0.2	<0.2
Endosulfan II	μg/L	<0.2	<0.2	<0.2	<0.2
DDT	μg/L	<0.2	<0.2	<0.2	<0.2
Endrin Aldehyde	μg/L	<0.2	<0.2	<0.2	<0.2
Endosulfan Sulphate	μg/L	<0.2	<0.2	<0.2	<0.2
Methoxychlor	μg/L	<0.2	<0.2	<0.2	<0.2
Surrogate TCLMX	%	101	93	91	107

OP Pesticides in water						
Our Reference:	UNITS	19834-1	19834-4	19834-5	19834-6	19834-7
Your Reference		290508-01-LJ	290508-04-LJ	290508-05-LJ	290508-06-LJ	290508-08-LJ
Date Sampled		29/05/2008	29/05/2008	29/05/2008	29/05/2008	29/05/2008
Type of sample		Water	Water	Water	Water	Water
Sample Matrix Code		WG	WG	WG	WG	WG
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008	3/06/2008
Date analysed	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008	3/06/2008
Diazinon	μg/L	<0.2	<2	<0.2	<0.2	<0.2
Dimethoate	μg/L	<0.2	<2	<0.2	<0.2	<0.2
Chlorpyriphos-methyl	μg/L	<0.2	<2	<0.2	<0.2	<0.2
Ronnel	μg/L	<0.2	<2	<0.2	<0.2	<0.2
Chlorpyriphos	μg/L	<0.2	<2	<0.2	<0.2	<0.2
Fenitrothion	μg/L	<0.2	<2	<0.2	<0.2	<0.2
Bromophos ethyl	μg/L	<0.2	<2	<0.2	<0.2	<0.2
Ethion	μg/L	<0.2	<2	<0.2	<0.2	<0.2
Surrogate TCLMX	%	95	82	92	94	65

OP Pesticides in water					
Our Reference:	UNITS	19834-8	19834-9	19834-10	19834-11
Your Reference		290508-09-LJ	290508-10-LJ	290508-11-LJ	290508-12-LJ
Date Sampled		30/05/2008	30/05/2008	30/05/2008	30/05/2008
Type of sample		Water	Water	Water	Water
Sample Matrix Code		WG	WG	WG	WG
Time Sampled		00:00	00:00	00:00	00:00
Date extracted	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008
Date analysed	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008
Diazinon	μg/L	<0.2	<0.2	<0.2	<0.2
Dimethoate	μg/L	<0.2	<0.2	<0.2	<0.2
Chlorpyriphos-methyl	μg/L	<0.2	<0.2	<0.2	<0.2
Ronnel	μg/L	<0.2	<0.2	<0.2	<0.2
Chlorpyriphos	μg/L	<0.2	<0.2	<0.2	<0.2
Fenitrothion	μg/L	<0.2	<0.2	<0.2	<0.2
Bromophos ethyl	μg/L	<0.2	<0.2	<0.2	<0.2
Ethion	μg/L	<0.2	<0.2	<0.2	<0.2
Surrogate TCLMX	%	101	93	91	107

PCBs in Water						
Our Reference:	UNITS	19834-1	19834-4	19834-5	19834-6	19834-7
Your Reference		290508-01-LJ	290508-04-LJ	290508-05-LJ	290508-06-LJ	290508-08-LJ
Date Sampled		29/05/2008	29/05/2008	29/05/2008	29/05/2008	29/05/2008
Type of sample		Water	Water	Water	Water	Water
Sample Matrix Code		WG	WG	WG	WG	WG
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008	3/06/2008
Date analysed	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008	3/06/2008
Arochlor 1016	μg/L	<2	<20	<2	<2	<2
Arochlor 1232	μg/L	<2	<20	<2	<2	<2
Arochlor 1242	μg/L	<2	<20	<2	<2	<2
Arochlor 1248	μg/L	<2	<20	<2	<2	<2
Arochlor 1254	μg/L	<2	<20	<2	<2	<2
Arochlor 1260	μg/L	<2	<20	<2	<2	<2
Surrogate TCLMX	%	95	82	92	94	65

PCBs in Water					
Our Reference:	UNITS	19834-8	19834-9	19834-10	19834-11
Your Reference		290508-09-LJ	290508-10-LJ	290508-11-LJ	290508-12-LJ
Date Sampled		30/05/2008	30/05/2008	30/05/2008	30/05/2008
Type of sample		Water	Water	Water	Water
Sample Matrix Code		WG	WG	WG	WG
Time Sampled		00:00	00:00	00:00	00:00
Date extracted	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008
Date analysed	-	3/06/2008	3/06/2008	3/06/2008	3/06/2008
Arochlor 1016	μg/L	<2	<2	<2	<2
Arochlor 1232	μg/L	<2	<2	<2	<2
Arochlor 1242	μg/L	<2	<2	<2	<2
Arochlor 1248	μg/L	<2	<2	<2	<2
Arochlor 1254	μg/L	<2	<2	<2	<2
Arochlor 1260	μg/L	<2	<2	<2	<2
Surrogate TCLMX	%	101	93	91	107

Total Phenolics in Water			١
Our Reference:	UNITS	19834-1	
Your Reference		290508-01-LJ	
Date Sampled		29/05/2008	
Type of sample Sample Matrix Code Time Sampled		Water WG 00:00	
Date extracted	-	2/06/2008	1
Date analysed	-	3/06/2008	
Total Phenolics (as Phenol)	mg/L	<0.050	Ì

Ion Balance						
Our Reference:	UNITS	19834-1	19834-4	19834-5	19834-6	19834-7
Your Reference		290508-01-LJ	290508-04-LJ	290508-05-LJ	290508-06-LJ	290508-08-LJ
Date Sampled		29/05/2008	29/05/2008	29/05/2008	29/05/2008	29/05/2008
Type of sample		Water	Water	Water	Water	Water
Sample Matrix Code		WG	WG	WG	WG	WG
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date prepared	-	2/06/2008	2/06/2008	2/06/2008	2/06/2008	2/06/2008
Date analysed	-	2/06/2008	2/06/2008	2/06/2008	2/06/2008	2/06/2008
Calcium - Dissolved	mg/L	320	260	81	78	230
Potassium - Dissolved	mg/L	63	43	19	19	47
Sodium - Dissolved	mg/L	2,000	760	120	120	620
Magnesium - Dissolved	mg/L	220	89	24	24	110
Carbonate Alkalinity as CaCO ₃	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Bicarbonate Alkalinity as CaCO ₃	mg/L	630	540	150	150	490
Sulphate, SO4	mg/L	360	410	140	130	650
Chloride (titration) - water	mg/L	3,300	1,300	210	230	1,100

Ion Balance					
Our Reference:	UNITS	19834-8	19834-9	19834-10	19834-11
Your Reference		290508-09-LJ	290508-10-LJ	290508-11-LJ	290508-12-LJ
Date Sampled		30/05/2008	30/05/2008	30/05/2008	30/05/2008
Type of sample		Water	Water	Water	Water
Sample Matrix Code		WG	WG	WG	WG
Time Sampled		00:00	00:00	00:00	00:00
Date prepared	-	2/06/2008	2/06/2008	2/06/2008	2/06/2008
Date analysed	-	2/06/2008	2/06/2008	2/06/2008	2/06/2008
Calcium - Dissolved	mg/L	600	610	610	110
Potassium - Dissolved	mg/L	130	93	92	68
Sodium - Dissolved	mg/L	4,600	1,600	1,500	2,100
Magnesium - Dissolved	mg/L	450	330	320	230
Carbonate Alkalinity as CaCO ₃	mg/L	<0.1	<0.1	<0.1	<0.1
Bicarbonate Alkalinity as CaCO ₃	mg/L	470	810	810	110
Sulphate, SO4	mg/L	1,300	2,300	2,400	390
Chloride (titration) - water	mg/L	8,900	2,000	2,100	3,300

HM in water - dissolved						
Our Reference:	UNITS	19834-1	19834-2	19834-3	19834-4	19834-5
Your Reference		290508-01-LJ	290508-02-LJ	290508-03-LJ	290508-04-LJ	290508-05-LJ
Date Sampled		29/05/2008	29/05/2008	29/05/2008	29/05/2008	29/05/2008
Type of sample		Water	Water	Water	Water	Water
Sample Matrix Code		WG	WG	WG	WG	WG
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date prepared	-	6/06/2008	6/06/2008	6/06/2008	6/06/2008	6/06/2008
Date analysed	-	6/06/2008	6/06/2008	6/06/2008	6/06/2008	6/06/2008
Arsenic-Dissolved	μg/L	9.5	[NA]	[NA]	5.6	11
Cadmium-Dissolved	μg/L	0.20	[NA]	[NA]	<0.10	<0.10
Chromium-Dissolved	μg/L	<1.0	[NA]	[NA]	2.7	<1.0
Copper-Dissolved	μg/L	3.9	[NA]	[NA]	2.1	<1.0
Lead-Dissolved	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Mercury-Dissolved	μg/L	<0.50	[NA]	[NA]	<0.50	<0.50
Nickel-Dissolved	μg/L	5.9	[NA]	[NA]	2.6	1.1
Zinc-Dissolved	μg/L	<1.0	[NA]	[NA]	1.2	<1.0

HM in water - dissolved						
Our Reference:	UNITS	19834-6	19834-7	19834-8	19834-9	19834-10
Your Reference		290508-06-LJ	290508-08-LJ	290508-09-LJ	290508-10-LJ	290508-11-LJ
Date Sampled		29/05/2008	29/05/2008	30/05/2008	30/05/2008	30/05/2008
Type of sample Sample Matrix Code Time Sampled		Water WG 00:00	Water WG 00:00	Water WG 00:00	Water WG 00:00	Water WG 00:00
Date prepared	-	6/06/2008	6/06/2008	6/06/2008	6/06/2008	6/06/2008
Date analysed	-	6/06/2008	6/06/2008	6/06/2008	6/06/2008	6/06/2008
Arsenic-Dissolved	μg/L	11	6.1	14	5.7	5.5
Cadmium-Dissolved	μg/L	<0.10	0.30	0.20	0.20	0.10
Chromium-Dissolved	μg/L	1.1	5.3	11	1.5	1.5
Copper-Dissolved	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Lead-Dissolved	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Mercury-Dissolved	μg/L	<0.50	<0.50	<0.50	<0.50	<0.50
Nickel-Dissolved	μg/L	1.0	4.4	64	11	11
Zinc-Dissolved	μg/L	<1.0	5.9	82	5.9	5.7

HM in water - dissolved Our Reference: Your Reference Date Sampled Type of sample Sample Matrix Code Time Sampled	UNITS	19834-11 290508-12-L J 30/05/2008 Water WG 00:00	19834-13 290508-14-L J 30/05/2008 Water WG 00:00
Date prepared	-	6/06/2008	6/06/2008
Date analysed	-	6/06/2008	6/06/2008
Arsenic-Dissolved	μg/L	4.9	[NA]
Cadmium-Dissolved	μg/L	0.10	[NA]
Chromium-Dissolved	μg/L	1.6	[NA]
Copper-Dissolved	μg/L	<1.0	[NA]
Lead-Dissolved	μg/L	<1.0	<1.0
Mercury-Dissolved	μg/L	<0.50	[NA]
Nickel-Dissolved	μg/L	<1.0	[NA]
Zinc-Dissolved	μg/L	<1.0	[NA]

Miscellaneous Inorganics						
Our Reference:	UNITS	19834-1	19834-4	19834-5	19834-6	19834-7
Your Reference		290508-01-LJ	290508-04-LJ	290508-05-LJ	290508-06-LJ	290508-08-LJ
Date Sampled		29/05/2008	29/05/2008	29/05/2008	29/05/2008	29/05/2008
Type of sample		Water	Water	Water	Water	Water
Sample Matrix Code		WG	WG	WG	WG	WG
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date prepared	-	31/05/2008	31/05/2008	31/05/2008	31/05/2008	31/05/2008
Date analysed	-	31/05/2008	31/05/2008	31/05/2008	31/05/2008	31/05/2008
Ammonia as N in water	mg/L	4.1	2.4	2.0	2.1	7.2
Total Nitrogen	mg/L	5.0	5.1	3.4	3.4	6.0
Phosphorus - Total	mg/L	0.87	0.81	1.3	1.1	0.28
Salinity as NaCl	g/L	7.0	3.3	<1.0	<1.0	2.9
Total Dissolved Solids (grav)	mg/L	7,500	3,600	800	900	3,600

Miscellaneous Inorganics					
Our Reference:	UNITS	19834-8	19834-9	19834-10	19834-11
Your Reference		290508-09-LJ	290508-10-LJ	290508-11-LJ	290508-12-LJ
Date Sampled		30/05/2008	30/05/2008	30/05/2008	30/05/2008
Type of sample Sample Matrix Code Time Sampled		Water WG 00:00	Water WG 00:00	Water WG 00:00	Water WG 00:00
Date prepared	-	31/05/2008	31/05/2008	31/05/2008	31/05/2008
Date analysed	-	31/05/2008	31/05/2008	31/05/2008	31/05/2008
Ammonia as N in water	mg/L	5.1	3.1	3.1	1.9
Total Nitrogen	mg/L	7.8	7.0	6.9	2.7
Phosphorus - Total	mg/L	0.24	1.1	1.3	<0.05
Salinity as NaCl	g/L	15	6.2	6.1	6.4
Total Dissolved Solids (grav)	mg/L	16,000	8,900	7,600	8,600

Method ID	Methodology Summary
GC.13	Water samples are analysed directly by purge and trap GC-MS.
GC.16	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS.
GC.3	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
GC.12 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
GC-5	Soil samples are extracted with hexane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
GC.8	Soil samples are extracted with hexane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
GC-6	Soil samples are extracted with hexane/acetone and waters with dichloromethane and analysed by GC-ECD.
LAB.30	Total Phenolics - determined colorimetrically following disitillation.
Metals.20 ICP-AES	Determination of various metals by ICP-AES.
LAB.6	Alkalinity - determined titrimetrically in accordance with APHA 20th ED, 2320-B.
LAB.9	Sulphate determined turbidimetrically.
LAB.11	Chloride determined by argentometric titration.
Metals.22 ICP-MS	Determination of various metals by ICP-MS.
Metals.21 CV-AAS	Determination of Mercury by Cold Vapour AAS.
LAB.57	Ammonia water extractable - determined colourimetrically based on EPA103A.
Ext-020	Analysis subcontracted to Australian Government - National Measurement Institute. NATA Accreditation No: 198
LAB.2	Conductivity and Salinity - measured using a conductivity cell and dedicated meter, in accordance with APHA2510 20th ED and Rayment & Higginson.
LAB.18	Total Dissolved Solids - determined gravimetrically by drying the sample, in accordance with APHA 20th ED, 2540-C.

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
VOCs in water						Base II Duplicate II %RPD		recovery
Date extracted	-			3/6/08	[NT]	[NT]	LCS-W1	3/6/08%
Date analysed	-			4/6/08	[NT]	[NT]	LCS-W1	4/6/08%
Dichlorodifluoromethane	μg/L	10	GC.13	<10	[NT]	[NT]	[NR]	[NR]
Chloromethane	μg/L	10	GC.13	<10	[NT]	[NT]	[NR]	[NR]
Vinyl Chloride	μg/L	10	GC.13	<10	[NT]	[NT]	[NR]	[NR]
Bromomethane	μg/L	10	GC.13	<10	[NT]	[NT]	[NR]	[NR]
Chloroethane	μg/L	10	GC.13	<10	[NT]	[NT]	[NR]	[NR]
Trichlorofluoromethane	μg/L	10	GC.13	<10	[NT]	[NT]	[NR]	[NR]
1,1-Dichloroethene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Trans-1,2-dichloroethen e	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,1-dichloroethane	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	72%
Cis-1,2-dichloroethene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Bromochloromethane	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Chloroform	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	84%
2,2-dichloropropane	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,2-dichloroethane	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	92%
1,1,1-trichloroethane	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	90%
1,1-dichloropropene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Carbon tetrachloride	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Benzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Dibromomethane	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,2-dichloropropane	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Trichloroethene	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	93%
Bromodichloromethane	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	108%
trans-1,3-dichloropropen e	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
cis-1,3-dichloropropene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,1,2-trichloroethane	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Toluene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,3-dichloropropane	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Dibromochloromethane	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	115%
1,2-dibromoethane	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Tetrachloroethene	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	120%
1,1,1,2-tetrachloroethan e	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Chlorobenzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Ethylbenzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Bromoform	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
m+p-xylene	μg/L	2	GC.13	<2.0	[NT]	[NT]	[NR]	[NR]
Styrene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,1,2,2-tetrachloroethan e	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
VOCs in water						Base II Duplicate II %RPD		,
o-xylene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,2,3-trichloropropane*	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Isopropylbenzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Bromobenzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
n-propyl benzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
2-chlorotoluene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
4-chlorotoluene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,3,5-trimethyl benzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Tert-butyl benzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,2,4-trimethyl benzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,3-dichlorobenzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Sec-butyl benzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,4-dichlorobenzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
4-isopropyl toluene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,2-dichlorobenzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
n-butyl benzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,2-dibromo-3-chloropro pane	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,2,4-trichlorobenzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Hexachlorobutadiene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,2,3-trichlorobenzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Surrogate Dibromofluoromethane	%		GC.13	128	[NT]	[NT]	LCS-W1	87%
Surrogate toluene-d8	%		GC.13	89	[NT]	[NT]	LCS-W1	110%
Surrogate 4-BFB	%		GC.13	87	[NT]	[NT]	LCS-W1	97%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTPH & BTEX in Water					Jiii.ii	Base II Duplicate II %RPD		Recovery
Date extracted	-			3/6/08	[NT]	[NT]	LCS-W1	3/6/08%
Date analysed	-			3/6/08	[NT]	[NT]	LCS-W1	3/6/08%
TPH C6 - C9	μg/L	10	GC.16	<10	[NT]	[NT]	LCS-W1	117%
Benzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	96%
Toluene	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	121%
Ethylbenzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	123%
m+p-xylene	μg/L	2	GC.13	<2.0	[NT]	[NT]	LCS-W1	123%
o-xylene	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	124%
Surrogate Dibromofluoromethane	%		GC.13	128	[NT]	[NT]	LCS-W1	87%
Surrogate toluene-d8	%		GC.13	89	[NT]	[NT]	LCS-W1	105%
Surrogate 4-BFB	%		GC.13	87	[NT]	[NT]	LCS-W1	105%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
sTPH in Water (C10-C36)						Base II Duplicate II %RPD		
Date extracted	-			3/6/08	[NT]	[NT]	LCS-W1	3/6/08%
Date analysed	-			3/6/08	[NT]	[NT]	LCS-W1	3/6/08%
TPH C ₁₀ - C ₁₄	μg/L	50	GC.3	<50	[NT]	[NT]	LCS-W1	85%
TPH C ₁₅ - C ₂₈	μg/L	100	GC.3	<100	[NT]	[NT]	LCS-W1	99%
TPH C29 - C36	μg/L	100	GC.3	<100	[NT]	[NT]	LCS-W1	106%
Surrogate o-Terphenyl	%		GC.3	111	[NT]	[NT]	LCS-W1	119%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
PAHs in Water						Base II Duplicate II %RPD		Recovery
Date extracted	-			3/6/08	[NT]	[NT]	LCS-W1	3/6/08%
Date analysed	-			3/6/08	[NT]	[NT]	LCS-W1	3/6/08%
Naphthalene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	LCS-W1	99%
Acenaphthylene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	[NR]	[NR]
Fluorene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	LCS-W1	76%
Phenanthrene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	LCS-W1	96%
Anthracene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	LCS-W1	92%
Pyrene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	LCS-W1	97%
Benzo(a)anthracene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	[NR]	[NR]

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
PAHs in Water					Sm#	Base II Duplicate II %RPD		Recovery
Chrysene	µg/L	1	GC.12 subset	<1	[NT]	[NT]	LCS-W1	115%
Benzo(b+k)fluoranthene	μg/L	2	GC.12 subset	<2	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	LCS-W1	82%
Indeno(1,2,3-c,d)pyrene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl-d ₁₄	%		GC.12 subset	140	[NT]	[NT]	LCS-W1	107%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
OCP in water						Base II Duplicate II %RPD		Recovery
Date extracted	-			3/6/08	[NT]	[NT]	LCS-W1	3/6/08%
Date analysed	-			3/6/08	[NT]	[NT]	LCS-W1	3/6/08%
HCB	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	[NR]	[NR]
alpha-BHC	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	LCS-W1	128%
gamma-BHC	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	[NR]	[NR]
beta-BHC	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	LCS-W1	114%
Heptachlor	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	LCS-W1	96%
delta-BHC	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	[NR]	[NR]
Aldrin	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	LCS-W1	95%
Heptachlor Epoxide	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	LCS-W1	97%
gamma-Chlordane	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	[NR]	[NR]
alpha-Chlordane	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	[NR]	[NR]
Endosulfan I	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	[NR]	[NR]
pp-DDE	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	LCS-W1	110%
Dieldrin	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	LCS-W1	99%
Endrin	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	LCS-W1	112%
pp-DDD	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	LCS-W1	121%
Endosulfan II	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	[NR]	[NR]
DDT	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	[NR]	[NR]
Endrin Aldehyde	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	[NR]	[NR]
Endosulfan Sulphate	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	LCS-W1	101%
Methoxychlor	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%		GC-5	89	[NT]	[NT]	LCS-W1	101%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
OP Pesticides in water					Ollim	Base II Duplicate II %RPD		1.COOVELY
Date extracted	-			3/6/08	[NT]	[NT]	LCS-W1	3/6/08%
Date analysed	-			3/6/08	[NT]	[NT]	LCS-W1	3/6/08%
Diazinon	μg/L	0.2	GC.8	<0.2	[NT]	[NT]	[NR]	[NR]
Dimethoate	μg/L	0.2	GC.8	<0.2	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos-methyl	μg/L	0.2	GC.8	<0.2	[NT]	[NT]	[NR]	[NR]
Ronnel	μg/L	0.2	GC.8	<0.2	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos	μg/L	0.2	GC.8	<0.2	[NT]	[NT]	LCS-W1	103%
Fenitrothion	μg/L	0.2	GC.8	<0.2	[NT]	[NT]	LCS-W1	79%
Bromophos ethyl	μg/L	0.2	GC.8	<0.2	[NT]	[NT]	[NR]	[NR]
Ethion	μg/L	0.2	GC.8	<0.2	[NT]	[NT]	LCS-W1	129%
Surrogate TCLMX	%		GC.8	89	[NT]	[NT]	LCS-W1	110%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
PCBs in Water						Base II Duplicate II %RPD		Recovery
Date extracted	-			3/6/08	[NT]	[NT]	LCS-W1	3/6/08%
Date analysed	-			3/6/08	[NT]	[NT]	LCS-W1	3/6/08%
Arochlor 1016	μg/L	2	GC-6	<2	[NT]	[NT]	[NR]	[NR]
Arochlor 1232	μg/L	2	GC-6	<2	[NT]	[NT]	[NR]	[NR]
Arochlor 1242	μg/L	2	GC-6	<2	[NT]	[NT]	[NR]	[NR]
Arochlor 1248	μg/L	2	GC-6	<2	[NT]	[NT]	[NR]	[NR]
Arochlor 1254	μg/L	2	GC-6	<2	[NT]	[NT]	LCS-W1	88%
Arochlor 1260	μg/L	2	GC-6	<2	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%		GC-6	89	[NT]	[NT]	LCS-W1	71%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Total Phenolics in Water						Base II Duplicate II %RPD		
Date extracted	-			2/6/08	[NT]	[NT]	LCS-W1	2/6/08%
Date analysed	-			3/6/08	[NT]	[NT]	LCS-W1	3/6/08%
Total Phenolics (as Phenol)	mg/L	0.05	LAB.30	<0.050	[NT]	[NT]	LCS-W1	107%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Ion Balance						Base II Duplicate II %RPD		
Date prepared	-			2/6/08	19834-1	2/06/2008 2/06/2008	LCS-W1	2/6/08%
Date analysed	-			2/6/08	19834-1	2/06/2008 2/06/2008	LCS-W1	2/6/08%
Calcium - Dissolved	mg/L	0.03	Metals.20 ICP-AES	<0.03	19834-1	320 [N/T]	LCS-W1	105%
Potassium - Dissolved	mg/L	0.03	Metals.20 ICP-AES	<0.03	19834-1	63 [N/T]	LCS-W1	103%
Sodium - Dissolved	mg/L	0.03	Metals.20 ICP-AES	<0.03	19834-1	2000 [N/T]	LCS-W1	107%
Magnesium - Dissolved	mg/L	0.03	Metals.20 ICP-AES	<0.03	19834-1	220 [N/T]	LCS-W1	104%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Ion Balance						Base II Duplicate II %RPD		
Carbonate Alkalinity as CaCO ₃	mg/L	0.1	LAB.6	<0.1	19834-1	<0.1 <0.1	LCS-W1	100%
Bicarbonate Alkalinity as CaCO ₃	mg/L	0.1	LAB.6	<0.1	19834-1	630 610 RPD: 3	LCS-W1	100%
Sulphate, SO4	mg/L	5	LAB.9	<5	19834-1	360 360 RPD: 0	LCS-W1	110%
Chloride (titration) - water	mg/L	20	LAB.11	<20	19834-1	3300 3300 RPD: 0	LCS-W1	105%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
HM in water - dissolved						Base II Duplicate II %RPD		
Date prepared	-			6/6/08	[NT]	[NT]	LCS-W1	6/6/08%
Date analysed	-			6/6/08	[NT]	[NT]	LCS-W1	6/6/08%
Arsenic-Dissolved	μg/L	1	Metals.22 ICP-MS	<1.0	[NT]	[NT]	LCS-W1	104%
Cadmium-Dissolved	μg/L	0.1	Metals.22 ICP-MS	<0.10	[NT]	[NT]	LCS-W1	107%
Chromium-Dissolved	μg/L	1	Metals.22 ICP-MS	<1.0	[NT]	[NT]	LCS-W1	102%
Copper-Dissolved	μg/L	1	Metals.22 ICP-MS	<1.0	[NT]	[NT]	LCS-W1	103%
Lead-Dissolved	μg/L	1	Metals.22 ICP-MS	<1.0	[NT]	[NT]	LCS-W1	102%
Mercury-Dissolved	μg/L	0.5	Metals.21 CV-AAS	<0.50	[NT]	[NT]	LCS-W1	82%
Nickel-Dissolved	μg/L	1	Metals.22 ICP-MS	<1.0	[NT]	[NT]	LCS-W1	100%
Zinc-Dissolved	μg/L	1	Metals.22 ICP-MS	<1.0	[NT]	[NT]	LCS-W1	114%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Miscellaneous Inorganics					Sill#	Base II Duplicate II %RF	PD	Recovery
Date prepared	-			31/5/08	19834-1	31/05/2008 31/05/200	8 LCS-W1	31/5/08%
Date analysed	-			31/5/08	19834-1	31/05/2008 31/05/200	8 LCS-W1	31/5/08%
Ammonia as N in water	mg/L	0.1	LAB.57	<0.1	19834-1	4.1 3.9 RPD: 5	LCS-W1	113%
Total Nitrogen	mg/L	0.05	Ext-020	<0.05	19834-1	5.0 4.6 RPD: 8	LCS-W1	102%
Phosphorus - Total	mg/L	0.05	Metals.20 ICP-AES	<0.05	19834-1	0.87 0.80 RPD: 8	LCS-W1	94%
Salinity as NaCl	g/L	1	LAB.2	<1.0	19834-1	7.0 7.0 RPD: 0	LCS-W1	103%
Total Dissolved Solids (grav)	mg/L	5	LAB.18	<5	19834-1	7500 [N/T]	LCS-W1	95%
QUALITY CONTROL	UNITS	;	Dup. Sm#		Duplicate			
Ion Balance				Base + I	Duplicate + %RPD			
Date prepared	-		19834-8 2/06/2008 2/06/2008					
Date analysed	-		19834-8	2/06/2008 2/06/2008				
Calcium - Dissolved	mg/L		19834-8	600 610 RPD: 2				
Potassium - Dissolved	mg/L		19834-8	130 130 RPD: 0				
Sodium - Dissolved	mg/L		19834-8	4600	4600 RPD: 0			
Magnesium - Dissolved	mg/L		19834-8	450	450 RPD: 0			
QUALITY CONTROL	UNITS	;	Dup. Sm#		Duplicate	Spike Sm#	Spike % Recovery	
Miscellaneous Inorganics				Base + I	Duplicate + %RPD			
Date prepared	-		[NT]		[NT]	19834-1	31/5/08%	
Date analysed	-		[NT]		[NT]	19834-1	31/5/08%	
Ammonia as N in water	mg/L		[NT]		[NT]	[NR]	[NR]	
Total Nitrogen	mg/L		[NT]	[NT]		19834-1	104%	
Phosphorus - Total	mg/L		[NT]	[NT]		[NR]	[NR]	
Salinity as NaCl	g/L		[NT]		[NT]	[NR]	[NR]	
Total Dissolved Solids (grav)	mg/L		[NT]		[NT]	[NR]	[NR]	

Report Comments:

Nitrate and Nitrite: PQL raised due to matrix interferences.

OCP/OP/PCB's in soil: Sample 4 - PQL raised due to sample matrix.

Total Nitrogen as N analysed by NMI: Report Nummber - RN682954.

Ammonia in water: Spike recovery failed due to high amount of analyte present in the sample.

Asbestos was analysed by Approved Identifier: Not applicable for this job

INS: Insufficient sample for this test NT: Not tested PQL: Practical Quantitation Limit RPD: Relative Percent Difference NA: Test not required LCS: Laboratory Control Sample

NR: Not requested <: Less than >: Greater than

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria:

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for

SVOC and speciated phenols is acceptable. Surrogates: 60-140% is acceptable for general organics and 10-140% for

SVOC and speciated phenols.

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 20315

Client:

Consulting Earth Scientists

Suite 121, 26-32 Pirrama Rd Pyrmont NSW 2009

Attention: Luke Jenkins / Kelly Weir

Sample log in details:

Your Reference: CES050706-BCC, Area B

No. of samples: 7 Waters
Date samples received: 19/06/08
Date completed instructions received: 19/06/08

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: 25/06/08

Date of Preliminary Report: Not Issued Issue Date: 26/06/08

NATA accreditation number 2901. This document shall not be reproduced except in full.

This document is issued in accordance with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst Operations Manager

VOCs in water Our Reference:	UNITS	20315-1	20315-2	20315-3	20315-4	20315-5
Your Reference		170608-01-LJ	170608-02-LJ	170608-03-LJ	170608-05-LJ	180608-06-LJ
Date Sampled		18/06/2008	18/06/2008	18/06/2008	18/06/2008	18/06/2008
Type of sample		Water	Water	Water	Water	Water
Sample Matrix Code		WG	WG	WG	WG	WG
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	22/06/2008	22/06/2008	22/06/2008	22/06/2008	22/06/2008
Date analysed	-	22/06/2008	22/06/2008	22/06/2008	22/06/2008	22/06/2008
Dichlorodifluoromethane	μg/L	<10	<10	<10	<10	<10
Chloromethane	μg/L	<10	<10	<10	<10	<10
Vinyl Chloride	μg/L	<10	<10	<10	<10	<10
Bromomethane	μg/L	<10	<10	<10	<10	<10
Chloroethane	μg/L	<10	<10	<10	<10	<10
Trichlorofluoromethane	μg/L	<10	<10	<10	<10	<10
1,1-Dichloroethene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Trans-1,2-dichloroethene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-dichloroethane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Cis-1,2-dichloroethene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Bromochloromethane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2,2-dichloropropane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichloroethane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1-trichloroethane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-dichloropropene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Carbon tetrachloride	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Dibromomethane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichloropropane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Trichloroethene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Bromodichloromethane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,3-dichloropropene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,3-dichloropropene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-trichloroethane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Toluene	μg/L	<1.0	<1.0	1.5	<1.0	<1.0
1,3-dichloropropane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Dibromochloromethane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dibromoethane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Tetrachloroethene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1,2-tetrachloroethane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Chlorobenzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Ethylbenzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Bromoform	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
m+p-xylene	μg/L	<2.0	<2.0	<2.0	<2.0	<2.0

VOCs in water Our Reference: Your Reference Date Sampled Type of sample Sample Matrix Code Time Sampled	UNITS	20315-1 170608-01-L J 18/06/2008 Water WG 00:00	20315-2 170608-02-L J 18/06/2008 Water WG 00:00	20315-3 170608-03-L J 18/06/2008 Water WG 00:00	20315-4 170608-05-L J 18/06/2008 Water WG 00:00	20315-5 180608-06-L J 18/06/2008 Water WG 00:00
Styrene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-tetrachloroethane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
o-xylene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-trichloropropane*	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Isopropylbenzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Bromobenzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
n-propyl benzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2-chlorotoluene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
4-chlorotoluene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,3,5-trimethyl benzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Tert-butyl benzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-trimethyl benzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-dichlorobenzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Sec-butyl benzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,4-dichlorobenzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
4-isopropyl toluene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichlorobenzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
n-butyl benzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dibromo-3-chloropropane	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-trichlorobenzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Hexachlorobutadiene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-trichlorobenzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Surrogate Dibromofluoromethane	%	71	81	101	86	73
Surrogate toluene-d8	%	103	101	97	103	101
Surrogate 4-BFB	%	85	89	97	79	85

vTPH & BTEX in Water						
Our Reference:	UNITS	20315-1	20315-2	20315-3	20315-4	20315-5
Your Reference		170608-01-LJ	170608-02-LJ	170608-03-LJ	170608-05-LJ	180608-06-LJ
Date Sampled		18/06/2008	18/06/2008	18/06/2008	18/06/2008	18/06/2008
Type of sample		Water	Water	Water	Water	Water
Sample Matrix Code		WG	WG	WG	WG	WG
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	22/06/2008	22/06/2008	22/06/2008	22/06/2008	22/06/2008
Date analysed	-	22/06/2008	22/06/2008	22/06/2008	22/06/2008	22/06/2008
TPH C6 - C9	μg/L	<10	<10	<10	<10	<10
Benzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Toluene	μg/L	<1.0	<1.0	1.5	<1.0	<1.0
Ethylbenzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
m+p-xylene	μg/L	<2.0	<2.0	<2.0	<2.0	<2.0
o-xylene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Surrogate Dibromofluoromethane	%	71	81	101	86	73
Surrogate toluene-d8	%	103	101	97	103	101
Surrogate 4-BFB	%	85	90	97	79	85

vTPH & BTEX in Water			
Our Reference:	UNITS	20315-6	20315-7
Your Reference		Trip Spike	Trip Blank
Date Sampled		17/06/2008	17/06/2008
Type of sample		Water	Water
Sample Matrix Code		WG	WG
Time Sampled		00:00	00:00
Date extracted	-	22/06/2008	22/06/2008
Date analysed	-	22/06/2008	22/06/2008
TPH C6 - C9	μg/L	[NA]	<10
Benzene	μg/L	104%	<1.0
Toluene	μg/L	90%	<1.0
Ethylbenzene	μg/L	91%	<1.0
m+p-xylene	μg/L	89%	<2.0
o-xylene	μg/L	89%	<1.0
Surrogate Dibromofluoromethane	%	113	102
Surrogate toluene-d8	%	104	94
Surrogate 4-BFB	%	108	96

sTPH in Water (C10-C36)						
Our Reference:	UNITS	20315-1	20315-2	20315-3	20315-4	20315-5
Your Reference		170608-01-LJ	170608-02-LJ	170608-03-LJ	170608-05-LJ	180608-06-LJ
Date Sampled		18/06/2008	18/06/2008	18/06/2008	18/06/2008	18/06/2008
Type of sample		Water	Water	Water	Water	Water
Sample Matrix Code		WG	WG	WG	WG	WG
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	23/06/2008	23/06/2008	23/06/2008	23/06/2008	23/06/2008
Date analysed	-	24/06/2008	24/06/2008	24/06/2008	24/06/2008	24/06/2008
TPH C10 - C14	μg/L	<50	<50	<50	<50	<50
TPH C ₁₅ - C ₂₈	μg/L	<100	<100	<100	<100	<100
TPH C29 - C36	μg/L	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	86	89	96	106	102

PAHs in Water						
Our Reference:	UNITS	20315-1	20315-2	20315-3	20315-4	20315-5
Your Reference		170608-01-LJ	170608-02-LJ	170608-03-LJ	170608-05-LJ	180608-06-LJ
Date Sampled		18/06/2008	18/06/2008	18/06/2008	18/06/2008	18/06/2008
Type of sample		Water	Water	Water	Water	Water
Sample Matrix Code		WG	WG	WG	WG	WG
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	23/06/2008	23/06/2008	23/06/2008	23/06/2008	23/06/2008
Date analysed	-	23/06/2008	23/06/2008	23/06/2008	23/06/2008	23/06/2008
Naphthalene	μg/L	<1	<1	<1	<1	<1
Acenaphthylene	μg/L	<1	<1	<1	<1	<1
Acenaphthene	μg/L	<1	<1	<1	<1	<1
Fluorene	μg/L	<1	<1	<1	<1	<1
Phenanthrene	μg/L	<1	<1	<1	<1	<1
Anthracene	μg/L	<1	<1	<1	<1	<1
Fluoranthene	μg/L	<1	<1	<1	<1	<1
Pyrene	μg/L	<1	<1	<1	<1	<1
Benzo(a)anthracene	μg/L	<1	<1	<1	<1	<1
Chrysene	μg/L	<1	<1	<1	<1	<1
Benzo(b+k)fluoranthene	μg/L	<2	<2	<2	<2	<2
Benzo(a)pyrene	μg/L	<1	<1	<1	<1	<1
Indeno(1,2,3-c,d)pyrene	μg/L	<1	<1	<1	<1	<1
Dibenzo(a,h)anthracene	μg/L	<1	<1	<1	<1	<1
Benzo(g,h,i)perylene	μg/L	<1	<1	<1	<1	<1
Surrogate p-Terphenyl-d14	%	75	86	83	76	81

OCP in water						
Our Reference:	UNITS	20315-1	20315-2	20315-3	20315-4	20315-5
Your Reference		170608-01-LJ	170608-02-LJ	170608-03-LJ	170608-05-LJ	180608-06-LJ
Date Sampled		18/06/2008	18/06/2008	18/06/2008	18/06/2008	18/06/2008
Type of sample		Water	Water	Water	Water	Water
Sample Matrix Code Time Sampled		WG 00:00	WG 00:00	WG 00:00	WG 00:00	WG 00:00
'						
Date extracted	-	23/06/2008	23/06/2008	23/06/2008	23/06/2008	23/06/2008
Date analysed	-	23/06/2008	23/06/2008	23/06/2008	23/06/2008	23/06/2008
НСВ	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
alpha-BHC	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
gamma-BHC	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
beta-BHC	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Heptachlor	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
delta-BHC	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Aldrin	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Heptachlor Epoxide	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
gamma-Chlordane	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
alpha-Chlordane	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Endosulfan I	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
pp-DDE	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Dieldrin	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
pp-DDD	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Endosulfan II	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
DDT	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin Aldehyde	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Endosulfan Sulphate	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Methoxychlor	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Surrogate TCLMX	%	91	82	83	94	94

OP Pesticides in water						
Our Reference:	UNITS	20315-1	20315-2	20315-3	20315-4	20315-5
Your Reference		170608-01-LJ	170608-02-LJ	170608-03-LJ	170608-05-LJ	180608-06-LJ
Date Sampled		18/06/2008	18/06/2008	18/06/2008	18/06/2008	18/06/2008
Type of sample		Water	Water	Water	Water	Water
Sample Matrix Code		WG	WG	WG	WG	WG
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date extracted	-	23/06/2008	23/06/2008	23/06/2008	23/06/2008	23/06/2008
Date analysed	-	23/06/2008	23/06/2008	23/06/2008	23/06/2008	23/06/2008
Diazinon	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Dimethoate	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyriphos-methyl	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Ronnel	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyriphos	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Fenitrothion	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos ethyl	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Ethion	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Surrogate TCLMX	%	91	82	83	94	94

PCBs in Water						
Our Reference:	UNITS	20315-1	20315-2	20315-3	20315-4	20315-5
Your Reference		170608-01-LJ	170608-02-LJ	170608-03-LJ	170608-05-LJ	180608-06-LJ
Date Sampled		18/06/2008	18/06/2008	18/06/2008	18/06/2008	18/06/2008
Type of sample Sample Matrix Code Time Sampled		Water WG 00:00	Water WG 00:00	Water WG 00:00	Water WG 00:00	Water WG 00:00
Date extracted	-	23/06/2008	23/06/2008	23/06/2008	23/06/2008	23/06/2008
Date analysed	-	23/06/2008	23/06/2008	23/06/2008	23/06/2008	23/06/2008
Arochlor 1016	μg/L	<2	<2	<2	<2	<2
Arochlor 1232	μg/L	<2	<2	<2	<2	<2
Arochlor 1242	μg/L	<2	<2	<2	<2	<2
Arochlor 1248	μg/L	<2	<2	<2	<2	<2
Arochlor 1254	μg/L	<2	<2	<2	<2	<2
Arochlor 1260	μg/L	<2	<2	<2	<2	<2
Surrogate TCLMX	%	91	82	83	94	94

HM in water - dissolved						
Our Reference:	UNITS	20315-1	20315-2	20315-3	20315-4	20315-5
Your Reference		170608-01-LJ	170608-02-LJ	170608-03-LJ	170608-05-LJ	180608-06-LJ
Date Sampled		18/06/2008	18/06/2008	18/06/2008	18/06/2008	18/06/2008
Type of sample		Water	Water	Water	Water	Water
Sample Matrix Code		WG	WG	WG	WG	WG
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date prepared	-	20/06/2008	20/06/2008	20/06/2008	20/06/2008	20/06/2008
Date analysed	-	20/06/2008	20/06/2008	20/06/2008	20/06/2008	20/06/2008
Arsenic-Dissolved	μg/L	2.2	4.9	1.6	5.6	4.9
Cadmium-Dissolved	μg/L	<0.10	<0.10	0.20	<0.10	<0.10
Chromium-Dissolved	μg/L	<1.0	2.0	23	<1.0	2.5
Copper-Dissolved	μg/L	1.8	<1.0	6.6	<1.0	2.1
Lead-Dissolved	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Mercury-Dissolved	μg/L	<0.50	<0.50	<0.50	<0.50	<0.50
Nickel-Dissolved	μg/L	<1.0	3.1	2.5	1.7	1.7
Zinc-Dissolved	μg/L	6.3	<1.0	4.1	3.1	1.5

Ion Balance						
Our Reference:	UNITS	20315-1	20315-2	20315-3	20315-4	20315-5
Your Reference		170608-01-LJ	170608-02-LJ	170608-03-LJ	170608-05-LJ	180608-06-LJ
Date Sampled		18/06/2008	18/06/2008	18/06/2008	18/06/2008	18/06/2008
Type of sample Sample Matrix Code Time Sampled		Water WG 00:00	Water WG 00:00	Water WG 00:00	Water WG 00:00	Water WG 00:00
Date prepared	-	24/06/2008	24/06/2008	24/06/2008	24/06/2008	24/06/2008
Date analysed	-	24/06/2008	24/06/2008	24/06/2008	24/06/2008	24/06/2008
Calcium - Dissolved	mg/L	160	130	170	370	680
Potassium - Dissolved	mg/L	10	25	130	23	60
Sodium - Dissolved	mg/L	38	320	3,500	220	1,000
Magnesium - Dissolved	mg/L	22	3.0	30	71	110
Carbonate Alkalinity as CaCO3	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Bicarbonate Alkalinity as CaCO ₃	mg/L	420	620	280	560	590
Sulphate, SO4	mg/L	110	<5	830	880	1,400
Chloride (titration) - water	mg/L	27	500	5,900	330	1,400

Miscellaneous Inorganics						
Our Reference:	UNITS	20315-1	20315-2	20315-3	20315-4	20315-5
Your Reference		170608-01-LJ	170608-02-LJ	170608-03-LJ	170608-05-LJ	180608-06-LJ
Date Sampled		18/06/2008	18/06/2008	18/06/2008	18/06/2008	18/06/2008
Type of sample		Water	Water	Water	Water	Water
Sample Matrix Code		WG	WG	WG	WG	WG
Time Sampled		00:00	00:00	00:00	00:00	00:00
Date prepared	-	20/06/2008	20/06/2008	20/06/2008	20/06/2008	20/06/2008
Date analysed	-	20/06/2008	20/06/2008	20/06/2008	20/06/2008	20/06/2008
Ammonia as N in water	mg/L	<0.1	14	4.4	3.0	2.9
Total Nitrogen	mg/L	9.5	21	5.6	4.3	5.3
Phosphorus - Total	mg/L	0.060	0.19	1.0	0.18	0.63
Salinity as NACL *	mg/L	610	1,600	10,000	1,800	4,100
Total Dissolved Solids (grav)	mg/L	660	1,400	11,000	2,100	5,100
Resistivity	ohm m	10	4.0	<1.0	3.6	1.6

Method ID	Methodology Summary
GC.13	Water samples are analysed directly by purge and trap GC-MS.
GC.16	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS.
GC.3	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
GC.12 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
GC-5	Soil samples are extracted with hexane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
GC.8	Soil samples are extracted with hexane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
GC-6	Soil samples are extracted with hexane/acetone and waters with dichloromethane and analysed by GC-ECD.
Metals.22 ICP-MS	Determination of various metals by ICP-MS.
Metals.21 CV-AAS	Determination of Mercury by Cold Vapour AAS.
Metals.20 ICP-AES	Determination of various metals by ICP-AES.
LAB.6	Alkalinity - determined titrimetrically in accordance with APHA 20th ED, 2320-B.
LAB.9	Sulphate determined turbidimetrically.
LAB.11	Chloride determined by argentometric titration.
LAB.57	Ammonia water extractable - determined colourimetrically based on EPA103A.
Ext-020	Analysis subcontracted to Australian Government - National Measurement Institute. NATA Accreditation No: 198
LAB.2	Conductivity and Salinity - measured using a conductivity cell and dedicated meter, in accordance with APHA2510 20th ED and Rayment & Higginson.
LAB.18	Total Dissolved Solids - determined gravimetrically by drying the sample, in accordance with APHA 20th ED, 2540-C.
<u> </u>	

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
VOCs in water						Base II Duplicate II %RPD		,
Date extracted	-			22/6/08	[NT]	[NT]	LCS-W1	22/6/08%
Date analysed	-			22/6/08	[NT]	[NT]	LCS-W1	22/6/08%
Dichlorodifluoromethane	μg/L	10	GC.13	<10	[NT]	[NT]	[NR]	[NR]
Chloromethane	μg/L	10	GC.13	<10	[NT]	[NT]	[NR]	[NR]
Vinyl Chloride	μg/L	10	GC.13	<10	[NT]	[NT]	[NR]	[NR]
Bromomethane	μg/L	10	GC.13	<10	[NT]	[NT]	[NR]	[NR]
Chloroethane	μg/L	10	GC.13	<10	[NT]	[NT]	[NR]	[NR]
Trichlorofluoromethane	μg/L	10	GC.13	<10	[NT]	[NT]	[NR]	[NR]
1,1-Dichloroethene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Trans-1,2-dichloroethen e	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,1-dichloroethane	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	88%
Cis-1,2-dichloroethene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Bromochloromethane	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Chloroform	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	93%
2,2-dichloropropane	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,2-dichloroethane	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	92%
1,1,1-trichloroethane	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	93%
1,1-dichloropropene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Carbon tetrachloride	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Benzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Dibromomethane	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,2-dichloropropane	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Trichloroethene	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	108%
Bromodichloromethane	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	95%
trans-1,3-dichloropropen e	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
cis-1,3-dichloropropene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,1,2-trichloroethane	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Toluene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,3-dichloropropane	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Dibromochloromethane	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	103%
1,2-dibromoethane	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Tetrachloroethene	μg/L	1	GC.13	<1.0	[NT]	[NT]	LCS-W1	102%
1,1,1,2-tetrachloroethan e	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Chlorobenzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Ethylbenzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Bromoform	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
m+p-xylene	μg/L	2	GC.13	<2.0	[NT]	[NT]	[NR]	[NR]
Styrene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,1,2,2-tetrachloroethan e	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
VOCs in water						Base II Duplicate II %RPD		
o-xylene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,2,3-trichloropropane*	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Isopropylbenzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Bromobenzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
n-propyl benzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
2-chlorotoluene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
4-chlorotoluene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,3,5-trimethyl benzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Tert-butyl benzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,2,4-trimethyl benzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,3-dichlorobenzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Sec-butyl benzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,4-dichlorobenzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
4-isopropyl toluene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,2-dichlorobenzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
n-butyl benzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,2-dibromo-3-chloropro pane	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,2,4-trichlorobenzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Hexachlorobutadiene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
1,2,3-trichlorobenzene	μg/L	1	GC.13	<1.0	[NT]	[NT]	[NR]	[NR]
Surrogate Dibromofluoromethane	%		GC.13	89	[NT]	[NT]	LCS-W1	103%
Surrogate toluene-d8	%		GC.13	73	[NT]	[NT]	LCS-W1	100%
Surrogate 4-BFB	%		GC.13	108	[NT]	[NT]	LCS-W1	97%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTPH & BTEX in Water						Base II Duplicate II %RPD		
Date extracted	-			22/6/08	[NT]	[NT]	LCS-W1	22/6/08%
Date analysed	-			22/6/08	[NT]	[NT]	LCS-W1	22/6/08%
TPH C6 - C9	μg/L	10	GC.16	<10	[NT]	[NT]	LCS-W1	77%
Benzene	μg/L	1	GC.16	<1.0	[NT]	[NT]	LCS-W1	71%
Toluene	μg/L	1	GC.16	<1.0	[NT]	[NT]	LCS-W1	82%
Ethylbenzene	μg/L	1	GC.16	<1.0	[NT]	[NT]	LCS-W1	76%
m+p-xylene	μg/L	2	GC.16	<2.0	[NT]	[NT]	LCS-W1	79%
o-xylene	μg/L	1	GC.16	<1.0	[NT]	[NT]	LCS-W1	78%
Surrogate Dibromofluoromethane	%		GC.16	108	[NT]	[NT]	LCS-W1	102%
Surrogate toluene-d8	%		GC.16	79	[NT]	[NT]	LCS-W1	100%
Surrogate 4-BFB	%		GC.16	86	[NT]	[NT]	LCS-W1	107%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
sTPH in Water (C10-C36)						Base II Duplicate II %RPD		
Date extracted	-			23/6/08	[NT]	[NT]	LCS-W1	23/6/08%
Date analysed	-			24/6/08	[NT]	[NT]	LCS-W1	24/6/08%
TPH C10 - C14	μg/L	50	GC.3	<50	[NT]	[NT]	LCS-W1	72%
TPH C ₁₅ - C ₂₈	μg/L	100	GC.3	<100	[NT]	[NT]	LCS-W1	89%
TPH C29 - C36	μg/L	100	GC.3	<100	[NT]	[NT]	LCS-W1	94%
Surrogate o-Terphenyl	%		GC.3	94	[NT]	[NT]	LCS-W1	104%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Water						Base II Duplicate II %RPD		
Date extracted	-			23/06/2 008	[NT]	[NT]	LCS-W1	23/06/2008
Date analysed	-			23/06/2 008	[NT]	[NT]	LCS-W1	23/06/2008 %
Naphthalene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	LCS-W1	96%
Acenaphthylene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	[NR]	[NR]
Fluorene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	LCS-W1	94%
Phenanthrene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	LCS-W1	93%
Anthracene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	LCS-W1	89%
Pyrene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	LCS-W1	94%

UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
				Sm#	Base II Duplicate II %RPD		Recovery
	4	00.40	4	FA ITT	-	[NID]	INID?
µg/∟	1	GC.12 subset	<1	[NI]	[NI]	[NK]	[NR]
μg/L	1	GC.12 subset	<1	[NT]	[NT]	LCS-W1	116%
μg/L	2	GC.12 subset	<2	[NT]	[NT]	[NR]	[NR]
μg/L	1	GC.12 subset	<1	[NT]	[NT]	LCS-W1	87%
μg/L	1	GC.12 subset	<1	[NT]	[NT]	[NR]	[NR]
μg/L	1	GC.12 subset	<1	[NT]	[NT]	[NR]	[NR]
μg/L	1	GC.12 subset	<1	[NT]	[NT]	[NR]	[NR]
%		GC.12 subset	98	[NT]	[NT]	LCS-W1	105%
UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
					Base II Duplicate II %RPD		Recovery
-			23/06/2 008	[NT]	[NT]	LCS-W1	23/06/2008 %
-			23/06/2 008	[NT]	[NT]	LCS-W1	23/06/2008 %
μg/L	0.2	GC-5	<0.2	[NT]	[NT]	[NR]	[NR]
μg/L	0.2	GC-5	<0.2	[NT]	[NT]	LCS-W1	60%
μg/L	0.2	GC-5	<0.2	[NT]	[NT]	[NR]	[NR]
μg/L	0.2	GC-5	<0.2	[NT]	[NT]	LCS-W1	76%
μg/L	0.2	GC-5	<0.2	[NT]	[NT]	LCS-W1	60%
μg/L	0.2	GC-5	<0.2	[NT]	[NT]	[NR]	[NR]
μg/L	0.2	GC-5	<0.2	[NT]	[NT]	LCS-W1	68%
μg/L	0.2	GC-5	<0.2	[NT]	[NT]	LCS-W1	68%
μg/L	0.2	GC-5	<0.2	[NT]	[NT]	[NR]	[NR]
μg/L	0.2	GC-5	<0.2	[NT]	[NT]	[NR]	[NR]
μg/L	0.2	GC-5	<0.2	[NT]	[NT]	[NR]	[NR]
μg/L	0.2	GC-5	<0.2	[NT]	[NT]	LCS-W1	87%
μg/L	0.2	GC-5	<0.2	[NT]	[NT]	LCS-W1	76%
μg/L	0.2	GC-5	<0.2	[NT]	[NT]	LCS-W1	66%
μg/L	0.2	GC-5	<0.2	[NT]	[NT]	LCS-W1	80%
μg/L	0.2	GC-5	<0.2	[NT]	[NT]	[NR]	[NR]
μg/L	0.2	GC-5	<0.2	[NT]	[NT]	[NR]	[NR]
μg/L	0.2	GC-5	<0.2	[NT]	[NT]	[NR]	[NR]
	0.2	GC-5	<0.2			LCS-W1	73%
	0.2	GC-5	<0.2				[NR]
%		GC-5	80	[NT]	[NT]	LCS-W1	86%
	ру/L ру/L ру/L ру/L ру/L ру/L ру/L ру/L	μg/L 1 μg/L 2 μg/L 1 μg/L 1 μg/L 1 μg/L 1 μg/L 1 μg/L 1 μg/L 1 μg/L 1 μg/L 1 μg/L 0.2	ру/L 1 GC.12 subset ру/L 2 GC.12 subset ру/L 1 GC.12 subset ру/L 1 GC.12 subset ру/L 1 GC.12 subset ру/L 1 GC.12 subset ру/L 1 GC.12 subset ру/L 1 GC.12 subset ру/L 1 GC.12 subset ру/L 1 GC.12 subset ру/L 1 GC.12 subset ру/L 1 GC.12 subset ру/L 1 GC.12 subset ру/L 1 GC.12 subset ру/L 0.2 GC.12 subset ру/L 0.2 GC.5 ру/L 0.	ру/L ру/С ру/С	µg/L	Hg/L	Pg/L

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
OP Pesticides in water					Jin#	Base II Duplicate II %RPD		Recovery
Date extracted	-			23/06/2 008	[NT]	[NT]	LCS-W1	23/6/08%
Date analysed	-			23/06/2 008	[NT]	[NT]	LCS-W1	23/6/08%
Diazinon	μg/L	0.2	GC.8	<0.2	[NT]	[NT]	[NR]	[NR]
Dimethoate	μg/L	0.2	GC.8	<0.2	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos-methyl	μg/L	0.2	GC.8	<0.2	[NT]	[NT]	[NR]	[NR]
Ronnel	μg/L	0.2	GC.8	<0.2	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos	μg/L	0.2	GC.8	<0.2	[NT]	[NT]	LCS-W1	90%
Fenitrothion	μg/L	0.2	GC.8	<0.2	[NT]	[NT]	LCS-W1	69%
Bromophos ethyl	μg/L	0.2	GC.8	<0.2	[NT]	[NT]	[NR]	[NR]
Ethion	μg/L	0.2	GC.8	<0.2	[NT]	[NT]	LCS-W1	102%
Surrogate TCLMX	%		GC.8	80	[NT]	[NT]	LCS-W1	85%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PCBs in Water						Base II Duplicate II %RPD		
Date extracted	-			23/06/2 008	[NT]	[NT]	LCS-W1	23/6/08%
Date analysed	-			23/06/2 008	[NT]	[NT]	LCS-W1	23/6/08%
Arochlor 1016	μg/L	2	GC-6	<2	[NT]	[NT]	[NR]	[NR]
Arochlor 1232	μg/L	2	GC-6	<2	[NT]	[NT]	[NR]	[NR]
Arochlor 1242	μg/L	2	GC-6	<2	[NT]	[NT]	[NR]	[NR]
Arochlor 1248	μg/L	2	GC-6	<2	[NT]	[NT]	[NR]	[NR]
Arochlor 1254	μg/L	2	GC-6	<2	[NT]	[NT]	LCS-W1	96%
Arochlor 1260	μg/L	2	GC-6	<2	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%		GC-6	80	[NT]	[NT]	LCS-W1	121%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
HM in water - dissolved						Base II Duplicate II %RPD		,
Date prepared	-			20/6/08	[NT]	[NT]	LCS-W1	20/6/08%
Date analysed	-			20/6/08	[NT]	[NT]	LCS-W1	20/6/08%
Arsenic-Dissolved	μg/L	1	Metals.22 ICP-MS	<1.0	[NT]	[NT]	LCS-W1	106%
Cadmium-Dissolved	μg/L	0.1	Metals.22 ICP-MS	<0.10	[NT]	[NT]	LCS-W1	104%
Chromium-Dissolved	μg/L	1	Metals.22 ICP-MS	<1.0	[NT]	[NT]	LCS-W1	98%
Copper-Dissolved	μg/L	1	Metals.22 ICP-MS	<1.0	[NT]	[NT]	LCS-W1	98%
Lead-Dissolved	μg/L	1	Metals.22 ICP-MS	<1.0	[NT]	[NT]	LCS-W1	100%
Mercury-Dissolved	μg/L	0.5	Metals.21 CV-AAS	<0.50	[NT]	[NT]	LCS-W1	99%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	S	Spike Sm#	Spike % Recovery
HM in water - dissolved					Giii ii	Base II Duplicate II %	RPD		Recovery
Nickel-Dissolved	μg/L	1	Metals.22 ICP-MS	<1.0	[NT]	[NT]		LCS-W1	94%
Zinc-Dissolved	μg/L	1	Metals.22 ICP-MS	<1.0	[NT]	[NT]		LCS-W1	104%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results		Spike Sm#	Spike % Recovery
Ion Balance						Base II Duplicate II %R	PD		
Date prepared	-			[NT]	[NT]	[NT]		LCS-1	20/6/08%
Date analysed	-			[NT]	[NT]	[NT]		LCS-1	20/6/08%
Calcium - Dissolved	mg/L	0.03	Metals.20 ICP-AES	<0.03	[NT]	[NT]		LCS-1	102%
Potassium - Dissolved	mg/L	0.03	Metals.20 ICP-AES	<0.03	[NT]	[NT]		LCS-1	94%
Sodium - Dissolved	mg/L	0.03	Metals.20 ICP-AES	<0.03	[NT]	[NT]		LCS-1	100%
Magnesium - Dissolved	mg/L	0.03	Metals.20 ICP-AES	<0.03	[NT]	[NT]		LCS-1	100%
Carbonate Alkalinity as CaCO ₃	mg/L	0.1	LAB.6	<0.1	[NT]	[NT]		LCS-1	100%
Bicarbonate Alkalinity as CaCO ₃	mg/L	0.1	LAB.6	<0.1	[NT]	[NT]		LCS-1	100%
Sulphate, SO4	mg/L	5	LAB.9	<5	[NT]	[NT]		LCS-1	100%
Chloride (titration) - water	mg/L	20	LAB.11	<20	[NT]	[NT]		LCS-1	109%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results		Spike Sm#	Spike %
Miscellaneous Inorganics						Base II Duplicate II %R	PD		Recovery
Date prepared	-			20/6/08	20315-1	20/06/2008 20/06/20	800	LCS-1	20/6/08%
Date analysed	-			20/6/08	20315-1	20/06/2008 20/06/20	800	LCS-1	20/6/08%
Ammonia as N in water	mg/L	0.1	LAB.57	<0.1	20315-1	<0.1 <0.1		LCS-1	104%
Total Nitrogen	mg/L	0.05	Ext-020	<0.05	20315-1	9.5 [N/T]		[NR]	[NR]
Phosphorus - Total	mg/L	0.05	Metals.20 ICP-AES	<0.05	20315-1	0.060 [N/T]		LCS-1	95%
Salinity as NACL *	mg/L	1	LAB.2	<1.0	20315-1	610 [N/T]		LCS-1	100%
Total Dissolved Solids (grav)	mg/L	5	LAB.18	<5	20315-1	660 630 RPD: 5		LCS-1	98%
Resistivity	ohm m	1	LAB.2	<1.0	20315-1	10 [N/T]		LCS-1	100%
QUALITY CONTROL	UNITS	3	Dup. Sm#		Duplicate	Spike Sm#	Spik	e % Recovery	
Ion Balance				Base + I	Duplicate + %RPD			-	
Date prepared	-		[NT]		[NT]	[NR]		[NR]	
Date analysed	-		[NT]		[NT]	[NR]		[NR]	
Calcium - Dissolved	mg/L		[NT]		[NT]	20315-1		96%	
Potassium - Dissolved	mg/L		[NT]		[NT]	20315-1		101%	

QUALITY CONTROL Ion Balance	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Sodium - Dissolved	mg/L	[NT]	[NT]	20315-1	102%
Magnesium - Dissolved	mg/L	[NT]	[NT]	20315-1	102%
Carbonate Alkalinity as CaCO ₃	mg/L	[NT]	[NT]	[NR]	[NR]
Bicarbonate Alkalinity as CaCO ₃	mg/L	[NT]	[NT]	[NR]	[NR]
Sulphate, SO4	mg/L	[NT]	[NT]	[NR]	[NR]
Chloride (titration) - water	mg/L	[NT]	[NT]	[NR]	[NR]
QUALITY CONTROL Miscellaneous Inorganics	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date prepared	-	[NT]	[NT]	20315-1	20/6/08%
Date analysed	-	[NT]	[NT]	20315-1	20/6/08%
Ammonia as N in water	mg/L	[NT]	[NT]	[NR]	[NR]
Total Nitrogen	mg/L	[NT]	[NT]	[NR]	[NR]
Phosphorus - Total	mg/L	[NT]	[NT]	20315-1	103%
Salinity as NACL *	mg/L	[NT]	[NT]	[NR]	[NR]
Total Dissolved Solids (grav)	mg/L	[NT]	[NT]	[NR]	[NR]
Resistivity	ohm m	[NT]	[NT]	[NR]	[NR]
QUALITY CONTROL HM in water - dissolved	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date prepared	-	[NT]	[NT]	20315-1	20/6/08%
Date analysed	-	[NT]	[NT]	20315-1	20/6/08%
Arsenic-Dissolved	μg/L	[NT]	[NT]	20315-1	113%
Cadmium-Dissolved	μg/L	[NT]	[NT]	20315-1	102%
Chromium-Dissolved	μg/L	[NT]	[NT]	20315-1	100%
Copper-Dissolved	μg/L	[NT]	[NT]	20315-1	98%
Lead-Dissolved	μg/L	[NT]	[NT]	20315-1	100%
Mercury-Dissolved	μg/L	[NT]	[NT]	20315-1	92%
Nickel-Dissolved	μg/L	[NT]	[NT]	20315-1	98%
Zinc-Dissolved	μg/L	[NT]	[NT]	20315-1	102%

QUALITY CONTROL Miscellaneous Inorganics	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date prepared	-	[NT]	[NT]	20315-2	20/6/08%
Date analysed	-	[NT]	[NT]	20315-2	20/6/08%
Ammonia as N in water	mg/L	[NT]	[NT]	20315-2	#
Total Nitrogen	mg/L	[NT]	[NT]	[NR]	[NR]
Phosphorus - Total	mg/L	[NT]	[NT]	[NR]	[NR]
Salinity as NACL *	mg/L	[NT]	[NT]	[NR]	[NR]
Total Dissolved Solids (grav)	mg/L	[NT]	[NT]	[NR]	[NR]
Resistivity	ohm m	[NT]	[NT]	[NR]	[NR]

Report Comments:

Ammonia in water: # Spike recovery failed due to high amount of analyte in the sample.

Total Nitrogen analysed by NMI: Report Number - 20522.

Asbestos was analysed by Approved Identifier: Not applicable for this job

INS: Insufficient sample for this test NT: Not tested PQL: Practical Quantitation Limit RPD: Relative Percent Difference NA: Test not required LCS: Laboratory Control Sample

NR: Not requested <: Less than >: Greater than

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria:

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for

SVOC and speciated phenols is acceptable. Surrogates: 60-140% is acceptable for general organics and 10-140% for

SVOC and speciated phenols.

email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

CERTIFICATE OF ANALYSIS 162123

Client:

Consulting Earth Scientists Pty Ltd

Suite 3, Level 1 55 Grandview Street Pymble NSW 2073

Attention: M Read T Goodbody

Sample log in details:

Your Reference: CES130608-BP

No. of samples: 11 waters

Date samples received / completed instructions received 17/02/17 / 17/02/17

This report replaces R00 due to changes to project ID. (client request)

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: / Issue Date: 24/02/17 / 27/02/17

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing

Tests not covered by NATA are denoted with *.

Results Approved By:

David Springer General Manager

VOCs in water						
Our Reference:	UNITS	162123-1	162123-2	162123-3	162123-4	162123-5
Your Reference		BMW401	BMW403	BMW404	AMW205	ABH2105
Data Campulad	-	47/00/0047	47/00/0047	47/00/0047	47/00/0047	47/00/0047
Date Sampled Type of sample		17/02/2017 Water	17/02/2017 Water	17/02/2017 Water	17/02/2017 Water	17/02/2017 Water
Date extracted	-	20/02/2017	20/02/2017	20/02/2017	20/02/2017	20/02/2017
Date analysed	-	21/02/2017	21/02/2017	21/02/2017	21/02/2017	21/02/2017
Dichlorodifluoromethane	μg/L	<10	<10	<10	<10	<10
Chloromethane	μg/L	<10	<10	<10	<10	<10
Vinyl Chloride	μg/L	<10	<10	<10	<10	<10
Bromomethane	μg/L	<10	<10	<10	<10	<10
Chloroethane	μg/L	<10	<10	<10	<10	<10
Trichlorofluoromethane	μg/L	<10	<10	<10	<10	<10
1,1-Dichloroethene	μg/L	<1	<1	<1	<1	<1
Trans-1,2-dichloroethene	μg/L	<1	<1	<1	<1	<1
1,1-dichloroethane	μg/L	<1	<1	<1	<1	<1
Cis-1,2-dichloroethene	μg/L	<1	<1	<1	<1	<1
Bromochloromethane	μg/L	<1	<1	<1	<1	<1
Chloroform	μg/L	<1	<1	<1	<1	<1
2,2-dichloropropane	μg/L	<1	<1	<1	<1	<1
1,2-dichloroethane	μg/L	<1	<1	<1	<1	<1
1,1,1-trichloroethane	μg/L	<1	<1	<1	<1	<1
1,1-dichloropropene	μg/L	<1	<1	<1	<1	<1
Cyclohexane	μg/L	<1	<1	<1	<1	5
Carbon tetrachloride	μg/L	<1	<1	<1	<1	<1
Benzene	μg/L	<1	<1	<1	<1	200
Dibromomethane	μg/L	<1	<1	<1	<1	<1
1,2-dichloropropane	μg/L	<1	<1	<1	<1	<1
Trichloroethene	μg/L	<1	<1	<1	<1	<1
Bromodichloromethane	μg/L	<1	<1	<1	<1	<1
trans-1,3-dichloropropene	μg/L	<1	<1	<1	<1	<1
cis-1,3-dichloropropene	μg/L	<1	<1	<1	<1	<1
1,1,2-trichloroethane	μg/L	<1	<1	<1	<1	<1
Toluene		<1	<1	<1	<1	2
	μg/L	<1 <1	<1 <1	<1	<1 <1	<1
1,3-dichloropropane	μg/L					
Dibromochloromethane	μg/L	<1	<1	<1	<1	<1
1,2-dibromoethane	μg/L	<1	<1	<1	<1	<1
Tetrachloroethene	μg/L	<1	<1	<1	<1	<1
1,1,1,2-tetrachloroethane	μg/L	<1	<1	<1	<1	<1
Chlorobenzene	μg/L	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	<1	<1	<1	<1	<1
Bromoform	μg/L	<1	<1	<1	<1	<1
m+p-xylene	μg/L	<2	<2	<2	<2	<2
Styrene	μg/L	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	μg/L	<1	<1	<1	<1	<1
o-xylene	μg/L	<1	<1	<1	<1	<1

VOCs in water						
Our Reference:	UNITS	162123-1	162123-2	162123-3	162123-4	162123-5
Your Reference		BMW401	BMW403	BMW404	AMW205	ABH2105
	-					
Date Sampled		17/02/2017	17/02/2017	17/02/2017	17/02/2017	17/02/2017
Type of sample		Water	Water	Water	Water	Water
1,2,3-trichloropropane	μg/L	<1	<1	<1	<1	<1
Isopropylbenzene	μg/L	<1	<1	<1	<1	3
Bromobenzene	μg/L	<1	<1	<1	<1	<1
n-propyl benzene	μg/L	<1	<1	<1	<1	3
2-chlorotoluene	μg/L	<1	<1	<1	<1	<1
4-chlorotoluene	μg/L	<1	<1	<1	<1	<1
1,3,5-trimethyl benzene	μg/L	<1	<1	<1	<1	<1
Tert-butyl benzene	μg/L	<1	<1	<1	<1	<1
1,2,4-trimethyl benzene	μg/L	<1	<1	<1	<1	<1
1,3-dichlorobenzene	μg/L	<1	<1	<1	<1	<1
Sec-butyl benzene	μg/L	<1	<1	<1	<1	<1
1,4-dichlorobenzene	μg/L	<1	<1	<1	<1	<1
4-isopropyl toluene	μg/L	<1	<1	<1	<1	<1
1,2-dichlorobenzene	μg/L	<1	<1	<1	<1	<1
n-butyl benzene	μg/L	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	μg/L	<1	<1	<1	<1	<1
1,2,4-trichlorobenzene	μg/L	<1	<1	<1	<1	<1
Hexachlorobutadiene	μg/L	<1	<1	<1	<1	<1
1,2,3-trichlorobenzene	μg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	97	95	97	97	98
Surrogate toluene-d8	%	98	95	96	95	96
Surrogate 4-BFB	%	98	97	101	99	98

	1				
VOCs in water	LINITO	400400.0	400400 7	400400.0	400400.0
Our Reference: Your Reference	UNITS	162123-6 ABH202	162123-7 ABH2100	162123-8 AMW203	162123-9 QAQC1
Tour Reference	-	ABI 1202	ABI 12 100	AIVIVV203	QAQCI
Date Sampled		17/02/2017	17/02/2017	17/02/2017	17/02/2017
Type of sample		Water	Water	Water	Water
Date extracted	-	20/02/2017	20/02/2017	20/02/2017	20/02/2017
Date analysed	-	21/02/2017	21/02/2017	21/02/2017	21/02/2017
Dichlorodifluoromethane	μg/L	<10	<10	<10	<10
Chloromethane	μg/L	<10	<10	<10	<10
Vinyl Chloride	μg/L	<10	<10	<10	<10
Bromomethane	μg/L	<10	<10	<10	<10
Chloroethane	μg/L	<10	<10	<10	<10
Trichlorofluoromethane	μg/L	<10	<10	<10	<10
1,1-Dichloroethene	μg/L	<1	<1	<1	<1
Trans-1,2-dichloroethene	μg/L	<1	<1	<1	<1
1,1-dichloroethane	μg/L	<1	<1	<1	<1
Cis-1,2-dichloroethene	μg/L	<1	<1	<1	<1
Bromochloromethane	μg/L	<1	<1	<1	<1
Chloroform	μg/L	<1	<1	<1	<1
2,2-dichloropropane	μg/L	<1	<1	<1	<1
1,2-dichloroethane	μg/L	<1	<1	<1	<1
1,1,1-trichloroethane	μg/L	<1	<1	<1	<1
1,1-dichloropropene	μg/L	<1	<1	<1	<1
Cyclohexane	μg/L	<1	<1	<1	<1
Carbon tetrachloride	μg/L	<1	<1	<1	<1
Benzene	μg/L	<1	<1	<1	<1
Dibromomethane	μg/L	<1	<1	<1	<1
1,2-dichloropropane	μg/L	<1	<1	<1	<1
Trichloroethene	μg/L	<1	<1	<1	<1
Bromodichloromethane	μg/L	<1	<1	<1	<1
trans-1,3-dichloropropene	µg/∟ µg/L	<1	<1	<1	<1
cis-1,3-dichloropropene	µg/∟ µg/L	<1	<1	<1	<1
1,1,2-trichloroethane	µg/∟ µg/L	<1	<1	<1	<1
Toluene	µg/∟ µg/L	<1	<1	<1	<1
1,3-dichloropropane	µg/∟ µg/L	<1	<1	<1	<1
Dibromochloromethane	µg/∟ µg/L	<1	<1	<1	<1
1,2-dibromoethane	μg/L μg/L	<1 <1	<1	<1	<1
Tetrachloroethene	μg/L μg/L	<1 <1	<1	<1	<1
1,1,1,2-tetrachloroethane	μg/L μg/L	<1 <1	<1	<1	<1
Chlorobenzene	μg/L μg/L	<1 <1	<1	<1	<1
Ethylbenzene	μg/L μg/L	<1 <1	<1	<1	<1
Bromoform	μg/L μg/L	<1 <1	<1	<1	<1
		<1 <2	<1 <2	<1 <2	<1 <2
m+p-xylene	μg/L				
Styrene	μg/L	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	μg/L	<1	<1	<1	<1
o-xylene	μg/L	<1	<1	<1	<1
1,2,3-trichloropropane	μg/L	<1	<1	<1	<1

VOCs in water Our Reference: Your Reference	UNITS	162123-6 ABH202	162123-7 ABH2100	162123-8 AMW203	162123-9 QAQC1
Date Sampled Type of sample		17/02/2017 Water	17/02/2017 Water	17/02/2017 Water	17/02/2017 Water
Isopropylbenzene	μg/L	<1	<1	<1	<1
Bromobenzene	μg/L	<1	<1	<1	<1
n-propyl benzene	μg/L	<1	<1	<1	<1
2-chlorotoluene	μg/L	<1	<1	<1	<1
4-chlorotoluene	μg/L	<1	<1	<1	<1
1,3,5-trimethyl benzene	μg/L	<1	<1	<1	<1
Tert-butyl benzene	μg/L	<1	<1	<1	<1
1,2,4-trimethyl benzene	μg/L	<1	<1	<1	<1
1,3-dichlorobenzene	μg/L	<1	<1	<1	<1
Sec-butyl benzene	μg/L	<1	<1	<1	<1
1,4-dichlorobenzene	μg/L	<1	<1	<1	<1
4-isopropyl toluene	μg/L	<1	<1	<1	<1
1,2-dichlorobenzene	μg/L	<1	<1	<1	<1
n-butyl benzene	μg/L	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	μg/L	<1	<1	<1	<1
1,2,4-trichlorobenzene	μg/L	<1	<1	<1	<1
Hexachlorobutadiene	μg/L	<1	<1	<1	<1
1,2,3-trichlorobenzene	μg/L	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	97	96	97	97
Surrogate toluene-d8	%	97	94	95	96
Surrogate 4-BFB	%	99	101	100	97

vTRH(C6-C10)/BTEXNinWater						
Our Reference:	UNITS	162123-1	162123-2	162123-3	162123-4	162123-5
Your Reference		BMW401	BMW403	BMW404	AMW205	ABH2105
	-	47/00/0047	4=/00/004=	4=/00/004=	47/00/0047	4=/00/004=
Date Sampled		17/02/2017	17/02/2017	17/02/2017	17/02/2017	17/02/2017
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	20/02/2017	20/02/2017	20/02/2017	20/02/2017	20/02/2017
Date analysed	-	21/02/2017	21/02/2017	21/02/2017	21/02/2017	21/02/2017
TRHC6 - C9	μg/L	<10	<10	<10	<10	260
TRHC6 - C10	μg/L	<10	<10	<10	<10	260
TRHC6 - C10 less BTEX (F1)	μg/L	<10	<10	<10	<10	54
Benzene	μg/L	<1	<1	<1	<1	200
Toluene	μg/L	<1	<1	<1	<1	2
Ethylbenzene	μg/L	<1	<1	<1	<1	<1
m+p-xylene	μg/L	<2	<2	<2	<2	<2
o-xylene	μg/L	<1	<1	<1	<1	<1
Naphthalene	μg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	97	95	97	97	98
Surrogate toluene-d8	%	98	95	96	95	96
Surrogate 4-BFB	%	98	97	101	99	98

vTRH(C6-C10)/BTEXNinWater						
Our Reference:	UNITS	162123-6	162123-7	162123-8	162123-9	162123-10
Your Reference		ABH202	ABH2100	AMW203	QAQC1	TS
	-					
Date Sampled		17/02/2017	17/02/2017	17/02/2017	17/02/2017	17/02/2017
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	20/02/2017	20/02/2017	20/02/2017	20/02/2017	20/02/2017
Date analysed	-	21/02/2017	21/02/2017	21/02/2017	21/02/2017	21/02/2017
TRHC6 - C9	μg/L	<10	<10	<10	<10	[NA]
TRHC6 - C10	μg/L	<10	<10	<10	<10	[NA]
TRHC6 - C10 less BTEX (F1)	μg/L	<10	<10	<10	<10	[NA]
Benzene	μg/L	<1	<1	<1	<1	82%
Toluene	μg/L	<1	<1	<1	<1	92%
Ethylbenzene	μg/L	<1	<1	<1	<1	94%
m+p-xylene	μg/L	<2	<2	<2	<2	94%
o-xylene	μg/L	<1	<1	<1	<1	96%
Naphthalene	μg/L	<1	<1	<1	<1	[NA]
Surrogate Dibromofluoromethane	%	97	96	97	97	100
Surrogate toluene-d8	%	97	94	95	96	100
Surrogate 4-BFB	%	99	101	100	97	103

vTRH(C6-C10)/BTEXNinWater		
Our Reference:	UNITS	162123-11
Your Reference		TB
	-	
Date Sampled		17/02/2017
Type of sample		Water
Date extracted	-	20/02/2017
Date analysed	-	21/02/2017
TRHC6 - C9	μg/L	<10
TRHC6 - C10	μg/L	<10
TRHC6 - C10 less BTEX (F1)	μg/L	<10
Benzene	μg/L	<1
Toluene	μg/L	<1
Ethylbenzene	μg/L	<1
m+p-xylene	μg/L	<2
o-xylene	μg/L	<1
Naphthalene	μg/L	<1
Surrogate Dibromofluoromethane	%	101
Surrogate toluene-d8	%	100
Surrogate 4-BFB	%	96

			I	I		1
svTRH (C10-C40) in Water						
Our Reference:	UNITS	162123-1	162123-2	162123-3	162123-4	162123-5
Your Reference		BMW401	BMW403	BMW404	AMW205	ABH2105
	-					
Date Sampled		17/02/2017	17/02/2017	17/02/2017	17/02/2017	17/02/2017
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	20/02/2017	20/02/2017	20/02/2017	20/02/2017	20/02/2017
Date analysed	-	21/02/2017	21/02/2017	21/02/2017	20/02/2017	20/02/2017
TRHC10 - C14	μg/L	<50	<50	<50	<50	<50
TRHC 15 - C28	μg/L	<100	<100	<100	<100	<100
TRHC29 - C36	μg/L	<100	<100	<100	<100	<100
TRH>C10 - C16	μg/L	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	μg/L	<50	<50	<50	<50	<50
TRH>C16 - C34	μg/L	<100	<100	<100	<100	<100
TRH>C34 - C40	μg/L	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	86	71	83	79	75

svTRH (C10-C40) in Water					
Our Reference:	UNITS	162123-6	162123-7	162123-8	162123-9
Your Reference		ABH202	ABH2100	AMW203	QAQC1
	-				
Date Sampled		17/02/2017	17/02/2017	17/02/2017	17/02/2017
Type of sample		Water	Water	Water	Water
Date extracted	-	20/02/2017	20/02/2017	20/02/2017	20/02/2017
Date analysed	-	20/02/2017	20/02/2017	21/02/2017	21/02/2017
TRHC10 - C14	μg/L	<50	<50	<50	<50
TRHC 15 - C28	μg/L	<100	<100	<100	<100
TRHC29 - C36	μg/L	<100	<100	<100	<100
TRH>C10 - C16	μg/L	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	μg/L	<50	<50	<50	<50
TRH>C16 - C34	μg/L	<100	<100	<100	<100
TRH>C34 - C40	μg/L	<100	<100	<100	<100
Surrogate o-Terphenyl	%	77	82	80	90

PAHs in Water						
Our Reference:	UNITS	162123-1	162123-2	162123-3	162123-4	162123-5
Your Reference		BMW401	BMW403	BMW404	AMW205	ABH2105
Date Sampled Type of sample		17/02/2017 Water	17/02/2017 Water	17/02/2017 Water	17/02/2017 Water	17/02/2017 Water
Date extracted	-	20/02/2017	20/02/2017	20/02/2017	20/02/2017	20/02/2017
Date analysed	-	21/02/2017	21/02/2017	21/02/2017	21/02/2017	21/02/2017
Naphthalene	μg/L	<1	<1	<1	<1	<1
Acenaphthylene	μg/L	<1	<1	<1	<1	<1
Acenaphthene	μg/L	<1	<1	<1	<1	<1
Fluorene	μg/L	<1	<1	<1	<1	<1
Phenanthrene	μg/L	<1	<1	<1	<1	<1
Anthracene	μg/L	<1	<1	<1	<1	<1
Fluoranthene	μg/L	<1	<1	<1	<1	<1
Pyrene	μg/L	<1	<1	<1	<1	<1
Benzo(a)anthracene	μg/L	<1	<1	<1	<1	<1
Chrysene	μg/L	<1	<1	<1	<1	<1
Benzo(b,j+k)fluoranthene	μg/L	<2	<2	<2	<2	<2
Benzo(a)pyrene	μg/L	<1	<1	<1	<1	<1
Indeno(1,2,3-c,d)pyrene	μg/L	<1	<1	<1	<1	<1
Dibenzo(a,h)anthracene	μg/L	<1	<1	<1	<1	<1
Benzo(g,h,i)perylene	μg/L	<1	<1	<1	<1	<1
Benzo(a)pyrene TEQ	μg/L	<5	<5	<5	<5	<5
Total+ve PAH's	μg/L	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	97	73	75	74	79

PAHs in Water					
Our Reference:	UNITS	162123-6	162123-7	162123-8	162123-9
Your Reference		ABH202	ABH2100	AMW203	QAQC1
	-				
Date Sampled		17/02/2017	17/02/2017	17/02/2017	17/02/2017
Type of sample		Water	Water	Water	Water
Date extracted	-	20/02/2017	20/02/2017	20/02/2017	20/02/2017
Date analysed	-	21/02/2017	21/02/2017	21/02/2017	21/02/2017
Naphthalene	μg/L	<1	<1	<1	<1
Acenaphthylene	μg/L	<1	<1	<1	<1
Acenaphthene	μg/L	<1	<1	<1	<1
Fluorene	μg/L	<1	<1	<1	<1
Phenanthrene	μg/L	<1	<1	<1	<1
Anthracene	μg/L	<1	<1	<1	<1
Fluoranthene	μg/L	<1	<1	<1	<1
Pyrene	μg/L	<1	<1	<1	<1
Benzo(a)anthracene	μg/L	<1	<1	<1	<1
Chrysene	μg/L	<1	<1	<1	<1
Benzo(b,j+k)fluoranthene	μg/L	<2	<2	<2	<2
Benzo(a)pyrene	μg/L	<1	<1	<1	<1
Indeno(1,2,3-c,d)pyrene	μg/L	<1	<1	<1	<1
Dibenzo(a,h)anthracene	μg/L	<1	<1	<1	<1
Benzo(g,h,i)perylene	μg/L	<1	<1	<1	<1
Benzo(a)pyrene TEQ	μg/L	<5	<5	<5	<5
Total +ve PAH's	μg/L	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	90	88	94	88

OCP in water						
Our Reference:	UNITS	162123-1	162123-2	162123-3	162123-4	162123-5
Your Reference		BMW401	BMW403	BMW404	AMW205	ABH2105
	-					
Date Sampled		17/02/2017	17/02/2017	17/02/2017	17/02/2017	17/02/2017
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	20/02/2017	20/02/2017	20/02/2017	20/02/2017	20/02/2017
Date analysed	-	21/02/2017	21/02/2017	21/02/2017	21/02/2017	21/02/2017
HCB	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
alpha-BHC	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
gamma-BHC	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
beta-BHC	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Heptachlor	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
delta-BHC	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Aldrin	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Heptachlor Epoxide	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
gamma-Chlordane	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
alpha-Chlordane	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Endosulfan I	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
pp-DDE	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Dieldrin	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
pp-DDD	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Endosulfan II	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
pp-DDT	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin Aldehyde	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Endosulfan Sulphate	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Methoxychlor	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Surrogate TCMX	%	133	101	136	110	128

OCP in water					
Our Reference:	UNITS	162123-6	162123-7	162123-8	162123-9
Your Reference		ABH202	ABH2100	AMW203	QAQC1
Data Canada d	-	47/00/0047	47/00/0047	47/00/0047	47/00/0047
Date Sampled Type of sample		17/02/2017 Water	17/02/2017 Water	17/02/2017 Water	17/02/2017 Water
Date extracted	-	20/02/2017	20/02/2017	20/02/2017	20/02/2017
Date analysed	-	21/02/2017	21/02/2017	21/02/2017	21/02/2017
HCB	μg/L	<0.2	<0.2	<0.2	<0.2
alpha-BHC	μg/L	<0.2	<0.2	<0.2	<0.2
gamma-BHC	μg/L	<0.2	<0.2	<0.2	<0.2
beta-BHC	μg/L	<0.2	<0.2	<0.2	<0.2
Heptachlor	μg/L	<0.2	<0.2	<0.2	<0.2
delta-BHC	μg/L	<0.2	<0.2	<0.2	<0.2
Aldrin	μg/L	<0.2	<0.2	<0.2	<0.2
Heptachlor Epoxide	μg/L	<0.2	<0.2	<0.2	<0.2
gamma-Chlordane	μg/L	<0.2	<0.2	<0.2	<0.2
alpha-Chlordane	μg/L	<0.2	<0.2	<0.2	<0.2
Endosulfan I	μg/L	<0.2	<0.2	<0.2	<0.2
pp-DDE	μg/L	<0.2	<0.2	<0.2	<0.2
Dieldrin	μg/L	<0.2	<0.2	<0.2	<0.2
Endrin	μg/L	<0.2	<0.2	<0.2	<0.2
pp-DDD	μg/L	<0.2	<0.2	<0.2	<0.2
Endosulfan II	μg/L	<0.2	<0.2	<0.2	<0.2
pp-DDT	μg/L	<0.2	<0.2	<0.2	<0.2
Endrin Aldehyde	μg/L	<0.2	<0.2	<0.2	<0.2
Endosulfan Sulphate	μg/L	<0.2	<0.2	<0.2	<0.2
Methoxychlor	μg/L	<0.2	<0.2	<0.2	<0.2
Surrogate TCMX	%	117	126	120	129

	T					
OP Pesticides in water						
Our Reference:	UNITS	162123-1	162123-2	162123-3	162123-4	162123-5
Your Reference		BMW401	BMW403	BMW404	AMW205	ABH2105
	-					
Date Sampled		17/02/2017	17/02/2017	17/02/2017	17/02/2017	17/02/2017
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	20/02/2017	20/02/2017	20/02/2017	20/02/2017	20/02/2017
Date analysed	-	21/02/2017	21/02/2017	21/02/2017	21/02/2017	21/02/2017
Azinphos-methyl (Guthion)	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos ethyl	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyriphos	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyriphos-methyl	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Diazinon	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Dichlorovos	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Dimethoate	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Ethion	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Fenitrothion	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Ronnel	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Surrogate TCMX	%	133	101	136	110	128

OP Pesticides in water Our Reference: Your Reference	UNITS	162123-6 ABH202	162123-7 ABH2100	162123-8 AMW203	162123-9 QAQC1
Date Sampled Type of sample		17/02/2017 Water	17/02/2017 Water	17/02/2017 Water	17/02/2017 Water
Date extracted	-	20/02/2017	20/02/2017	20/02/2017	20/02/2017
Date analysed	-	21/02/2017	21/02/2017	21/02/2017	21/02/2017
Azinphos-methyl (Guthion)	μg/L	<0.2	<0.2	<0.2	<0.2
Bromophos ethyl	μg/L	<0.2	<0.2	<0.2	<0.2
Chlorpyriphos	μg/L	<0.2	<0.2	<0.2	<0.2
Chlorpyriphos-methyl	μg/L	<0.2	<0.2	<0.2	<0.2
Diazinon	μg/L	<0.2	<0.2	<0.2	<0.2
Dichlorovos	μg/L	<0.2	<0.2	<0.2	<0.2
Dimethoate	μg/L	<0.2	<0.2	<0.2	<0.2
Ethion	μg/L	<0.2	<0.2	<0.2	<0.2
Fenitrothion	μg/L	<0.2	<0.2	<0.2	<0.2
Malathion	μg/L	<0.2	<0.2	<0.2	<0.2
Parathion	μg/L	<0.2	<0.2	<0.2	<0.2
Ronnel	μg/L	<0.2	<0.2	<0.2	<0.2
Surrogate TCMX	%	117	126	120	129

PCBs in Water						
Our Reference:	UNITS	162123-1	162123-2	162123-3	162123-4	162123-5
Your Reference		BMW401	BMW403	BMW404	AMW205	ABH2105
Date Sampled	-	17/02/2017	17/02/2017	17/02/2017	17/02/2017	17/02/2017
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	20/02/2017	20/02/2017	20/02/2017	20/02/2017	20/02/2017
Date analysed	-	21/02/2017	21/02/2017	21/02/2017	21/02/2017	21/02/2017
Aroclor 1016	μg/L	<2	<2	<2	<2	<2
Aroclor 1221	μg/L	<2	<2	<2	<2	<2
Aroclor 1232	μg/L	<2	<2	<2	<2	<2
Aroclor 1242	μg/L	<2	<2	<2	<2	<2
Aroclor 1248	μg/L	<2	<2	<2	<2	<2
Aroclor 1254	μg/L	<2	<2	<2	<2	<2
Aroclor 1260	μg/L	<2	<2	<2	<2	<2
Surrogate TCLMX	%	133	101	136	110	128

PCBs in Water					
Our Reference:	UNITS	162123-6	162123-7	162123-8	162123-9
Your Reference		ABH202	ABH2100	AMW203	QAQC1
Date Sampled Type of sample		17/02/2017 Water	17/02/2017 Water	17/02/2017 Water	17/02/2017 Water
Date extracted	-	20/02/2017	20/02/2017	20/02/2017	20/02/2017
Date analysed	-	21/02/2017	21/02/2017	21/02/2017	21/02/2017
Aroclor 1016	μg/L	<2	<2	<2	<2
Aroclor 1221	μg/L	<2	<2	<2	<2
Aroclor 1232	μg/L	<2	<2	<2	<2
Aroclor 1242	μg/L	<2	<2	<2	<2
Aroclor 1248	μg/L	<2	<2	<2	<2
Aroclor 1254	μg/L	<2	<2	<2	<2
Aroclor 1260	μg/L	<2	<2	<2	<2
Surrogate TCLMX	%	117	126	120	129

HM in water - dissolved						
Our Reference:	UNITS	162123-1	162123-2	162123-3	162123-4	162123-5
Your Reference		BMW401	BMW403	BMW404	AMW205	ABH2105
Date Sampled Type of sample		17/02/2017 Water	17/02/2017 Water	17/02/2017 Water	17/02/2017 Water	17/02/2017 Water
Date prepared	-	20/02/2017	20/02/2017	20/02/2017	20/02/2017	20/02/2017
Date analysed	-	20/02/2017	20/02/2017	20/02/2017	20/02/2017	20/02/2017
Arsenic-Dissolved	μg/L	14	3	8	4	4
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	μg/L	<1	<1	3	1	<1
Copper-Dissolved	μg/L	3	1	<1	<1	<1
Lead-Dissolved	μg/L	<1	<1	<1	<1	<1
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	μg/L	<1	1	1	2	<1
Zinc-Dissolved	μg/L	4	1	1	<1	5

HM in water - dissolved					
Our Reference:	UNITS	162123-6	162123-7	162123-8	162123-9
Your Reference		ABH202	ABH2100	AMW203	QAQC1
	-				
Date Sampled		17/02/2017	17/02/2017	17/02/2017	17/02/2017
Type of sample		Water	Water	Water	Water
Date prepared	-	20/02/2017	20/02/2017	20/02/2017	20/02/2017
Date analysed	-	20/02/2017	20/02/2017	20/02/2017	20/02/2017
Arsenic-Dissolved	μg/L	9	14	32	32
Cadmium-Dissolved	μg/L	<0.1	0.4	<0.1	<0.1
Chromium-Dissolved	μg/L	6	4	<1	<1
Copper-Dissolved	μg/L	1	3	<1	<1
Lead-Dissolved	μg/L	<1	7	<1	<1
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	μg/L	83	17	<1	<1
Zinc-Dissolved	μg/L	14	8	<1	<1

Ion Balance						
Our Reference:	UNITS	162123-1	162123-2	162123-3	162123-4	162123-5
Your Reference		BMW401	BMW403	BMW404	AMW205	ABH2105
	-					
Date Sampled		17/02/2017	17/02/2017	17/02/2017	17/02/2017	17/02/2017
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	17/02/2017	17/02/2017	17/02/2017	17/02/2017	17/02/2017
Date analysed	-	17/02/2017	17/02/2017	17/02/2017	17/02/2017	17/02/2017
Calcium - Dissolved	mg/L	110	82	230	230	97
Potassium - Dissolved	mg/L	12	23	120	36	8.8
Sodium - Dissolved	mg/L	36	250	3,500	630	84
Magnesium - Dissolved	mg/L	14	24	300	66	16
Hydroxide Alkalinity (OH ⁻) as CaCO ₃	mg/L	<5	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO3	mg/L	460	450	320	530	270
Carbonate Alkalinity as CaCO3	mg/L	<5	<5	<5	<5	<5
Total Alkalinity as CaCO3	mg/L	460	450	320	530	270
Sulphate, SO4	mg/L	3	17	650	410	54
Chloride, Cl	mg/L	30	320	5,300	880	140
Ionic Balance	%	-8.1	-3.2	5.8	1.8	-0.86

Ion Balance					
Our Reference:	UNITS	162123-6	162123-7	162123-8	162123-9
Your Reference		ABH202	ABH2100	AMW203	QAQC1
	-				
Date Sampled		17/02/2017	17/02/2017	17/02/2017	17/02/2017
Type of sample		Water	Water	Water	Water
Date prepared	-	17/02/2017	17/02/2017	17/02/2017	17/02/2017
Date analysed	-	17/02/2017	17/02/2017	17/02/2017	17/02/2017
Calcium - Dissolved	mg/L	150	97	300	310
Potassium - Dissolved	mg/L	10	33	230	240
Sodium - Dissolved	mg/L	140	960	7,200	7,300
Magnesium - Dissolved	mg/L	24	42	660	670
Hydroxide Alkalinity (OH ⁻) as CaCO3	mg/L	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO3	mg/L	270	360	370	370
Carbonate Alkalinity as CaCO3	mg/L	<5	<5	<5	<5
Total Alkalinity as CaCO3	mg/L	270	360	370	370
Sulphate, SO4	mg/L	110	340	1,500	1,400
Chloride, CI	mg/L	320	1,400	10,000	9,700
Ionic Balance	%	-2.2	-2.2	9.1	12

Water

20/02/2017

20/02/2017

1

mg/L

Metals in Waters - Acid extractable Our Reference:	UNITS	162123-1	162123-2	162123-3	162123-4	162123-5
Your Reference		BMW401	BMW403	BMW404	AMW205	ABH2105
Date Sampled		17/02/2017	17/02/2017	17/02/2017	17/02/2017	17/02/2017
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	20/02/2017	20/02/2017	20/02/2017	20/02/2017	20/02/2017
Date analysed	-	20/02/2017	20/02/2017	20/02/2017	20/02/2017	20/02/2017
Phosphorus - Total	mg/L	0.8	0.2	1.3	0.2	1.4
Metals in Waters - Acid			T		T	
extractable						
Our Reference:	UNITS	162123-6	162123-7	162123-8	162123-9	
Your Reference		ABH202	ABH2100	AMW203	QAQC1	
Date Sampled		17/02/2017	17/02/2017	17/02/2017	17/02/2017	

Water

20/02/2017

20/02/2017

<0.05

Water

20/02/2017

20/02/2017

0.7

Water

20/02/2017

20/02/2017

0.7

Envirolab Reference: 162123 Revision No: R 01

Type of sample

Date prepared

Date analysed

Phosphorus - Total

Miscellaneous Inorganics						
Our Reference:	UNITS	162123-1	162123-2	162123-3	162123-4	162123-5
Your Reference		BMW401	BMW403	BMW404	AMW205	ABH2105
Date Sampled Type of sample		17/02/2017 Water	17/02/2017 Water	17/02/2017 Water	17/02/2017 Water	17/02/2017 Water
Date prepared	-	17/02/2017	17/02/2017	17/02/2017	17/02/2017	17/02/2017
Date analysed	-	17/02/2017	17/02/2017	17/02/2017	17/02/2017	17/02/2017
Ammonia as N in water	mg/L	0.92	8.0	1.7	1.0	3.0
Total Nitrogen in water	mg/L	1.2	9.2	2.8	2.2	4.1
рН	pH Units	[NA]	7.1	[NA]	7.0	[NA]
Electrical Conductivity	μS/cm	[NA]	1,700	[NA]	3,900	[NA]
Salinity as NaCI*	mg/L	[NA]	1,100	[NA]	2,500	[NA]
Resistivity	ohm m	[NA]	6.0	[NA]	2.6	[NA]
Total Dissolved Solids (grav)	mg/L	[NA]	920	[NA]	2,500	[NA]

Miscellaneous Inorganics					
Our Reference:	UNITS	162123-6	162123-7	162123-8	162123-9
Your Reference		ABH202	ABH2100	AMW203	QAQC1
	-				
Date Sampled		17/02/2017	17/02/2017	17/02/2017	17/02/2017
Type of sample		Water	Water	Water	Water
Date prepared	-	17/02/2017	17/02/2017	17/02/2017	17/02/2017
Date analysed	-	17/02/2017	17/02/2017	17/02/2017	17/02/2017
Ammonia as N in water	mg/L	0.73	0.29	1.1	1.1
Total Nitrogen in water	mg/L	1.8	1.2	1.4	1.3

Method ID	Methodology Summary
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Metals-022	Determination of various metals by ICP-MS.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-020	Determination of various metals by ICP-AES.
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Alternatively determined by colourimetry/turbidity using Discrete Analyer.
Inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 10% ie total anions = total cations +/-10%.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Soils are analysed following a KCI extraction.
Inorg-055/062	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25oC in accordance with APHA 22nd ED 2510 and Rayment & Lyons. Resistivity is calculated from Conductivity.
Inorg-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at 180+/-5°C.

Envirolab Reference: 162123 Revision No: R 01 Page 19 of 32

Client Reference: CES130608-BP PQL QUALITYCONTROL UNITS METHOD Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery VOCs in water Base II Duplicate II % RPD Date extracted 20/02/2 162123-1 20/02/2017 | 21/02/2017 LCS-W1 20/02/2017 017 21/02/2 Date analysed 162123-1 21/02/2017 || 22/02/2017 LCS-W1 21/02/2017 017 Dichlorodifluoromethane μg/L 10 Org-013 <10 162123-1 <10||<10 [NR] [NR] Chloromethane 10 Org-013 <10 162123-1 <10||<10 [NR] [NR] μg/L Vinyl Chloride 10 Org-013 <10 162123-1 <10||<10 [NR] [NR] μg/L Bromomethane μg/L 10 Org-013 <10 162123-1 <10||<10 [NR] [NR] Chloroethane 10 Org-013 <10 162123-1 <10||<10 [NR] [NR] μg/L Trichlorofluoromethane 10 Org-013 <10 162123-1 <10||<10 [NR] [NR] μg/L 1,1-Dichloroethene μg/L 1 Org-013 162123-1 <1||<1 [NR] [NR] <1 μg/L Trans-1,2-1 Org-013 <1 162123-1 <1||<1 [NR] [NR] dichloroethene LCS-W1 1,1-dichloroethane Org-013 162123-1 86% μg/L 1 <1 <1||<1 Cis-1,2-dichloroethene Org-013 <1 162123-1 <1||<1 [NR] [NR] μg/L Bromochloromethane Org-013 162123-1 [NR] [NR] μg/L 1 <1 <1||<1 Chloroform Org-013 162123-1 LCS-W1 93% μg/L 1 <1 <1 || <1 2,2-dichloropropane Org-013 162123-1 <1||<1 [NR] [NR] μg/L 1 <1 μg/L Org-013 162123-1 LCS-W1 97% 1,2-dichloroethane 1 <1 <1||<1 Org-013 162123-1 LCS-W1 102% 1,1,1-trichloroethane μg/L 1 <1 <1 || <1 1,1-dichloropropene μg/L 1 Org-013 <1 162123-1 <1||<1 [NR] [NR] Org-013 162123-1 [NR] Cyclohexane 1 <1 <1||<1 [NR] μg/L Org-013 Carbon tetrachloride μg/L 1 <1 162123-1 <1 || <1 [NR] [NR] Org-013 162123-1 Benzene μg/L 1 <1 <1||<1 [NR] [NR] Org-013 [NR] Dibromomethane 1 <1 162123-1 <1||<1 [NR] μg/L Org-013 1,2-dichloropropane μg/L 1 <1 162123-1 <1 || <1 [NR] [NR] Org-013 162123-1 LCS-W1 Trichloroethene μg/L 1 <1 <1||<1 92% LCS-W1 Bromodichloromethane 1 Org-013 162123-1 98% μg/L <1 <1||<1 trans-1,3μg/L 1 Org-013 <1 162123-1 <1||<1 [NR] [NR] dichloropropene Org-013 [NR] cis-1,3-dichloropropene μg/L 1 <1 162123-1 <1||<1 [NR] [NR] 1 Org-013 162123-1 [NR] 1,1,2-trichloroethane μg/L <1 <1 || <1 Toluene μg/L 1 Org-013 <1 162123-1 <1||<1 [NR] [NR] Org-013 1,3-dichloropropane μg/L 1 <1 162123-1 <1||<1 [NR] [NR] Dibromochloromethane Org-013 162123-1 LCS-W1 103% 1 <1||<1 μg/L <1 1,2-dibromoethane μg/L 1 Org-013 <1 162123-1 <1||<1 [NR] [NR] Org-013 LCS-W1 Tetrachloroethene μg/L 1 <1 162123-1 <1||<1 95% 1,1,1,2-1 Org-013 162123-1 <1||<1 [NR] [NR] μg/L <1 tetrachloroethane Chlorobenzene μg/L 1 Org-013 <1 162123-1 <1||<1 [NR] [NR]

o-xylene µg/L 1

Envirolab Reference: 162123
Revision No: R 01

μg/L

μg/L

μg/L

μg/L

μg/L

1

1

2

1

1

Org-013

Org-013

Org-013

Org-013

Org-013

Org-013

<1

<1

<2

<1

<1

<1

162123-1

162123-1

162123-1

162123-1

162123-1

162123-1

<1||<1

<1||<1

<2||<2

<1||<1

<1||<1

<1||<1

Ethylbenzene

Bromoform

m+p-xylene

Styrene

1,1,2,2-

tetrachloroethane

[NR]

[NR]

[NR]

[NR]

[NR]

[NR]

[NR]

[NR]

[NR]

[NR]

[NR]

[NR]

Client Reference: CES130608-BP									
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	
VOCs in water						Base II Duplicate II %RPD			
1,2,3-trichloropropane	μg/L	1	Org-013	<1	162123-1	<1 <1	[NR]	[NR]	
Isopropylbenzene	μg/L	1	Org-013	<1	162123-1	<1 <1	[NR]	[NR]	
Bromobenzene	μg/L	1	Org-013	<1	162123-1	<1 <1	[NR]	[NR]	
n-propyl benzene	μg/L	1	Org-013	<1	162123-1	<1 <1	[NR]	[NR]	
2-chlorotoluene	μg/L	1	Org-013	<1	162123-1	<1 <1	[NR]	[NR]	
4-chlorotoluene	μg/L	1	Org-013	<1	162123-1	<1 <1	[NR]	[NR]	
1,3,5-trimethyl benzene	μg/L	1	Org-013	<1	162123-1	<1 <1	[NR]	[NR]	
Tert-butyl benzene	μg/L	1	Org-013	<1	162123-1	<1 <1	[NR]	[NR]	
1,2,4-trimethyl benzene	μg/L	1	Org-013	<1	162123-1	<1 <1	[NR]	[NR]	
1,3-dichlorobenzene	μg/L	1	Org-013	<1	162123-1	<1 <1	[NR]	[NR]	
Sec-butyl benzene	μg/L	1	Org-013	<1	162123-1	<1 <1	[NR]	[NR]	
1,4-dichlorobenzene	μg/L	1	Org-013	<1	162123-1	<1 <1	[NR]	[NR]	
4-isopropyl toluene	μg/L	1	Org-013	<1	162123-1	<1 <1	[NR]	[NR]	
1,2-dichlorobenzene	μg/L	1	Org-013	<1	162123-1	<1 <1	[NR]	[NR]	
n-butyl benzene	μg/L	1	Org-013	<1	162123-1	<1 <1	[NR]	[NR]	
1,2-dibromo-3- chloropropane	μg/L	1	Org-013	<1	162123-1	<1 <1	[NR]	[NR]	
1,2,4-trichlorobenzene	μg/L	1	Org-013	<1	162123-1	<1 <1	[NR]	[NR]	
Hexachlorobutadiene	μg/L	1	Org-013	<1	162123-1	<1 <1	[NR]	[NR]	
1,2,3-trichlorobenzene	μg/L	1	Org-013	<1	162123-1	<1 <1	[NR]	[NR]	
Surrogate Dibromofluoromethane	%		Org-013	98	162123-1	97 101 RPD: 4	LCS-W1	109%	
Surrogate toluene-d8	%		Org-013	98	162123-1	98 101 RPD: 3	LCS-W1	111%	
Surrogate 4-BFB	%		Org-013	102	162123-1	98 101 RPD: 3	LCS-W1	102%	

		Cile	nt Referenc	e: Ci	ES130608-BI	-		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXNin Water						Base II Duplicate II %RPD		,
Date extracted	-			20/02/2 017	162123-1	20/02/2017 21/02/2017	LCS-W1	20/02/2017
Date analysed	-			21/02/2 017	162123-1	21/02/2017 22/02/2017	LCS-W1	21/02/2017
TRHC6 - C9	μg/L	10	Org-016	<10	162123-1	<10 <10	LCS-W1	87%
TRHC6 - C10	μg/L	10	Org-016	<10	162123-1	<10 <10	LCS-W1	87%
Benzene	μg/L	1	Org-016	<1	162123-1	<1 <1	LCS-W1	87%
Toluene	μg/L	1	Org-016	<1	162123-1	<1 <1	LCS-W1	91%
Ethylbenzene	μg/L	1	Org-016	<1	162123-1	<1 <1	LCS-W1	84%
m+p-xylene	μg/L	2	Org-016	2	162123-1	<2 <2	LCS-W1	86%
o-xylene	μg/L	1	Org-016	<1	162123-1	<1 <1	LCS-W1	84%
Naphthalene	μg/L	1	Org-013	<1	162123-1	<1 <1	[NR]	[NR]
Surrogate Dibromofluoromethane	%		Org-016	98	162123-1	97 101 RPD: 4	LCS-W1	109%
Surrogate toluene-d8	%		Org-016	98	162123-1	98 101 RPD: 3	LCS-W1	111%
Surrogate 4-BFB	%		Org-016	102	162123-1	98 101 RPD: 3	LCS-W1	102%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Water						Base II Duplicate II %RPD		
Date extracted	-			20/02/2 017	162123-1	20/02/2017 20/02/2017	LCS-W3	20/02/2017
Date analysed	-			20/02/2 017	162123-1	21/02/2017 21/02/2017	LCS-W3	20/02/2017
TRHC10 - C14	μg/L	50	Org-003	<50	162123-1	<50 <50	LCS-W3	98%
TRHC 15 - C28	μg/L	100	Org-003	<100	162123-1	<100 <100	LCS-W3	86%
TRHC29 - C36	μg/L	100	Org-003	<100	162123-1	<100 <100	LCS-W3	84%
TRH>C10 - C16	μg/L	50	Org-003	<50	162123-1	<50 <50	LCS-W3	98%
TRH>C16 - C34	μg/L	100	Org-003	<100	162123-1	<100 <100	LCS-W3	86%
TRH>C34 - C40	μg/L	100	Org-003	<100	162123-1	<100 <100	LCS-W3	84%
Surrogate o-Terphenyl	%		Org-003	85	162123-1	86 90 RPD:5	LCS-W3	102%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Water						Base II Duplicate II %RPD		
Date extracted	-			20/02/2 017	162123-1	20/02/2017 20/02/2017	LCS-W4	20/02/2017
Date analysed	-			21/02/2 017	162123-1	21/02/2017 21/02/2017	LCS-W4	21/02/2017
Naphthalene	1	1	0.00	<1	162123-1	<1 <1	LCS-W4	113%
•	μg/L	1	Org-012	\ \ \		2,11,2,		
Acenaphthylene	μg/L μg/L	1	Org-012 Org-012	<1	162123-1	<1 <1	[NR]	[NR]
-			_					[NR] [NR]
Acenaphthylene	μg/L	1	Org-012	<1	162123-1	<1 <1	[NR]	
Acenaphthylene Acenaphthene	μg/L μg/L	1	Org-012 Org-012	<1 <1	162123-1 162123-1	<1 <1 <1 <1	[NR] [NR]	[NR]
Acenaphthylene Acenaphthene Fluorene	μg/L μg/L μg/L	1 1 1	Org-012 Org-012 Org-012	<1 <1 <1	162123-1 162123-1 162123-1	<1 <1 <1 <1 <1 <1	[NR] [NR] LCS-W4	[NR] 122%
Acenaphthylene Acenaphthene Fluorene Phenanthrene	µg/L µg/L µg/L	1 1 1 1	Org-012 Org-012 Org-012 Org-012	<1 <1 <1 <1	162123-1 162123-1 162123-1 162123-1	<1 <1 <1 <1 <1 <1 <1 <1	[NR] [NR] LCS-W4 LCS-W4	[NR] 122% 115%
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene	µg/L µg/L µg/L µg/L	1 1 1 1	Org-012 Org-012 Org-012 Org-012 Org-012	<1 <1 <1 <1 <1 <1 <1	162123-1 162123-1 162123-1 162123-1 162123-1	<1 <1 <1 <1 <1 <1 <1 <1	[NR] [NR] LCS-W4 LCS-W4 [NR]	[NR] 122% 115% [NR]

Client Reference: CES130608-BP									
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	
PAHs in Water						Base II Duplicate II %RPD			
Chrysene	μg/L	1	Org-012	<1	162123-1	<1 <1	LCS-W4	124%	
Benzo(b,j+k) fluoranthene	μg/L	2	Org-012	2	162123-1	<2 <2	[NR]	[NR]	
Benzo(a)pyrene	μg/L	1	Org-012	<1	162123-1	<1 <1	LCS-W4	125%	
Indeno(1,2,3-c,d)pyrene	μg/L	1	Org-012	<1	162123-1	<1 <1	[NR]	[NR]	
Dibenzo(a,h)anthracene	μg/L	1	Org-012	<1	162123-1	<1 <1	[NR]	[NR]	
Benzo(g,h,i)perylene	μg/L	1	Org-012	<1	162123-1	<1 <1	[NR]	[NR]	
Surrogate p-Terphenyl- d14	%		Org-012	87	162123-1	97 101 RPD:4	LCS-W4	96%	
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %	
OCP in water					Sm#	Page II Dunligate II 0/ DDD		Recovery	
OCP III water						Base II Duplicate II %RPD			
Date extracted	-			20/02/2 017	162123-1	20/02/2017 20/02/2017	LCS-W2	20/02/2017	
Date analysed	-			21/02/2 017	162123-1	21/02/2017 21/02/2017	LCS-W2	21/02/2017	
HCB	μg/L	0.2	Org-005	<0.2	162123-1	<0.2 <0.2	[NR]	[NR]	
alpha-BHC	μg/L	0.2	Org-005	<0.2	162123-1	<0.2 <0.2	LCS-W2	99%	
gamma-BHC	μg/L	0.2	Org-005	<0.2	162123-1	<0.2 <0.2	[NR]	[NR]	
beta-BHC	μg/L	0.2	Org-005	<0.2	162123-1	<0.2 <0.2	LCS-W2	108%	
Heptachlor	μg/L	0.2	Org-005	<0.2	162123-1	<0.2 <0.2	LCS-W2	102%	
delta-BHC	μg/L	0.2	Org-005	<0.2	162123-1	<0.2 <0.2	[NR]	[NR]	
Aldrin	μg/L	0.2	Org-005	<0.2	162123-1	<0.2 <0.2	LCS-W2	101%	
Heptachlor Epoxide	μg/L	0.2	Org-005	<0.2	162123-1	<0.2 <0.2	LCS-W2	105%	
gamma-Chlordane	μg/L	0.2	Org-005	<0.2	162123-1	<0.2 <0.2	[NR]	[NR]	
alpha-Chlordane	μg/L	0.2	Org-005	<0.2	162123-1	<0.2 <0.2	[NR]	[NR]	
Endosulfan I	μg/L	0.2	Org-005	<0.2	162123-1	<0.2 <0.2	[NR]	[NR]	
pp-DDE	μg/L	0.2	Org-005	<0.2	162123-1	<0.2 <0.2	LCS-W2	111%	
Dieldrin	μg/L	0.2	Org-005	<0.2	162123-1	<0.2 <0.2	LCS-W2	115%	
Endrin	μg/L	0.2	Org-005	<0.2	162123-1	<0.2 <0.2	LCS-W2	106%	
pp-DDD	μg/L	0.2	Org-005	<0.2	162123-1	<0.2 <0.2	LCS-W2	119%	
Endosulfan II	μg/L	0.2	Org-005	<0.2	162123-1	<0.2 <0.2	[NR]	[NR]	
pp-DDT	μg/L	0.2	Org-005	<0.2	162123-1	<0.2 <0.2	[NR]	[NR]	
Endrin Aldehyde	μg/L	0.2	Org-005	<0.2	162123-1	<0.2 <0.2	[NR]	[NR]	
Endosulfan Sulphate	μg/L	0.2	Org-005	<0.2	162123-1	<0.2 <0.2	LCS-W2	101%	
Methoxychlor	μg/L	0.2	Org-005	<0.2	162123-1	<0.2 <0.2	[NR]	[NR]	
Surrogate TCMX	%		Org-005	124	162123-1	133 124 RPD:7	LCS-W2	128%	

Client Reference: CES130608-BP									
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	
OP Pesticides in water						Base II Duplicate II %RPD			
Date extracted	-			20/02/2 017	162123-1	20/02/2017 20/02/2017	LCS-W2	20/02/2017	
Date analysed	-			21/02/2 017	162123-1	21/02/2017 21/02/2017	LCS-W2	21/02/2017	
Azinphos-methyl (Guthion)	μg/L	0.2	Org-008	<0.2	162123-1	<0.2 <0.2	[NR]	[NR]	
Bromophos ethyl	μg/L	0.2	Org-008	<0.2	162123-1	<0.2 <0.2	[NR]	[NR]	
Chlorpyriphos	μg/L	0.2	Org-008	<0.2	162123-1	<0.2 <0.2	LCS-W2	78%	
Chlorpyriphos-methyl	μg/L	0.2	Org-008	<0.2	162123-1	<0.2 <0.2	[NR]	[NR]	
Diazinon	μg/L	0.2	Org-008	<0.2	162123-1	<0.2 <0.2	[NR]	[NR]	
Dichlorovos	μg/L	0.2	Org-008	<0.2	162123-1	<0.2 <0.2	LCS-W2	83%	
Dimethoate	μg/L	0.2	Org-008	<0.2	162123-1	<0.2 <0.2	[NR]	[NR]	
Ethion	μg/L	0.2	Org-008	<0.2	162123-1	<0.2 <0.2	LCS-W2	89%	
Fenitrothion	μg/L	0.2	Org-008	<0.2	162123-1	<0.2 <0.2	LCS-W2	98%	
Malathion	μg/L	0.2	Org-008	<0.2	162123-1	<0.2 <0.2	LCS-W2	105%	
Parathion	μg/L	0.2	Org-008	<0.2	162123-1	<0.2 <0.2	LCS-W2	90%	
Ronnel	μg/L	0.2	Org-008	<0.2	162123-1	<0.2 <0.2	LCS-W2	81%	
Surrogate TCMX	%		Org-008	124	162123-1	133 124 RPD:7	LCS-W2	110%	
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	
PCBs in Water						Base II Duplicate II % RPD			
Date extracted	-			20/02/2 017	162123-1	20/02/2017 20/02/2017	LCS-W2	20/02/2017	
Date analysed	-			21/02/2 017	162123-1	21/02/2017 21/02/2017	LCS-W2	21/02/2017	
Aroclor 1016	μg/L	2	Org-006	[NT]	162123-1	<2 <2	[NR]	[NR]	
Aroclor 1221	μg/L	2	Org-006	[NT]	162123-1	<2 <2	[NR]	[NR]	
Aroclor 1232	μg/L	2	Org-006	[NT]	162123-1	<2 <2	[NR]	[NR]	
Aroclor 1242	μg/L	2	Org-006	[NT]	162123-1	<2 <2	[NR]	[NR]	
Aroclor 1248	μg/L	2	Org-006	[NT]	162123-1	<2 <2	[NR]	[NR]	
Aroclor 1254	μg/L	2	Org-006	[NT]	162123-1	<2 <2	LCS-W2	83%	
Aroclor 1260	μg/L	2	Org-006	[NT]	162123-1	<2 <2	[NR]	[NR]	
Surrogate TCLMX	%		Org-006	124	162123-1	133 124 RPD:7	LCS-W2	110%	

Client Reference: CES130608-BP									
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	
HM in water - dissolved						Base II Duplicate II %RPD			
Date prepared	-			20/02/2 017	162123-1	20/02/2017 20/02/2017	LCS-W1	20/02/2017	
Date analysed	-			20/02/2 017	162123-1	20/02/2017 20/02/2017	LCS-W1	20/02/2017	
Arsenic-Dissolved	μg/L	1	Metals-022	<1	162123-1	14 14 RPD:0	LCS-W1	99%	
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	162123-1	<0.1 <0.1	LCS-W1	101%	
Chromium-Dissolved	μg/L	1	Metals-022	<1	162123-1	<1 <1	LCS-W1	99%	
Copper-Dissolved	μg/L	1	Metals-022	<1	162123-1	3 3 RPD:0	LCS-W1	99%	
Lead-Dissolved	μg/L	1	Metals-022	<1	162123-1	<1 <1	LCS-W1	100%	
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	162123-1	<0.05 [N/T]	LCS-W1	96%	
Nickel-Dissolved	μg/L	1	Metals-022	<1	162123-1	<1 <1	LCS-W1	99%	
Zinc-Dissolved	μg/L	1	Metals-022	<1	162123-1	4 4 RPD:0	LCS-W1	97%	
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	
Ion Balance						Base II Duplicate II %RPD			
Date prepared	-			17/02/2 017	162123-1	17/02/2017 17/02/2017	LCS-W1	17/02/2017	
Date analysed	-			17/02/2 017	162123-1	17/02/2017 17/02/2017	LCS-W1	17/02/2017	
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	162123-1	110 110 RPD:0	LCS-W1	99%	
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	162123-1	12 13 RPD:8	LCS-W1	96%	
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	162123-1	36 38 RPD:5	LCS-W1	101%	
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	162123-1	14 14 RPD:0	LCS-W1	98%	
Hydroxide Alkalinity (OH ⁻) as CaCO ₃	mg/L	5	Inorg-006	<5	162123-1	<5 <5	[NR]	[NR]	
Bicarbonate Alkalinity as CaCO3	mg/L	5	Inorg-006	<5	162123-1	460 460 RPD:0	[NR]	[NR]	
Carbonate Alkalinity as CaCO3	mg/L	5	Inorg-006	<5	162123-1	<5 <5	[NR]	[NR]	
Total Alkalinity as CaCO3	mg/L	5	Inorg-006	<5	162123-1	460 460 RPD:0	LCS-W1	105%	
Sulphate, SO4	mg/L	1	Inorg-081	<1	162123-1	3 2 RPD:40	LCS-W1	94%	
Chloride, Cl	mg/L	1	Inorg-081	<1	162123-1	30 28 RPD:7	LCS-W1	102%	
Ionic Balance	%		Inorg-040	[NT]	162123-1	-8.1 -7.5 RPD:-8	[NR]	[NR]	

Client Reference: CES130608-BP PQL QUALITYCONTROL UNITS METHOD Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery Metals in Waters - Acid Base II Duplicate II % RPD extractable Date prepared 20/02/2 162123-1 20/02/2017 | 20/02/2017 LCS-W1 20/02/2017 017 Date analysed 20/02/2 162123-1 20/02/2017 | 20/02/2017 LCS-W1 20/02/2017 017 LCS-W1 Phosphorus - Total mg/L 0.05 Metals-020 < 0.05 162123-1 0.8 | | 0.8 | | RPD: 0 97% QUALITYCONTROL UNITS PQL METHOD Blank Duplicate **Duplicate results** Spike % Spike Sm# Sm# Recovery Miscellaneous Inorganics Base II Duplicate II % RPD 17/02/2 162123-1 17/02/2017 || 17/02/2017 LCS-W1 17/02/2017 Date prepared 017 17/02/2 17/02/2017 || 17/02/2017 LCS-W1 17/02/2017 Date analysed 162123-1 017 Ammonia as N in water 0.005 Inorg-057 <0.005 162123-1 0.92 | 0.93 | RPD: 1 LCS-W1 93% mg/L LCS-W1 Total Nitrogen in water mg/L 0.1 Inorg-<0.1 162123-1 1.2||1.2||RPD:0 98% 055/062 Inorg-001 LCS-W1 pΗ pH Units [NT] [NT] [NT] 102% **Electrical Conductivity** LCS-W1 102% µS/cm 1 Inorg-002 <1 [NT] [NT] Salinity as NaCI* Inorg-002 [NR] [NR] mg/L 1 <1.0 [NT] [NT] Resistivity ohm m 1 Inorg-002 <1.0 [NT] [NT] [NR] [NR] Total Dissolved Solids mg/L 5 Inorg-018 <5 [NT] [NT] LCS-W1 85% (grav) QUALITYCONTROL UNITS Dup. Sm# **Duplicate** Spike Sm# Spike % Recovery svTRH (C10-C40) in Water Base + Duplicate + %RPD Date extracted [NT] [NT] 162123-2 20/02/2017 Date analysed [NT] [NT] 162123-2 21/02/2017 110% TRHC₁₀ - C₁₄ μg/L [NT] [NT] 162123-2 [NT] 162123-2 105% TRHC 15 - C28 [NT] μg/L [NT] [NT] 162123-2 90% TRHC29 - C36 μg/L TRH>C10 - C16 μg/L [NT] [NT] 162123-2 110% μg/L [NT] [NT] 162123-2 105% TRH>C₁₆ - C₃₄ TRH>C34 - C40 μg/L [NT] [NT] 162123-2 90% Surrogate o-Terphenyl % [NT] [NT] 162123-2 71% QUALITYCONTROL UNITS Dup. Sm# **Duplicate** Spike Sm# Spike % Recovery PAHs in Water Base + Duplicate + %RPD Date extracted [NT] [NT] 162123-2 20/02/2017 Date analysed [NT] [NT] 162123-2 21/02/2017

μg/L Acenaphthene [NT] [NT] [NR] [NR] 97% Fluorene [NT] [NT] 162123-2 μg/L Phenanthrene μg/L [NT] [NT] 162123-2 97% Anthracene µg/L [NT] [NT] [NR] [NR] Fluoranthene μg/L [NT] [NT] 162123-2 93% 162123-2 95% Pyrene [NT] [NT] µg/L Envirolab Reference: 162123

[NT]

[NT]

162123-2

[NR]

[NT]

[NT]

R 01 Revision No:

μg/L

μg/L

Naphthalene

Acenaphthylene

95%

[NR]

Client Reference: CES130608-BP									
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery				
PAHs in Water			Base + Duplicate + %RPD						
Benzo(a)anthracene	μg/L	[NT]	[NT]	[NR]	[NR]				
Chrysene	μg/L	[NT]	[NT]	162123-2	93%				
Benzo(b,j+k)fluoranthene	μg/L	[NT]	[NT]	[NR]	[NR]				
Benzo(a)pyrene	μg/L	[NT]	[NT]	162123-2	110%				
Indeno(1,2,3-c,d)pyrene	μg/L	[NT]	[NT]	[NR]	[NR]				
Dibenzo(a,h)anthracene	μg/L	[NT]	[NT]	[NR]	[NR]				
Benzo(g,h,i)perylene	μg/L	[NT]	[NT]	[NR]	[NR]				
Surrogate p-Terphenyl-d14	%	[NT]	[NT]	162123-2	73%				
QUALITYCONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery				
OCP in water			Base + Duplicate + %RPD						
Date extracted	-	[NT]	[NT]	162123-2	20/02/2017				
Date analysed	-	[NT]	[NT]	162123-2	21/02/2017				
HCB	μg/L	[NT]	[NT]	[NR]	[NR]				
alpha-BHC	μg/L	[NT]	[NT]	162123-2	69%				
gamma-BHC	μg/L	[NT]	[NT]	[NR]	[NR]				
beta-BHC	μg/L	[NT]	[NT]	162123-2	74%				
Heptachlor	μg/L	[NT]	[NT]	162123-2	70%				
delta-BHC	μg/L	[NT]	[NT]	[NR]	[NR]				
Aldrin	μg/L	[NT]	[NT]	162123-2	69%				
Heptachlor Epoxide	μg/L	[NT]	[NT]	162123-2	70%				
gamma-Chlordane	μg/L	[NT]	[NT]	[NR]	[NR]				
alpha-Chlordane	μg/L	[NT]	[NT]	[NR]	[NR]				
Endosulfan I	μg/L	[NT]	[NT]	[NR]	[NR]				
pp-DDE	μg/L	[NT]	[NT]	162123-2	78%				
Dieldrin	μg/L	[NT]	[NT]	162123-2	78%				
Endrin	μg/L	[NT]	[NT]	162123-2	118%				
pp-DDD	μg/L	[NT]	[NT]	162123-2	91%				
Endosulfan II	μg/L	[NT]	[NT]	[NR]	[NR]				
pp-DDT	μg/L	[NT]	[NT]	[NR]	[NR]				
Endrin Aldehyde	μg/L	[NT]	[NT]	[NR]	[NR]				
Endosulfan Sulphate	μg/L	[NT]	[NT]	162123-2	81%				
Methoxychlor	μg/L	[NT]	[NT]	[NR]	[NR]				
Surrogate TCMX	%	[NT]	[NT]	162123-2	113%				

		Client Referenc	e: CES130608-BP		
QUALITYCONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery
HM in water - dissolved			Base + Duplicate + %RPD		
Date prepared	-	162123-3	20/02/2017 20/02/2017	162123-2	20/02/2017
Date analysed	-	162123-3	20/02/2017 20/02/2017	162123-2	20/02/2017
Arsenic-Dissolved	μg/L	162123-3	8 [N/T]	162123-2	104%
Cadmium-Dissolved	μg/L	162123-3	<0.1 [N/T]	162123-2	107%
Chromium-Dissolved	μg/L	162123-3	3 [N/T]	162123-2	101%
Copper-Dissolved	μg/L	162123-3	<1 [N/T]	162123-2	95%
Lead-Dissolved	μg/L	162123-3	<1 [N/T]	162123-2	95%
Mercury-Dissolved	μg/L	162123-3	<0.05 <0.05	[NR]	[NR]
Nickel-Dissolved	μg/L	162123-3	1 [N/T]	162123-2	97%
Zinc-Dissolved	μg/L	162123-3	1 [N/T]	162123-2	98%
QUALITYCONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery
Ion Balance			Base + Duplicate + %RPD		
Date prepared	-	[NT]	[NT]	162123-2	17/02/2017
Date analysed	-	[NT]	[NT]	162123-2	17/02/2017
Calcium - Dissolved	mg/L	[NT]	[NT]	162123-2	#
Potassium - Dissolved	mg/L	[NT]	[NT]	162123-2	#
Sodium - Dissolved	mg/L	[NT]	[NT]	162123-2	#
Magnesium - Dissolved	mg/L	[NT]	[NT]	162123-2	70%
Hydroxide Alkalinity (OH ⁻) as CaCO ₃	mg/L	[NT]	[NT]	[NR]	[NR]
Bicarbonate Alkalinity as CaCO3	mg/L	[NT]	[NT]	[NR]	[NR]
Carbonate Alkalinity as CaCO3	mg/L	[NT]	[NT]	[NR]	[NR]
Total Alkalinity as CaCO₃	mg/L	[NT]	[NT]	[NR]	[NR]
Sulphate, SO4	mg/L	[NT]	[NT]	162123-2	121%
Chloride, Cl	mg/L	[NT]	[NT]	162123-2	85%
Ionic Balance	%	[NT]	[NT]	[NR]	[NR]

		Client Referenc	e: CES130608-BP		
QUALITYCONTROL Metals in Waters - Acid extractable	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date prepared	-	[NT]	[NT]	162123-2	20/02/2017
Date analysed	-	[NT]	[NT]	162123-2	20/02/2017
Phosphorus - Total	mg/L	[NT]	[NT]	162123-2	102%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Miscellaneous Inorganics			Base + Duplicate + %RPD		
Date prepared	-	[NT]	[NT]	162123-2	17/02/2017
Date analysed	-	[NT]	[NT]	162123-2	17/02/2017
Ammonia as N in water	mg/L	[NT]	[NT]	162123-2	#
Total Nitrogen in water	mg/L	[NT]	[NT]	162123-2	86%
pН	pH Units	[NT]	[NT]	[NR]	[NR]
Electrical Conductivity	μS/cm	[NT]	[NT]	[NR]	[NR]
Salinity as NaCI*	mg/L	[NT]	[NT]	[NR]	[NR]
Resistivity	ohm m	[NT]	[NT]	[NR]	[NR]
Total Dissolved Solids (grav)	mg/L	[NT]	[NT]	[NR]	[NR]
QUALITY CONTROL OP Pesticides in water	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	162123-3	20/02/2017
Date analysed	-	[NT]	[NT]	162123-3	21/02/2017
Azinphos-methyl (Guthion)	μg/L	[NT]	[NT]	[NR]	[NR]
Bromophos ethyl	μg/L	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos	μg/L	[NT]	[NT]	162123-3	86%
Chlorpyriphos-methyl	μg/L	[NT]	[NT]	[NR]	[NR]
Diazinon	μg/L	[NT]	[NT]	[NR]	[NR]
Dichlorovos	μg/L	[NT]	[NT]	162123-3	89%
Dimethoate	μg/L	[NT]	[NT]	[NR]	[NR]
Ethion	μg/L	[NT]	[NT]	162123-3	87%
Fenitrothion	μg/L	[NT]	[NT]	162123-3	82%
Malathion	μg/L	[NT]	[NT]	162123-3	78%
Parathion	μg/L	[NT]	[NT]	162123-3	75%
Ronnel	μg/L	[NT]	[NT]	162123-3	83%
Surrogate TCMX	%	[NT]	[NT]	162123-3	106%

		Client Referenc	e: CES130608-BP		
QUALITYCONTROL	UNITS	Dup. Sm#	Duplicate 0/ P.P.	Spike Sm#	Spike % Recovery
PCBs in Water			Base + Duplicate + %RPD		
Date extracted	-	[NT]	[NT]	162123-3	20/02/2017
Date analysed	-	[NT]	[NT]	162123-3	21/02/2017
Aroclor 1016	μg/L	[NT]	[NT]	[NR]	[NR]
Aroclor 1221	μg/L	[NT]	[NT]	[NR]	[NR]
Aroclor 1232	μg/L	[NT]	[NT]	[NR]	[NR]
Aroclor 1242	μg/L	[NT]	[NT]	[NR]	[NR]
Aroclor 1248	μg/L	[NT]	[NT]	[NR]	[NR]
Aroclor 1254	μg/L	[NT]	[NT]	162123-3	88%
Aroclor 1260	μg/L	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%	[NT]	[NT]	162123-3	106%
QUALITYCONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery
HM in water - dissolved			Base + Duplicate + %RPD		
Date prepared	-	[NT]	[NT]	162123-4	20/02/2017
Date analysed	-	[NT]	[NT]	162123-4	20/02/2017
Arsenic-Dissolved	μg/L	[NT]	[NT]	[NR]	[NR]
Cadmium-Dissolved	μg/L	[NT]	[NT]	[NR]	[NR]
Chromium-Dissolved	μg/L	[NT]	[NT]	[NR]	[NR]
Copper-Dissolved	μg/L	[NT]	[NT]	[NR]	[NR]
Lead-Dissolved	μg/L	[NT]	[NT]	[NR]	[NR]
Mercury-Dissolved	μg/L	[NT]	[NT]	162123-4	88%
Nickel-Dissolved	μg/L	[NT]	[NT]	[NR]	[NR]
Zinc-Dissolved	μg/L	[NT]	[NT]	[NR]	[NR]

Report Comments:

Ion Balance:

Percent recovery is not possible to report due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

MISC_INORG:

Ammonia as N # Percent recovery is not possible to report due to the high concentration of the compound/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Asbestos ID was analysed by Approved Identifier:

Asbestos ID was authorised by Approved Signatory:

Not applicable for this job

Not applicable for this job

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested

NR: Test not required RPD: Relative Percent Difference NA: Test not required

Envirolab Reference: 162123 Page 31 of 32

Revision No: R 01

Client Reference: CES130608-BP

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Envirolab Reference: 162123 Page 32 of 32

Revision No: R 01

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **ES0805939** Page : 1 of 7

Client : CONSULTING EARTH SCIENTISTS Laboratory : Environmental Division Sydney

Contact : MS KELLY WEIR Contact : Ashwini Sharma

Address : JONES BAY WHARF 19-21, LOWER DECK, SUITE 121, Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

26-32 PIRRAMA ROAD

PYRMONT NSW, AUSTRALIA 2040

 Telephone
 : +61 85692200
 Telephone
 : +61-2-8784 8555

 Facsimile
 : +61 02 95524399
 Facsimile
 : +61-2-8784 8500

Order number : ----

 C-O-C number
 : 128651
 Date Samples Received
 : 30-APR-2008

 Sampler
 : K.WEIR/LJ
 Issue Date
 : 08-MAY-2008

Site : AREA B

No. of samples received : 2

Quote number : SY/096/08 No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Hoa Nguyen		Inorganics
Pabi Subba	Senior Organic Chemist (Volatile)	Inorganics
Pabi Subba	Senior Organic Chemist (Volatile)	Organics
PHALAK INTHAKESONE	Organics Co-ordinator	Inorganics
PHALAK INTHAKESONE	Organics Co-ordinator	Organics
Sarah Millington	Senior Inorganic Chemist	Inorganics

Page : 3 of 7 Work Order : ES0805939

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

Page : 4 of 7 Work Order : ES0805939

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

	Client sample ID		280408-14-KW	290408-41-KW	 		
	Cli	ient samplir	ng date / time	28-APR-2008 15:00	29-APR-2008 15:00	 	
Compound	CAS Number	LOR	Unit	ES0805939-001	ES0805939-002	 	
EA055: Moisture Content							
^ Moisture Content (dried @ 103°C)		1.0	%	19.0	23.5	 	
EG005T: Total Metals by ICP-AES							
Arsenic	7440-38-2	5	mg/kg	11	56	 	
Cadmium	7440-43-9	1	mg/kg	<1	<1	 	
Chromium	7440-47-3	2	mg/kg	4	72	 	
Copper	7440-50-8	5	mg/kg	<5	133	 	
Lead	7439-92-1	5	mg/kg	<5	268	 	
Nickel	7440-02-0	2	mg/kg	<2	3	 	
Zinc	7440-66-6	5	mg/kg	<5	111	 	
EG035T: Total Mercury by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	0.3	 	
EP066: Polychlorinated Biphenyls (PCB)							
Total Polychlorinated biphenyls		0.10	mg/kg		<0.10	 	
EP068A: Organochlorine Pesticides (OC)							
alpha-BHC	319-84-6	0.05	mg/kg		<0.05	 	
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg		<0.05	 	
beta-BHC	319-85-7	0.05	mg/kg		<0.05	 	
gamma-BHC	58-89-9	0.05	mg/kg		<0.05	 	
delta-BHC	319-86-8	0.05	mg/kg		<0.05	 	
Heptachlor	76-44-8	0.05	mg/kg		<0.05	 	
Aldrin	309-00-2	0.05	mg/kg		<0.05	 	
Heptachlor epoxide	1024-57-3	0.05	mg/kg		<0.05	 	
trans-Chlordane	5103-74-2	0.05	mg/kg		<0.05	 	
alpha-Endosulfan	959-98-8	0.05	mg/kg		<0.05	 	
cis-Chlordane	5103-71-9	0.05	mg/kg		<0.05	 	
Dieldrin	60-57-1	0.05	mg/kg		<0.05	 	
4.4`-DDE	72-55-9	0.05	mg/kg		0.10	 	
Endrin	72-20-8	0.05	mg/kg		<0.05	 	
beta-Endosulfan	33213-65-9	0.05	mg/kg		<0.05	 	
4.4`-DDD	72-54-8	0.05	mg/kg		<0.05	 	
Endrin aldehyde	7421-93-4	0.05	mg/kg		<0.05	 	
Endosulfan sulfate	1031-07-8	0.05	mg/kg		<0.05	 	
4.4`-DDT	50-29-3	0.2	mg/kg		<0.2	 	
Endrin ketone	53494-70-5	0.05	mg/kg		<0.05	 	
Methoxychlor	72-43-5	0.2	mg/kg		<0.2	 	
EP068B: Organophosphorus Pesticides (O	P)						
Dichlorvos	62-73-7	0.05	mg/kg		<0.05	 	

Page : 5 of 7
Work Order : ES0805939

Client : CONSULTING EARTH SCIENTISTS

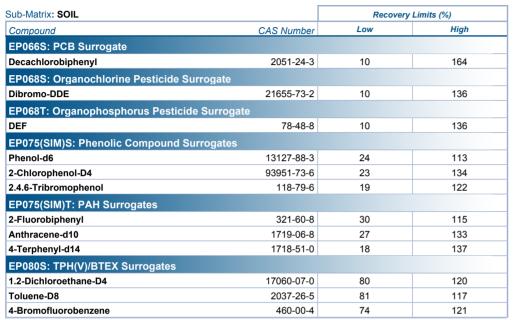
Project : CES050706-BCC

Sub-Matrix: SOIL		Clie	ent sample ID	280408-14-KW	290408-41-KW	 	
	CI	ient samplii	ng date / time	28-APR-2008 15:00	29-APR-2008 15:00	 	
Compound	CAS Number	LOR	Unit	ES0805939-001	ES0805939-002	 	
EP068B: Organophosphorus Pesticid							
Demeton-S-methyl	919-86-8	0.05	mg/kg		<0.05	 	
Monocrotophos	6923-22-4	0.2	mg/kg		<0.2	 	
Dimethoate	60-51-5	0.05	mg/kg		<0.05	 	
Diazinon	333-41-5	0.05	mg/kg		<0.05	 	
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg		<0.05	 	
Parathion-methyl	298-00-0	0.2	mg/kg		<0.2	 	
Malathion	121-75-5	0.05	mg/kg		<0.05	 	
Fenthion	55-38-9	0.05	mg/kg		<0.05	 	
Chlorpyrifos	2921-88-2	0.05	mg/kg		<0.05	 	
Parathion	56-38-2	0.2	mg/kg		<0.2	 	
Pirimphos-ethyl	23505-41-1	0.05	mg/kg		<0.05	 	
Chlorfenvinphos	470-90-6	0.05	mg/kg		<0.05	 	
Bromophos-ethyl	4824-78-6	0.05	mg/kg		<0.05	 	
Fenamiphos	22224-92-6	0.05	mg/kg		<0.05	 	
Prothiofos	34643-46-4	0.05	mg/kg		<0.05	 	
Ethion	563-12-2	0.05	mg/kg		<0.05	 	
Carbophenothion	786-19-6	0.05	mg/kg		<0.05	 	
Azinphos Methyl	86-50-0	0.05	mg/kg		<0.05	 	
EP075(SIM)B: Polynuclear Aromatic H	lydrocarbons						
Naphthalene	91-20-3	0.5	mg/kg		<0.5	 	
Acenaphthylene	208-96-8	0.5	mg/kg		<0.5	 	
Acenaphthene	83-32-9	0.5	mg/kg		<0.5	 	
Fluorene	86-73-7	0.5	mg/kg		<0.5	 	
Phenanthrene	85-01-8	0.5	mg/kg		<0.5	 	
Anthracene	120-12-7	0.5	mg/kg		<0.5	 	
Fluoranthene	206-44-0	0.5	mg/kg		0.6	 	
Pyrene	129-00-0	0.5	mg/kg		0.6	 	
Benz(a)anthracene	56-55-3	0.5	mg/kg		<0.5	 	
Chrysene	218-01-9	0.5	mg/kg		<0.5	 	
Benzo(b)fluoranthene	205-99-2	0.5	mg/kg		<0.5	 	
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg		<0.5	 	
Benzo(a)pyrene	50-32-8	0.5	mg/kg		<0.5	 	
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg		<0.5	 	
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg		<0.5	 	
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg		<0.5	 	
EP080/071: Total Petroleum Hydrocar	bons						
C6 - C9 Fraction		10	mg/kg	<10	<10	 	
C10 - C14 Fraction		50	mg/kg	<50	<50	 	
			-				Camphell Brothers Limited Company

Page : 6 of 7
Work Order : ES0805939

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC


Sub-Matrix: SOIL		Cli	ent sample ID	280408-14-KW	290408-41-KW						
	Cli	ent sampli	ing date / time	28-APR-2008 15:00	29-APR-2008 15:00						
Compound	CAS Number	LOR	Unit	ES0805939-001	ES0805939-002						
EP080/071: Total Petroleum Hy	drocarbons - Continued										
C15 - C28 Fraction		100	mg/kg	<100	<100						
C29 - C36 Fraction		100	mg/kg	<100	<100						
EP080: BTEX											
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2						
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5						
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5						
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5						
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5						
EP066S: PCB Surrogate											
Decachlorobiphenyl	2051-24-3	0.1	%		94.0						
EP068S: Organochlorine Pestic	cide Surrogate										
Dibromo-DDE	21655-73-2	0.1	%		129						
EP068T: Organophosphorus Pe	esticide Surrogate										
DEF	78-48-8	0.1	%		103						
EP075(SIM)S: Phenolic Compo	und Surrogates										
Phenol-d6	13127-88-3	0.1	%		106						
2-Chlorophenol-D4	93951-73-6	0.1	%		94.3						
2.4.6-Tribromophenol	118-79-6	0.1	%		89.0						
EP075(SIM)T: PAH Surrogates											
2-Fluorobiphenyl	321-60-8	0.1	%		97.7						
Anthracene-d10	1719-06-8	0.1	%		104						
4-Terphenyl-d14	1718-51-0	0.1	%		93.8						
EP080S: TPH(V)/BTEX Surroga	tes										
1.2-Dichloroethane-D4	17060-07-0	0.1	%	93.2	97.1						
Toluene-D8	2037-26-5	0.1	%	94.0	95.5						
4-Bromofluorobenzene	460-00-4	0.1	%	97.6	100						

Page : 7 of 7 Work Order : ES0805939

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

Surrogate Control Limits

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **ES0806132** Page : 1 of 11

Client : CONSULTING EARTH SCIENTISTS Laboratory : Environmental Division Sydney

Contact : MS ANGELA MAROYA Contact : Ashwini Sharma

Address : JONES BAY WHARF 19-21, LOWER DECK, SUITE 121, Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

26-32 PIRRAMA ROAD

PYRMONT NSW, AUSTRALIA 2040

 Telephone
 : +61 85692200
 Telephone
 : +61-2-8784 8555

 Facsimile
 : +61 02 95524399
 Facsimile
 : +61-2-8784 8500

Project : CES050706-BCC : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number : ----

 C-O-C number
 : 128653
 Date Samples Received
 : 05-MAY-2008

 Sampler
 : LJ, KW
 Issue Date
 : 15-MAY-2008

Site : AREA B

Quote number : SY/096/08 No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

No. of samples received

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

: 2

Signatories	Position	Accreditation Category
Celine Conceicao	Spectroscopist	Inorganics
Edwandy Fadjar	Senior Organic Chemist	Inorganics
Edwandy Fadjar	Senior Organic Chemist	Organics
Hoa Nguyen		Inorganics
Marc Centner	Technical Manager	Organics
Pabi Subba	Senior Organic Chemist (Volatile)	Inorganics
Pabi Subba	Senior Organic Chemist (Volatile)	Organics

Page : 3 of 11 Work Order : ES0806132

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

•

EG005T: LCS recovery for Cd, Zn and Ni falls outside ALS Dynamic Control Limit. However, it is within the acceptance criteria based on ALS DQO. No further action is required.

• EP202: Sample required dilution due to matrix interferences. LOR values have been adjusted accordingly.

Page : 4 of 11 Work Order : ES0806132

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

ALS

Sub-Matrix: SOIL		Cli	ent sample ID	010508-124-KW	010508-138-KW	 	
oub Matrix. Cole	Cli		ing date / time	01-MAY-2008 15:00	01-MAY-2008 15:00	 	
				ES0806132-001	ES0806132-002		
Compound	CAS Number	LOR	Unit	E30006132-001	E30006132-002	 	
EA002 : pH (Soils)							
pH Value		0.1	pH Unit		6.1	 	
EA010: Conductivity							
Electrical Conductivity @ 25°C		1	μS/cm		53	 	
EA014 Total Soluble Salts							
^ Total Soluble Salts		5	mg/kg		171	 	
EA055: Moisture Content							
^ Moisture Content (dried @ 103°C)		1.0	%	7.0	22.4	 	
ED040S: Soluble Major Anions							
Sulphate as SO4 2-	14808-79-8	10	mg/kg		10	 	
ED045G: Chloride Discrete analyser							
Chloride	16887-00-6	10	mg/kg		<10	 	
EG005T: Total Metals by ICP-AES							
Arsenic	7440-38-2	5	mg/kg	<5	<5	 	
Cadmium	7440-43-9	1	mg/kg	<1	<1	 	
Chromium	7440-47-3	2	mg/kg	2	3	 	
Copper	7440-50-8	5	mg/kg	6	6	 	
Lead	7439-92-1	5	mg/kg	12	18	 	
Nickel	7440-02-0	2	mg/kg	<2	<2	 	
Zinc	7440-66-6	5	mg/kg	7	18	 	
EG035T: Total Recoverable Mercury by FI	IMS						
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	 	
EK055: Ammonia as N							
Ammonia as N	7664-41-7	20	mg/kg	<20		 	
EK057G: Nitrite as N by Discrete Analyser	r						
Nitrite as N (Sol.)		0.100	mg/kg	<0.100		 	
EK058G: Nitrate as N by Discrete Analyse	er						
^ Nitrate as N (Sol.)		0.100	mg/kg	<0.100		 	
EK059G: NOX as N by Discrete Analyser							
Nitrite + Nitrate as N (Sol.)		0.100	mg/kg	<0.100		 	
EK061G: Total Kjeldahl Nitrogen as N							
Total Kjeldahl Nitrogen as N		20	mg/kg	720		 	
EK062: Total Nitrogen as N							
^ Total Nitrogen as N		20	mg/kg	720		 	
EK067G: Total Phosphorus as P by Discre	ete Analyser						
Total Phosphorus as P		2	mg/kg	268		 	
EP066: Polychlorinated Biphenyls (PCB)							
El 000. Folychiorinated biphenyls (FCB)							Campball Prothers Limited Compan

Page : 5 of 11 : ES0806132 Work Order

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

Sub-Matrix: SOIL		Clie	ent sample ID	010508-124-KW	010508-138-KW	 	
	CI	ient samplir	ng date / time	01-MAY-2008 15:00	01-MAY-2008 15:00	 	
Compound	CAS Number	LOR	Unit	ES0806132-001	ES0806132-002	 	
EP066: Polychlorinated Biphenyls (Po	CB) - Continued						
Total Polychlorinated biphenyls		0.10	mg/kg	<0.10	<0.10	 	
EP068A: Organochlorine Pesticides (OC)						
alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	 	
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	 	
beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	 	
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	 	
delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	 	
Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	 	
Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	 	
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	 	
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	 	
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	 	
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	 	
Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	 	
1.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	 	
Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	 	
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	 	
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	 	
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	 	
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	 	
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	 	
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	 	
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	 	
EP068B: Organophosphorus Pesticid	les (OP)						
Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	 	
Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	 	
Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	 	
Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	 	
Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	 	
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	 	
Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	 	
Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	 	
Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	 	
Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	 	
Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	 	
Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	 	
Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05	 	
Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05	 	

Page : 6 of 11 Work Order : ES0806132

Client : CONSULTING EARTH SCIENTISTS

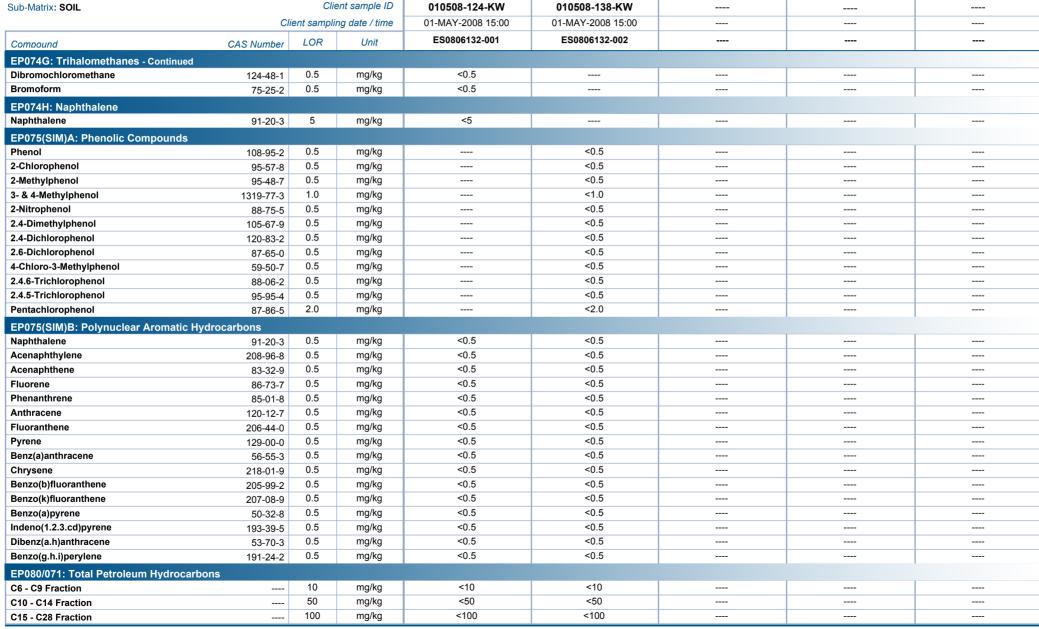
Project : CES050706-BCC

Sub-Matrix: SOIL		Clie	ent sample ID	010508-124-KW	010508-138-KW			
	C	ient samplii	ng date / time	01-MAY-2008 15:00	01-MAY-2008 15:00			
O		LOR	Unit	ES0806132-001	ES0806132-002			
Compound	CAS Number	LUK	Onit		20000102002			
EP068B: Organophosphorus Pesti		0.05		10.05	10.05			
Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05			
Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05			
Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05			
Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05			
Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05			
EP074A: Monocyclic Aromatic Hyd								
Benzene	71-43-2	0.2	mg/kg	<0.2				
Toluene	108-88-3	0.5	mg/kg	<0.5				
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5				
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5				
Styrene	100-42-5	0.5	mg/kg	<0.5				
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5				
Isopropylbenzene	98-82-8	0.5	mg/kg	<0.5				
n-Propylbenzene	103-65-1	0.5	mg/kg	<0.5				
1.3.5-Trimethylbenzene	108-67-8	0.5	mg/kg	<0.5				
sec-Butylbenzene	135-98-8	0.5	mg/kg	<0.5				
1.2.4-Trimethylbenzene	95-63-6	0.5	mg/kg	<0.5				
tert-Butylbenzene	98-06-6	0.5	mg/kg	<0.5				
p-lsopropyltoluene	99-87-6	0.5	mg/kg	<0.5				
n-Butylbenzene	104-51-8	0.5	mg/kg	<0.5				
EP074B: Oxygenated Compounds								
Vinyl Acetate	108-05-4	5	mg/kg	<5				
2-Butanone (MEK)	78-93-3	5	mg/kg	<5				
4-Methyl-2-pentanone (MIBK)	108-10-1	5	mg/kg	<5				
2-Hexanone (MBK)	591-78-6	5	mg/kg	<5				
EP074C: Sulfonated Compounds								
Carbon disulfide	75-15-0	0.5	mg/kg	<0.5				
EP074D: Fumigants								
2.2-Dichloropropane	594-20-7	0.5	mg/kg	<0.5				
1.2-Dichloropropane	78-87-5	0.5	mg/kg	<0.5				
cis-1.3-Dichloropropylene	10061-01-5	0.5	mg/kg	<0.5				
trans-1.3-Dichloropropylene	10061-02-6	0.5	mg/kg	<0.5				
1.2-Dibromoethane (EDB)	106-93-4	0.5	mg/kg	<0.5				
EP074E: Halogenated Aliphatic Co								
Dichlorodifluoromethane	75-71-8	5	mg/kg	<5				
Chloromethane	74-87-3	5	mg/kg	<5				
Vinyl chloride	75-01-4	5	mg/kg	<5				
	75-01-4	J	9/1/9	.0	<u> </u>	<u> </u>	<u> </u>	

Page : 7 of 11 Work Order : ES0806132

Client : CONSULTING EARTH SCIENTISTS

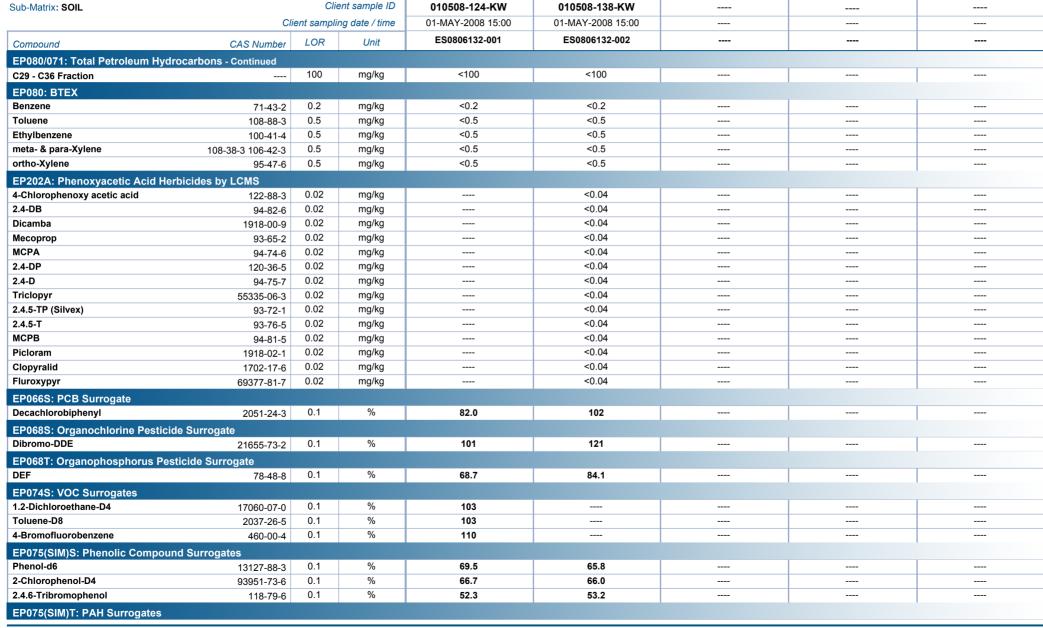
Project : CES050706-BCC



Sub-Matrix: SOIL		Clie	ent sample ID	010508-124-KW	010508-138-KW	 	
	CI		ng date / time	01-MAY-2008 15:00	01-MAY-2008 15:00	 	
				ES0806132-001	ES0806132-002		
Compound	CAS Number	LOR	Unit	E30000132-001	E30000132-002	 	
EP074E: Halogenated Aliphatic Com	pounds - Continued						
Bromomethane	74-83-9	5	mg/kg	<5		 	
Chloroethane	75-00-3	5	mg/kg	<5		 	
Trichlorofluoromethane	75-69-4	5	mg/kg	<5		 	
1.1-Dichloroethene	75-35-4	0.5	mg/kg	<0.5		 	
lodomethane	74-88-4	0.5	mg/kg	<0.5		 	
trans-1.2-Dichloroethene	156-60-5	0.5	mg/kg	<0.5		 	
1.1-Dichloroethane	75-34-3	0.5	mg/kg	<0.5		 	
cis-1.2-Dichloroethene	156-59-2	0.5	mg/kg	<0.5		 	
1.1.1-Trichloroethane	71-55-6	0.5	mg/kg	<0.5		 	
1.1-Dichloropropylene	563-58-6	0.5	mg/kg	<0.5		 	
Carbon Tetrachloride	56-23-5	0.5	mg/kg	<0.5		 	
1.2-Dichloroethane	107-06-2	0.5	mg/kg	<0.5		 	
Trichloroethene	79-01-6	0.5	mg/kg	<0.5		 	
Dibromomethane	74-95-3	0.5	mg/kg	<0.5		 	
1.1.2-Trichloroethane	79-00-5	0.5	mg/kg	<0.5		 	
1.3-Dichloropropane	142-28-9	0.5	mg/kg	<0.5		 	
Tetrachloroethene	127-18-4	0.5	mg/kg	<0.5		 	
1.1.1.2-Tetrachloroethane	630-20-6	0.5	mg/kg	<0.5		 	
trans-1.4-Dichloro-2-butene	110-57-6	0.5	mg/kg	<0.5		 	
cis-1.4-Dichloro-2-butene	1476-11-5	0.5	mg/kg	<0.5		 	
1.1.2.2-Tetrachloroethane	79-34-5	0.5	mg/kg	<0.5		 	
1.2.3-Trichloropropane	96-18-4	0.5	mg/kg	<0.5		 	
Pentachloroethane	76-01-7	0.5	mg/kg	<0.5		 	
1.2-Dibromo-3-chloropropane	96-12-8	0.5	mg/kg	<0.5		 	
Hexachlorobutadiene	87-68-3	0.5	mg/kg	<0.5		 	
EP074F: Halogenated Aromatic Com	pounds						
Chlorobenzene	108-90-7	0.5	mg/kg	<0.5		 	
Bromobenzene	108-86-1	0.5	mg/kg	<0.5		 	
2-Chlorotoluene	95-49-8	0.5	mg/kg	<0.5		 	
4-Chlorotoluene	106-43-4	0.5	mg/kg	<0.5		 	
1.3-Dichlorobenzene	541-73-1	0.5	mg/kg	<0.5		 	
1.4-Dichlorobenzene	106-46-7	0.5	mg/kg	<0.5		 	
1.2-Dichlorobenzene	95-50-1	0.5	mg/kg	<0.5		 	
1.2.4-Trichlorobenzene	120-82-1	0.5	mg/kg	<0.5		 	
1.2.3-Trichlorobenzene	87-61-6	0.5	mg/kg	<0.5		 	
EP074G: Trihalomethanes							
Chloroform	67-66-3	0.5	mg/kg	<0.5		 	
Bromodichloromethane	75-27-4	0.5	mg/kg	<0.5		 	
1 1 1							Campbell Brothers

Page : 8 of 11 Work Order : ES0806132

Client : CONSULTING EARTH SCIENTISTS


Project : CES050706-BCC

Page : 9 of 11 Work Order : ES0806132

Client : CONSULTING EARTH SCIENTISTS

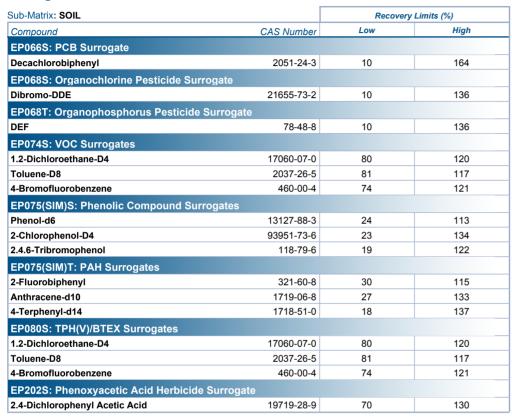
Project : CES050706-BCC

Page : 10 of 11 Work Order : ES0806132

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

ALS


Sub-Matrix: SOIL		Client sample ID			010508-138-KW						
	Client sampling date / time				01-MAY-2008 15:00						
Compound	CAS Number	LOR	Unit	ES0806132-001	ES0806132-002						
EP075(SIM)T: PAH Surrogates - Continued											
2-Fluorobiphenyl	321-60-8	0.1	%	77.4	79.7						
Anthracene-d10	1719-06-8	0.1	%	100	100						
4-Terphenyl-d14	1718-51-0	0.1	%	82.6	85.6						
EP080S: TPH(V)/BTEX Surrogates											
1.2-Dichloroethane-D4	17060-07-0	0.1	%	105	107						
Toluene-D8	2037-26-5	0.1	%	94.9	95.4						
4-Bromofluorobenzene	460-00-4	0.1	%	94.7	102						
EP202S: Phenoxyacetic Acid Herbic	ide Surrogate										
2.4-Dichlorophenyl Acetic Acid	19719-28-9	0.1	%		124						

Page : 11 of 11 Work Order : ES0806132

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

Surrogate Control Limits

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **ES0806313** Page : 1 of 11

Client : CONSULTING EARTH SCIENTISTS Laboratory : Environmental Division Sydney

Contact : MS ANGELA MAROYA Contact : Ashwini Sharma

Address : JONES BAY WHARF 19-21, LOWER DECK, SUITE 121, Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

26-32 PIRRAMA ROAD

PYRMONT NSW, AUSTRALIA 2040

 Telephone
 : +61 85692200
 Telephone
 : +61-2-8784 8555

 Facsimile
 : +61 02 95524399
 Facsimile
 : +61-2-8784 8500

Project : CES050706-BCC : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number : ----

 C-O-C number
 : 128656
 Date Samples Received
 : 07-MAY-2008

 Sampler
 : LJ, KW
 Issue Date
 : 16-MAY-2008

Site : AREA A

No. of samples received : 2

Quote number : SY/096/08 No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ashwini Sharma	Laboratory Manager	Inorganics
Celine Conceicao	Spectroscopist	Inorganics
Edwandy Fadjar	Senior Organic Chemist	Inorganics
Edwandy Fadjar	Senior Organic Chemist	Organics
Hoa Nguyen		Inorganics
Marc Centner	Technical Manager	Organics

Page : 3 of 11 Work Order : ES0806313

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

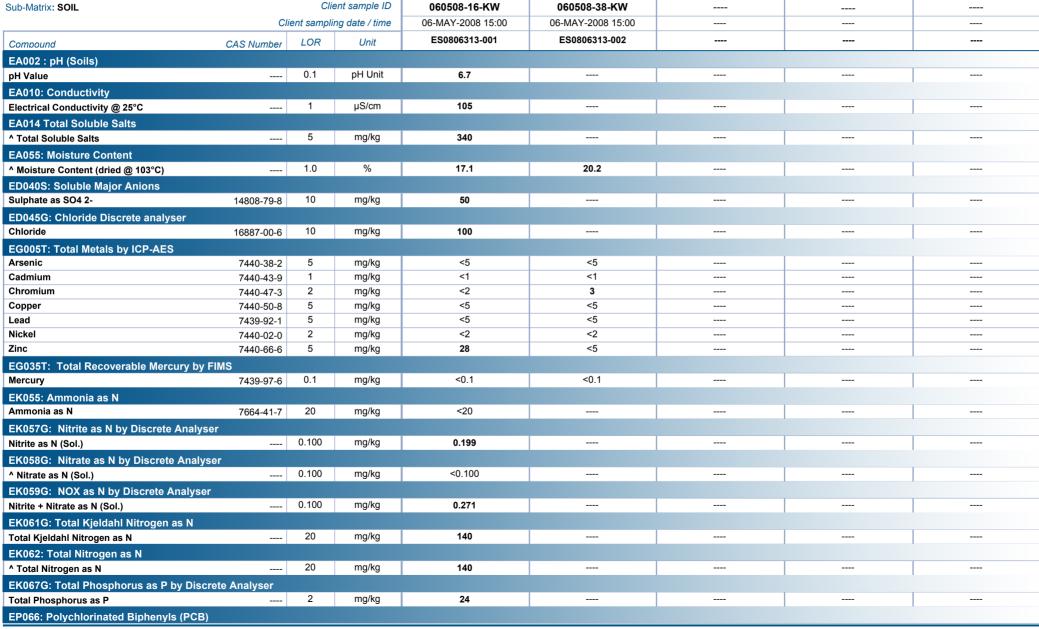
Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number

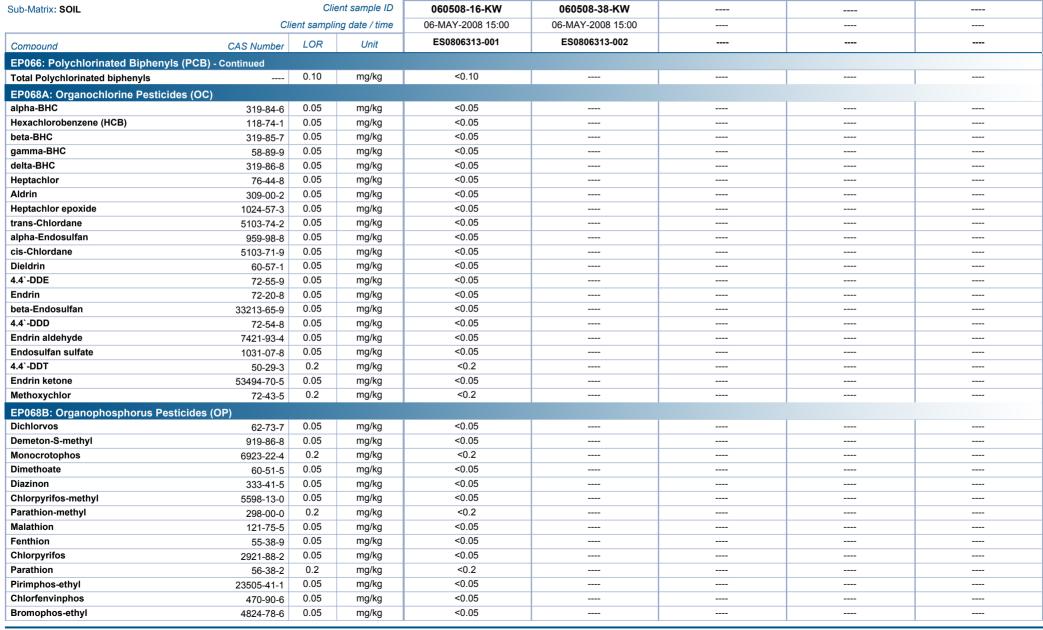
LOR = Limit of reporting


^ = This result is computed from individual analyte detections at or above the level of reporting

- ED040S: Poor precision was obtained on batch ES0806170#21 due to sample heterogeneity. Results have been confirmed by reanalysis.
- EP202: Sample required dilution due to matrix interferences. LOR values have been adjusted accordingly.

Page : 4 of 11 Work Order : ES0806313

Client : CONSULTING EARTH SCIENTISTS


Project : CES050706-BCC

Page : 5 of 11 Work Order : ES0806313

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

Page : 6 of 11 Work Order : ES0806313

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

ALS

Sub-Matrix: SOIL		Clie	ent sample ID	060508-16-KW	060508-38-KW	 	
	CI	ient sampli	ng date / time	06-MAY-2008 15:00	06-MAY-2008 15:00	 	
Compound	CAS Number	LOR	Unit	ES0806313-001	ES0806313-002	 	
EP068B: Organophosphorus Pestic	cides (OP) - Continued						
Fenamiphos	22224-92-6	0.05	mg/kg	<0.05		 	
Prothiofos	34643-46-4	0.05	mg/kg	<0.05		 	
Ethion	563-12-2	0.05	mg/kg	<0.05		 	
Carbophenothion	786-19-6	0.05	mg/kg	<0.05		 	
Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05		 	
EP074A: Monocyclic Aromatic Hydromatic arbons							
Benzene	71-43-2	0.2	mg/kg	<0.2		 	
Toluene	108-88-3	0.5	mg/kg	<0.5		 	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5		 	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5		 	
Styrene	100-42-5	0.5	mg/kg	<0.5		 	
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5		 	
Isopropylbenzene	98-82-8	0.5	mg/kg	<0.5		 	
n-Propylbenzene	103-65-1	0.5	mg/kg	<0.5		 	
1.3.5-Trimethylbenzene	108-67-8	0.5	mg/kg	<0.5		 	
sec-Butylbenzene	135-98-8	0.5	mg/kg	<0.5		 	
1.2.4-Trimethylbenzene	95-63-6	0.5	mg/kg	<0.5		 	
tert-Butylbenzene	98-06-6	0.5	mg/kg	<0.5		 	
p-IsopropyItoluene	99-87-6	0.5	mg/kg	<0.5		 	
n-Butylbenzene	104-51-8	0.5	mg/kg	<0.5		 	
EP074B: Oxygenated Compounds							
Vinyl Acetate	108-05-4	5	mg/kg	<5		 	
2-Butanone (MEK)	78-93-3	5	mg/kg	<5		 	
4-Methyl-2-pentanone (MIBK)	108-10-1	5	mg/kg	<5		 	
2-Hexanone (MBK)	591-78-6	5	mg/kg	<5		 	
EP074C: Sulfonated Compounds							
Carbon disulfide	75-15-0	0.5	mg/kg	<0.5		 	
EP074D: Fumigants							
2.2-Dichloropropane	594-20-7	0.5	mg/kg	<0.5		 	
1.2-Dichloropropane	78-87-5	0.5	mg/kg	<0.5		 	
cis-1.3-Dichloropropylene	10061-01-5	0.5	mg/kg	<0.5		 	
trans-1.3-Dichloropropylene	10061-02-6	0.5	mg/kg	<0.5		 	
1.2-Dibromoethane (EDB)	106-93-4	0.5	mg/kg	<0.5		 	
EP074E: Halogenated Aliphatic Cor	mpounds						
Dichlorodifluoromethane	75-71-8	5	mg/kg	<5		 	
Chloromethane	74-87-3	5	mg/kg	<5		 	
Vinyl chloride	75-01-4	5	mg/kg	<5		 	

Page : 7 of 11 Work Order : ES0806313

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

Sub-Matrix: SOIL		Clie	ent sample ID	060508-16-KW	060508-38-KW	 	
	CI		ng date / time	06-MAY-2008 15:00	06-MAY-2008 15:00	 	
				ES0806313-001	ES0806313-002		
Compound	CAS Number	LOR	Unit	E30000313-001	E30000313-002	 	
EP074E: Halogenated Aliphatic Comp	ounds - Continued						
Bromomethane	74-83-9	5	mg/kg	<5		 	
Chloroethane	75-00-3	5	mg/kg	<5		 	
Trichlorofluoromethane	75-69-4	5	mg/kg	<5		 	
1.1-Dichloroethene	75-35-4	0.5	mg/kg	<0.5		 	
lodomethane	74-88-4	0.5	mg/kg	<0.5		 	
trans-1.2-Dichloroethene	156-60-5	0.5	mg/kg	<0.5		 	
1.1-Dichloroethane	75-34-3	0.5	mg/kg	<0.5		 	
cis-1.2-Dichloroethene	156-59-2	0.5	mg/kg	<0.5		 	
1.1.1-Trichloroethane	71-55-6	0.5	mg/kg	<0.5		 	
1.1-Dichloropropylene	563-58-6	0.5	mg/kg	<0.5		 	
Carbon Tetrachloride	56-23-5	0.5	mg/kg	<0.5		 	
1.2-Dichloroethane	107-06-2	0.5	mg/kg	<0.5		 	
Trichloroethene	79-01-6	0.5	mg/kg	<0.5		 	
Dibromomethane	74-95-3	0.5	mg/kg	<0.5		 	
1.1.2-Trichloroethane	79-00-5	0.5	mg/kg	<0.5		 	
1.3-Dichloropropane	142-28-9	0.5	mg/kg	<0.5		 	
Tetrachloroethene	127-18-4	0.5	mg/kg	<0.5		 	
1.1.1.2-Tetrachloroethane	630-20-6	0.5	mg/kg	<0.5		 	
trans-1.4-Dichloro-2-butene	110-57-6	0.5	mg/kg	<0.5		 	
cis-1.4-Dichloro-2-butene	1476-11-5	0.5	mg/kg	<0.5		 	
1.1.2.2-Tetrachloroethane	79-34-5	0.5	mg/kg	<0.5		 	
1.2.3-Trichloropropane	96-18-4	0.5	mg/kg	<0.5		 	
Pentachloroethane	76-01-7	0.5	mg/kg	<0.5		 	
1.2-Dibromo-3-chloropropane	96-12-8	0.5	mg/kg	<0.5		 	
Hexachlorobutadiene	87-68-3	0.5	mg/kg	<0.5		 	
EP074F: Halogenated Aromatic Comp	oounds						
Chlorobenzene	108-90-7	0.5	mg/kg	<0.5		 	
Bromobenzene	108-86-1	0.5	mg/kg	<0.5		 	
2-Chlorotoluene	95-49-8	0.5	mg/kg	<0.5		 	
4-Chlorotoluene	106-43-4	0.5	mg/kg	<0.5		 	
1.3-Dichlorobenzene	541-73-1	0.5	mg/kg	<0.5		 	
1.4-Dichlorobenzene	106-46-7	0.5	mg/kg	<0.5		 	
1.2-Dichlorobenzene	95-50-1	0.5	mg/kg	<0.5		 	
1.2.4-Trichlorobenzene	120-82-1	0.5	mg/kg	<0.5		 	
1.2.3-Trichlorobenzene	87-61-6	0.5	mg/kg	<0.5		 	
EP074G: Trihalomethanes							
Chloroform	67-66-3	0.5	mg/kg	<0.5		 	
Bromodichloromethane	75-27-4	0.5	mg/kg	<0.5		 	
Bromodichloromethane	75-27-4	0.5	mg/kg	<0.5			Campbell Brothers Lim

Page : 8 of 11 Work Order : ES0806313

: CONSULTING EARTH SCIENTISTS Client

Project : CES050706-BCC



Sub-Matrix: SOIL		Clie	ent sample ID	060508-16-KW	060508-38-KW	 	
	Clie	ent samplii	ng date / time	06-MAY-2008 15:00	06-MAY-2008 15:00	 	
Compound	CAS Number	LOR	Unit	ES0806313-001	ES0806313-002	 	
EP074G: Trihalomethanes - Continued							
Dibromochloromethane	124-48-1	0.5	mg/kg	<0.5		 	
Bromoform	75-25-2	0.5	mg/kg	<0.5		 	
EP074H: Naphthalene							
Naphthalene	91-20-3	5	mg/kg	<5		 	
EP075(SIM)A: Phenolic Compounds							
Phenol	108-95-2	0.5	mg/kg	<0.5		 	
2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5		 	
2-Methylphenol	95-48-7	0.5	mg/kg	<0.5		 	
3- & 4-Methylphenol	1319-77-3	1.0	mg/kg	<1.0		 	
2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5		 	
2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5		 	
2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5		 	
2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5		 	
4-Chloro-3-Methylphenol	59-50-7	0.5	mg/kg	<0.5		 	
2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5		 	
2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5		 	
Pentachlorophenol	87-86-5	2.0	mg/kg	<2.0		 	
EP075(SIM)B: Polynuclear Aromatic Hyd	drocarbons						
Naphthalene	91-20-3	0.5	mg/kg	<0.5		 	
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5		 	
Acenaphthene	83-32-9	0.5	mg/kg	<0.5		 	
Fluorene	86-73-7	0.5	mg/kg	<0.5		 	
Phenanthrene	85-01-8	0.5	mg/kg	<0.5		 	
Anthracene	120-12-7	0.5	mg/kg	<0.5		 	
Fluoranthene	206-44-0	0.5	mg/kg	<0.5		 	
Pyrene	129-00-0	0.5	mg/kg	<0.5		 	
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5		 	
Chrysene	218-01-9	0.5	mg/kg	<0.5		 	
Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5		 	
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5		 	
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5		 	
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5		 	
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5		 	
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5		 	
EP080/071: Total Petroleum Hydrocarbo	ns						
C6 - C9 Fraction		10	mg/kg	<10		 	
C10 - C14 Fraction		50	mg/kg	<50		 	
C15 - C28 Fraction		100	mg/kg	<100		 	

Page : 9 of 11 Work Order : ES0806313

Client : CONSULTING EARTH SCIENTISTS

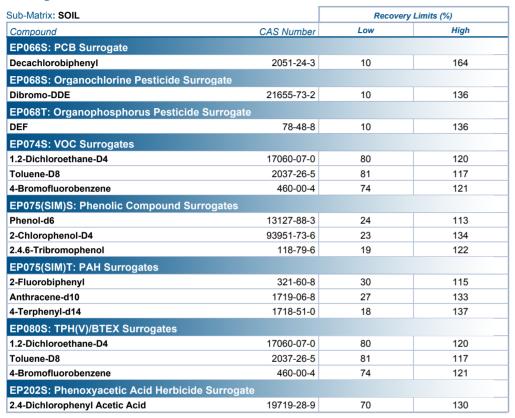
Project : CES050706-BCC

Page : 10 of 11 Work Order : ES0806313

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

ALS


Sub-Matrix: SOIL		Client sample ID		060508-16-KW	060508-38-KW				
	Client sampling date / time			06-MAY-2008 15:00	06-MAY-2008 15:00				
Compound	CAS Number	LOR	Unit	ES0806313-001	ES0806313-002				
EP075(SIM)T: PAH Surrogates - Continued									
2-Fluorobiphenyl	321-60-8	0.1	%	93.6					
Anthracene-d10	1719-06-8	0.1	%	107					
4-Terphenyl-d14	1718-51-0	0.1	%	108					
EP080S: TPH(V)/BTEX Surrogates									
1.2-Dichloroethane-D4	17060-07-0	0.1	%	118					
Toluene-D8	2037-26-5	0.1	%	99.6					
4-Bromofluorobenzene	460-00-4	0.1	%	104					
EP202S: Phenoxyacetic Acid Herbicide	EP202S: Phenoxyacetic Acid Herbicide Surrogate								
2.4-Dichlorophenyl Acetic Acid	19719-28-9	0.1	%	74.8					

Page : 11 of 11 Work Order : ES0806313

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

Surrogate Control Limits

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **ES0806463** Page : 1 of 6

Client : CONSULTING EARTH SCIENTISTS Laboratory : Environmental Division Sydney

Contact : MS KELLY WEIR Contact : Ashwini Sharma

Address : JONES BAY WHARF 19-21, LOWER DECK, SUITE 121, Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

26-32 PIRRAMA ROAD

PYRMONT NSW, AUSTRALIA 2040

 Telephone
 : +61 85692200
 Telephone
 : +61-2-8784 8555

 Facsimile
 : +61 02 95524399
 Facsimile
 : +61-2-8784 8500

Project : CES050706-BCC : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number : ----

 C-O-C number
 : 128602
 Date Samples Received
 : 08-MAY-2008

 Sampler
 : LJ, KW
 Issue Date
 : 16-MAY-2008

Site : AREA A

No. of samples received : 1

Quote number : SY/096/08 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ashwini Sharma	Laboratory Manager	Inorganics
Edwandy Fadjar	Senior Organic Chemist	Inorganics
Edwandy Fadjar	Senior Organic Chemist	Organics
Hoa Nguyen		Inorganics

Page : 3 of 6 Work Order : ES0806463

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

Page : 4 of 6 Work Order : ES0806463

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

ALS

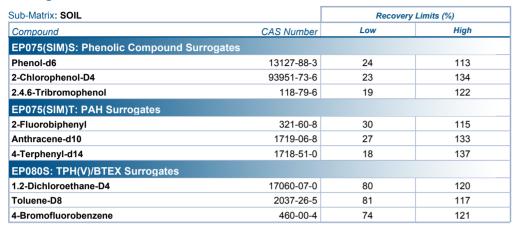
Sub-Matrix: SOIL		Clie	ent sample ID	070508-57-KW	 	
	CI		ng date / time	07-MAY-2008 15:00	 	
				ES0806463-001	 	
	CAS Number	LOR	Unit	L30000403-001	 	
EA055: Moisture Content						
^ Moisture Content (dried @ 103°C)		1.0	%	21.9	 	
EG005T: Total Metals by ICP-AES						
Arsenic	7440-38-2	5	mg/kg	<5	 	
Cadmium	7440-43-9	1	mg/kg	<1	 	
Chromium	7440-47-3	2	mg/kg	2	 	
Copper	7440-50-8	5	mg/kg	6	 	
Lead	7439-92-1	5	mg/kg	9	 	
Nickel	7440-02-0	2	mg/kg	<2	 	
Zinc	7440-66-6	5	mg/kg	8	 	
EG035T: Total Recoverable Mercury by FIM	IS					
Mercury	7439-97-6	0.1	mg/kg	<0.1	 	
EP075(SIM)B: Polynuclear Aromatic Hydroc	arbons					
Naphthalene	91-20-3	0.5	mg/kg	<0.5	 	
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	 	
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	 	
Fluorene	86-73-7	0.5	mg/kg	<0.5	 	
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	 	
Anthracene	120-12-7	0.5	mg/kg	<0.5	 	
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	 	
Pyrene	129-00-0	0.5	mg/kg	<0.5	 	
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	 	
Chrysene	218-01-9	0.5	mg/kg	<0.5	 	
Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5	 	
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	 	
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	 	
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	 	
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	 	
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	 	
EP080/071: Total Petroleum Hydrocarbons						
C6 - C9 Fraction		10	mg/kg	<10	 	
C10 - C14 Fraction		50	mg/kg	<50	 	
C15 - C28 Fraction		100	mg/kg	<100	 	
C29 - C36 Fraction		100	mg/kg	<100	 	
EP080: BTEX						
Benzene	71-43-2	0.2	mg/kg	<0.2	 	
Toluene	108-88-3	0.5	mg/kg	<0.5	 	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	 	
Benzo(a)pyrene Indeno(1.2.3.cd)pyrene Dibenz(a.h)anthracene Benzo(g.h.i)perylene EP080/071: Total Petroleum Hydrocarbons C6 - C9 Fraction C10 - C14 Fraction C15 - C28 Fraction C29 - C36 Fraction EP080: BTEX Benzene Toluene	50-32-8 193-39-5 53-70-3 191-24-2 71-43-2 108-88-3	0.5 0.5 0.5 0.5 10 50 100 100 0.2 0.5	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0.5 <0.5 <0.5 <0.5 <0.5 <10 <50 <100 <100 <0.2 <0.5	 	

Page : 5 of 6 Work Order : ES0806463

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

ALS


Sub-Matrix: SOIL		Cli	ent sample ID	070508-57-KW				
	Client sampling date / time			07-MAY-2008 15:00				
Compound	CAS Number	LOR	Unit	ES0806463-001				
EP080: BTEX - Continued								
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5				
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5				
EP075(SIM)S: Phenolic Compound Surrogates								
Phenol-d6	13127-88-3	0.1	%	91.4				
2-Chlorophenol-D4	93951-73-6	0.1	%	85.4				
2.4.6-Tribromophenol	118-79-6	0.1	%	111				
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.1	%	88.5				
Anthracene-d10	1719-06-8	0.1	%	87.5				
4-Terphenyl-d14	1718-51-0	0.1	%	87.3				
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.1	%	88.6				
Toluene-D8	2037-26-5	0.1	%	91.8				
4-Bromofluorobenzene	460-00-4	0.1	%	83.7				

Page : 6 of 6 Work Order : ES0806463

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

Surrogate Control Limits

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **ES0806519** Page : 1 of 7

Amendment : 1

Client : CONSULTING EARTH SCIENTISTS Laboratory : Environmental Division Sydney

Contact : MS KELLY WEIR Contact : Ashwini Sharma

Address : JONES BAY WHARF 19-21, LOWER DECK, SUITE 121, Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

26-32 PIRRAMA ROAD

PYRMONT NSW, AUSTRALIA 2040

 Telephone
 : +61 85692200
 Telephone
 : +61-2-8784 8555

 Facsimile
 : +61 02 95524399
 Facsimile
 : +61-2-8784 8500

Project : CES050706-BCC QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number : ----

 C-O-C number
 : 128604
 Date Samples Received
 : 09-MAY-2008

 Sampler
 : L.JENKINS, K.WEIR
 Issue Date
 : 26-MAY-2008

Site : AREA A

No. of samples received : 1

Quote number : SY/096/08 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category	
Ashwini Sharma	Laboratory Manager	Inorganics	
Hoa Nguyen		Inorganics	
PHALAK INTHAKESONE	Organics Co-ordinator	Inorganics	
PHALAK INTHAKESONE	Organics Co-ordinator	Organics	

Page : 3 of 7

Work Order : ES0806519 Amendment 1

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

Page : 4 of 7

Dieldrin

4.4`-DDE

4.4`-DDD

4.4`-DDT

beta-Endosulfan

Endrin aldehyde

Endrin ketone

Methoxychlor

Dichlorvos

Endosulfan sulfate

EP068B: Organophosphorus Pesticides (OP)

Endrin

Work Order : ES0806519 Amendment 1

Client · CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.2

< 0.05

< 0.2

< 0.05

60-57-1

72-55-9

72-20-8

72-54-8

33213-65-9

7421-93-4

1031-07-8

53494-70-5

50-29-3

72-43-5

62-73-7

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.2

0.05

0.2

0.05

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

Page : 5 of 7

Work Order : ES0806519 Amendment 1

: CONSULTING EARTH SCIENTISTS Client

Project : CES050706-BCC

Cult Matrice COII		Clin	ent sample ID	000500 405 104								
Sub-Matrix: SOIL			·	080508-125-KW								
	Cli	ent sampli	ng date / time	08-MAY-2008 15:00								
Compound	CAS Number	LOR	Unit	ES0806519-001								
EP068B: Organophosphorus Pestic	P068B: Organophosphorus Pesticides (OP) - Continued											
Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05								
Monocrotophos	6923-22-4	0.2	mg/kg	<0.2								
Dimethoate	60-51-5	0.05	mg/kg	<0.05								
Diazinon	333-41-5	0.05	mg/kg	<0.05								
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05								
Parathion-methyl	298-00-0	0.2	mg/kg	<0.2								
Malathion	121-75-5	0.05	mg/kg	<0.05								
Fenthion	55-38-9	0.05	mg/kg	<0.05								
Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05								
Parathion	56-38-2	0.2	mg/kg	<0.2								
Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05								
Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05								
Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05								
Fenamiphos	22224-92-6	0.05	mg/kg	<0.05								
Prothiofos	34643-46-4	0.05	mg/kg	<0.05								
Ethion	563-12-2	0.05	mg/kg	<0.05								
Carbophenothion	786-19-6	0.05	mg/kg	<0.05								
Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05								
EP075(SIM)B: Polynuclear Aromatic	Hydrocarbons											
Naphthalene	91-20-3	0.5	mg/kg	<0.5								
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5								
Acenaphthene	83-32-9	0.5	mg/kg	<0.5								
Fluorene	86-73-7	0.5	mg/kg	<0.5								
Phenanthrene	85-01-8	0.5	mg/kg	<0.5								
Anthracene	120-12-7	0.5	mg/kg	<0.5								
Fluoranthene	206-44-0	0.5	mg/kg	<0.5								
Pyrene	129-00-0	0.5	mg/kg	<0.5								
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5								
Chrysene	218-01-9	0.5	mg/kg	<0.5								
Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5								
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5								
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5								
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5								
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5								
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5								
EP080/071: Total Petroleum Hydroc	arbons											
C6 - C9 Fraction		10	mg/kg	<10								
C10 - C14 Fraction		50	mg/kg	<50								
	<u>'</u>						A	Campbell Brothers Limited Company				

Page : 6 of 7

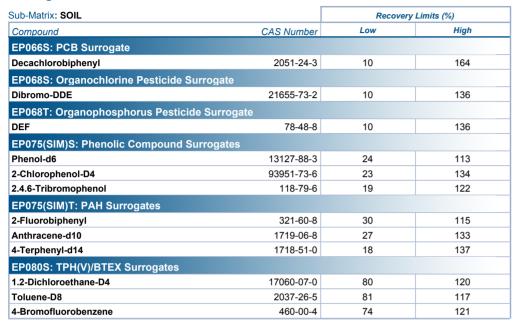
Work Order : ES0806519 Amendment 1

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

ALS

Sub-Matrix: SOIL	Client sample ID			080508-125-KW						
	Cl	ient sampli	ng date / time	08-MAY-2008 15:00						
Compound	CAS Number	LOR	Unit	ES0806519-001						
P080/071: Total Petroleum Hydrocarbons - Continued										
C15 - C28 Fraction		100	mg/kg	<100						
C29 - C36 Fraction		100	mg/kg	<100						
EP080: BTEX										
Benzene	71-43-2	0.2	mg/kg	<0.2						
Toluene	108-88-3	0.5	mg/kg	<0.5						
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5						
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5						
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5						
EP066S: PCB Surrogate										
Decachlorobiphenyl	2051-24-3	0.1	%	94.0						
EP068S: Organochlorine Pesticide	Surrogate									
Dibromo-DDE	21655-73-2	0.1	%	134						
EP068T: Organophosphorus Pesti	cide Surrogate									
DEF	78-48-8	0.1	%	83.7						
EP075(SIM)S: Phenolic Compound	l Surrogates									
Phenol-d6	13127-88-3	0.1	%	79.6						
2-Chlorophenol-D4	93951-73-6	0.1	%	79.4						
2.4.6-Tribromophenol	118-79-6	0.1	%	80.8						
EP075(SIM)T: PAH Surrogates										
2-Fluorobiphenyl	321-60-8	0.1	%	79.8						
Anthracene-d10	1719-06-8	0.1	%	90.2						
4-Terphenyl-d14	1718-51-0	0.1	%	102						
EP080S: TPH(V)/BTEX Surrogates										
1.2-Dichloroethane-D4	17060-07-0	0.1	%	117						
Toluene-D8	2037-26-5	0.1	%	89.4						
4-Bromofluorobenzene	460-00-4	0.1	%	95.8						


Page : 7 of 7

Work Order : ES0806519 Amendment 1

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

Surrogate Control Limits

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

CERTIFICATE OF ANALYSIS

: ES0806519 **Work Order** Page : 1 of 7

: 2 Amendment

Client **CONSULTING EARTH SCIENTISTS** Laboratory : Environmental Division Sydney

Contact : MR LUKE JENKINS : Ashwini Sharma Contact

Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : JONES BAY WHARF 19-21, LOWER DECK, SUITE 121,

26-32 PIRRAMA ROAD

PYRMONT NSW. AUSTRALIA 2040

E-mail : ljenkins@consultingearth.com.au E-mail : Ashwini.Sharma@alsenviro.com

Telephone : +61 85692200 Telephone : +61-2-8784 8555 Facsimile : +61 02 95524399 Facsimile : +61-2-8784 8500

Project : CES050706-BCC QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number

C-O-C number : 128604 **Date Samples Received** : 09-MAY-2008 Sampler : L.JENKINS, K.WEIR Issue Date : 27-MAY-2008

Site : AREA A

: 1 Quote number : SY/096/08 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

No. of samples received

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category	
Ashwini Sharma	Laboratory Manager	Inorganics	
Hoa Nguyen		Inorganics	
PHALAK INTHAKESONE	Organics Co-ordinator	Inorganics	
PHALAK INTHAKESONE	Organics Co-ordinator	Organics	

Page : 3 of 7

Work Order : ES0806519 Amendment 2

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

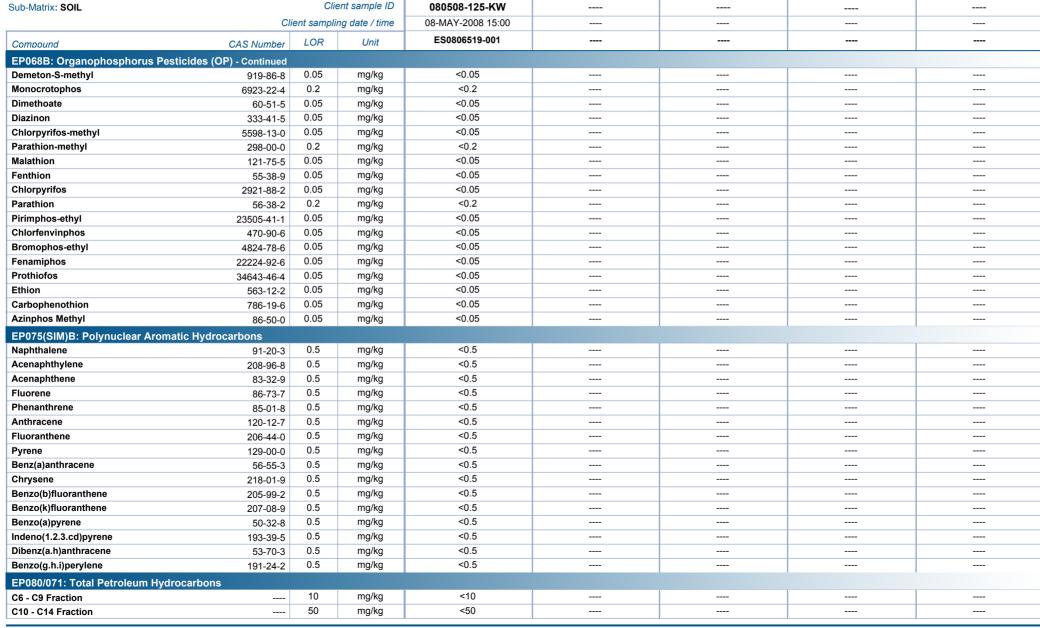
^ = This result is computed from individual analyte detections at or above the level of reporting

Page : 4 of 7

Work Order : ES0806519 Amendment 2

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC


Sub-Matrix: SOIL		Clia	ent sample ID	080508-125-KW						
Sub-Matrix: SOIL	CI		'	08-MAY-2008 15:00						
	Cli	ent sampiii	ng date / time							
Compound	CAS Number	LOR	Unit	ES0806519-001						
EA055: Moisture Content										
^ Moisture Content (dried @ 103°C)		1.0	%	20.2						
EG005T: Total Metals by ICP-AES										
Arsenic	7440-38-2	5	mg/kg	<5						
Cadmium	7440-43-9	1	mg/kg	<1						
Chromium	7440-47-3	2	mg/kg	2						
Copper	7440-50-8	5	mg/kg	<5						
Lead	7439-92-1	5	mg/kg	<5						
Nickel	7440-02-0	2	mg/kg	<2						
Zinc	7440-66-6	5	mg/kg	<5						
EG035T: Total Recoverable Mercury by F	IMS									
Mercury	7439-97-6	0.1	mg/kg	<0.1						
EP066: Polychlorinated Biphenyls (PCB)										
Total Polychlorinated biphenyls		0.10	mg/kg	<0.10						
EP068A: Organochlorine Pesticides (OC)										
alpha-BHC	319-84-6	0.05	mg/kg	<0.05						
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05						
beta-BHC	319-85-7	0.05	mg/kg	<0.05						
gamma-BHC	58-89-9	0.05	mg/kg	<0.05						
delta-BHC	319-86-8	0.05	mg/kg	<0.05						
Heptachlor	76-44-8	0.05	mg/kg	<0.05						
Aldrin	309-00-2	0.05	mg/kg	<0.05						
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05						
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05						
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05						
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05						
Dieldrin	60-57-1	0.05	mg/kg	<0.05						
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05						
Endrin	72-20-8	0.05	mg/kg	<0.05						
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05						
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05						
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05						
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05						
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2						
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05						
Methoxychlor	72-43-5	0.2	mg/kg	<0.2						
EP068B: Organophosphorus Pesticides (OP)									
Dichlorvos	62-73-7	0.05	mg/kg	<0.05						

Page : 5 of 7

Work Order : ES0806519 Amendment 2

Client · CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

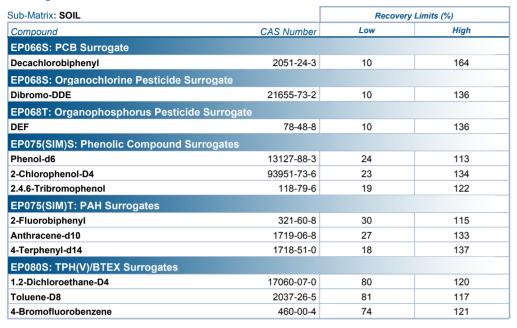
Page : 6 of 7

Work Order : ES0806519 Amendment 2

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

Sub-Matrix: SOIL		Cli	ent sample ID	080508-125-KW							
	Cli	Client sampling date / time									
Compound	CAS Number	LOR	Unit	ES0806519-001							
P080/071: Total Petroleum Hydrocarbons - Continued											
C15 - C28 Fraction		100	mg/kg	<100							
C29 - C36 Fraction		100	mg/kg	<100							
EP080: BTEX											
Benzene	71-43-2	0.2	mg/kg	<0.2							
Toluene	108-88-3	0.5	mg/kg	<0.5							
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5							
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5							
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5							
EP066S: PCB Surrogate											
Decachlorobiphenyl	2051-24-3	0.1	%	94.0							
EP068S: Organochlorine Pesticid	e Surrogate										
Dibromo-DDE	21655-73-2	0.1	%	134							
EP068T: Organophosphorus Pest	ticide Surrogate										
DEF	78-48-8	0.1	%	83.7							
EP075(SIM)S: Phenolic Compoun											
Phenol-d6	13127-88-3	0.1	%	79.6							
2-Chlorophenol-D4	93951-73-6	0.1	%	79.4							
2.4.6-Tribromophenol	118-79-6	0.1	%	80.8							
EP075(SIM)T: PAH Surrogates											
2-Fluorobiphenyl	321-60-8	0.1	%	79.8							
Anthracene-d10	1719-06-8	0.1	%	90.2							
4-Terphenyl-d14	1718-51-0	0.1	%	102							
EP080S: TPH(V)/BTEX Surrogates	s										
1.2-Dichloroethane-D4	17060-07-0	0.1	%	117							
Toluene-D8	2037-26-5	0.1	%	89.4							
4-Bromofluorobenzene	460-00-4	0.1	%	95.8							


Page : 7 of 7

Work Order : ES0806519 Amendment 2

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

Surrogate Control Limits

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **ES0806641** Page : 1 of 6

Client : CONSULTING EARTH SCIENTISTS Laboratory : Environmental Division Sydney

Contact : MS KELLY WEIR Contact : Ashwini Sharma

Address : JONES BAY WHARF 19-21, LOWER DECK, SUITE 121, Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

26-32 PIRRAMA ROAD

PYRMONT NSW, AUSTRALIA 2040

 Telephone
 : +61 85692200
 Telephone
 : +61-2-8784 8555

 Facsimile
 : +61 02 95524399
 Facsimile
 : +61-2-8784 8500

Project : CES050706-BCC QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number : ----

 C-O-C number
 : 130241
 Date Samples Received
 : 13-MAY-2008

 Sampler
 : KW
 Issue Date
 : 21-MAY-2008

Site : AREA A

No. of samples received : 3

Quote number : SY/096/08 No. of samples analysed : 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ashwini Sharma	Laboratory Manager	Inorganics
Hoa Nguyen		Inorganics
Pabi Subba	Senior Organic Chemist (Volatile)	Inorganics
Pabi Subba	Senior Organic Chemist (Volatile)	Organics

Page : 3 of 6

Work Order : ES0806641

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

• LCS recovery for Cadmium falls outside ALS Dynamic Control Limit. However, it is within the acceptance criteria based on ALS DQO. No further action is required.

Page : 4 of 6
Work Order : ES0806641

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

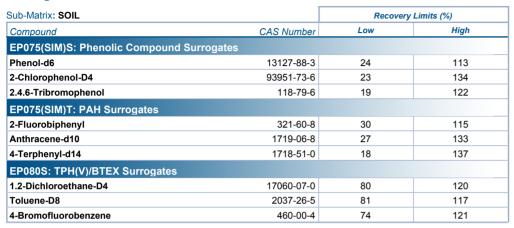
Sub-Matrix: SOIL		Cli	ent sample ID	120508-216-KW	120508-230-KW	120508-260-KW	
	Clie	ent sampli	ng date / time	12-MAY-2008 15:00	12-MAY-2008 15:00	12-MAY-2008 15:00	
Compound	CAS Number	LOR	Unit	ES0806641-001	ES0806641-002	ES0806641-003	
EA055: Moisture Content	CAS Number	LOIT	O/IIIC				
^ Moisture Content (dried @ 103°C)		1.0	%	16.4	22.1	15,2	
		1.0	70	10.4	22.1	10.2	
EG005T: Total Metals by ICP-AES				45	-F	00	
Arsenic	7440-38-2	5	mg/kg	<5 <1	<5	22 <1	
Cadmium	7440-43-9	1	mg/kg		<1		
Chromium	7440-47-3	2	mg/kg	2 <5	<2 <5	2 <5	
Copper	7440-50-8	5 5	mg/kg	<5 <5	<5 <5	<5	
Lead	7439-92-1		mg/kg	<5 <2		<2	
Nickel Zinc	7440-02-0	5	mg/kg	<2 <5	<2 <5	<2 <5	
	7440-66-6	o O	mg/kg	\ 0	νο	νο	
EG035T: Total Recoverable Mercury by							I
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	
EP075(SIM)A: Phenolic Compounds							
Phenol	108-95-2	0.5	mg/kg			<0.5	
2-Chlorophenol	95-57-8	0.5	mg/kg			<0.5	
2-Methylphenol	95-48-7	0.5	mg/kg			<0.5	
3- & 4-Methylphenol	1319-77-3	1.0	mg/kg			<1.0	
2-Nitrophenol	88-75-5	0.5	mg/kg			<0.5	
2.4-Dimethylphenol	105-67-9	0.5	mg/kg			<0.5	
2.4-Dichlorophenol	120-83-2	0.5	mg/kg			<0.5	
2.6-Dichlorophenol	87-65-0	0.5	mg/kg			<0.5	
4-Chloro-3-Methylphenol	59-50-7	0.5	mg/kg			<0.5	
2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg			<0.5	
2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg			<0.5	
Pentachlorophenol	87-86-5	2.0	mg/kg			<2.0	
EP075(SIM)B: Polynuclear Aromatic Hy	/drocarbons						
Naphthalene	91-20-3	0.5	mg/kg			<0.5	
Acenaphthylene	208-96-8	0.5	mg/kg			<0.5	
Acenaphthene	83-32-9	0.5	mg/kg			<0.5	
Fluorene	86-73-7	0.5	mg/kg			<0.5	
Phenanthrene	85-01-8	0.5	mg/kg			<0.5	
Anthracene	120-12-7	0.5	mg/kg			<0.5	
Fluoranthene	206-44-0	0.5	mg/kg			<0.5	
Pyrene	129-00-0	0.5	mg/kg			<0.5	
Benz(a)anthracene	56-55-3	0.5	mg/kg			<0.5	
Chrysene	218-01-9	0.5	mg/kg			<0.5	
Benzo(b)fluoranthene	205-99-2	0.5	mg/kg			<0.5	
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg			<0.5	
Benzo(a)pyrene	50-32-8	0.5	mg/kg			<0.5	
						·	

Page : 5 of 6
Work Order : ES0806641

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

ALS


Sub-Matrix: SOIL		Clie	ent sample ID	120508-216-KW	120508-230-KW	120508-260-KW				
	Client sampling date / time			12-MAY-2008 15:00	12-MAY-2008 15:00	12-MAY-2008 15:00				
Compound	CAS Number	LOR	Unit	ES0806641-001	ES0806641-002	ES0806641-003				
EP075(SIM)B: Polynuclear Aroma	atic Hydrocarbons - Cont	inued								
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg			<0.5				
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg			<0.5				
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg			<0.5				
EP080/071: Total Petroleum Hydrocarbons										
C6 - C9 Fraction		10	mg/kg			<10				
C10 - C14 Fraction		50	mg/kg			<50				
C15 - C28 Fraction		100	mg/kg			<100				
C29 - C36 Fraction		100	mg/kg			<100				
EP080: BTEX										
Benzene	71-43-2	0.2	mg/kg			<0.2				
Toluene	108-88-3	0.5	mg/kg			<0.5				
Ethylbenzene	100-41-4	0.5	mg/kg			<0.5				
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg			<0.5				
ortho-Xylene	95-47-6	0.5	mg/kg			<0.5				
EP075(SIM)S: Phenolic Compoun	nd Surrogates									
Phenol-d6	13127-88-3	0.1	%			95.3				
2-Chlorophenol-D4	93951-73-6	0.1	%			83.4				
2.4.6-Tribromophenol	118-79-6	0.1	%			68.6				
EP075(SIM)T: PAH Surrogates										
2-Fluorobiphenyl	321-60-8	0.1	%			84.9				
Anthracene-d10	1719-06-8	0.1	%			88.0				
4-Terphenyl-d14	1718-51-0	0.1	%			80.9				
EP080S: TPH(V)/BTEX Surrogates	s									
1.2-Dichloroethane-D4	17060-07-0	0.1	%			101				
Toluene-D8	2037-26-5	0.1	%			99.6				
4-Bromofluorobenzene	460-00-4	0.1	%			84.3				

Page : 6 of 6 Work Order : ES0806641

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

Surrogate Control Limits

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **ES0806723** Page : 1 of 7

Client : CONSULTING EARTH SCIENTISTS Laboratory : Environmental Division Sydney

Contact : MS KELLY WEIR Contact : Ashwini Sharma

Address : JONES BAY WHARF 19-21, LOWER DECK, SUITE 121, Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

26-32 PIRRAMA ROAD

PYRMONT NSW, AUSTRALIA 2040

 Telephone
 : +61 85692200
 Telephone
 : +61-2-8784 8555

 Facsimile
 : +61 02 95524399
 Facsimile
 : +61-2-8784 8500

Order number : ----

C-O-C number : 130242 Date Samples Received : 14-MAY-2008

Sampler : L.JENKINS/K.WEIR Issue Date : 23-MAY-2008

Site : AREA A

No. of samples received : 2

Quote number : SY/096/08 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ashwini Sharma	Laboratory Manager	Inorganics
Edwandy Fadjar	Senior Organic Chemist	Inorganics
Edwandy Fadjar	Senior Organic Chemist	Organics
Hoa Nguyen		Inorganics

Page : 3 of 7 Work Order : ES0806723

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

Page : 4 of 7
Work Order : ES0806723

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

ALS

Sub-Matrix: SOIL		Cli	ent sample ID	130508-288-KW							
Sub-Matrix. SOIL	O!:										
	CIR	ent sampii	ng date / time	13-MAY-2008 15:00							
Compound	CAS Number	LOR	Unit	ES0806723-001							
EA055: Moisture Content											
^ Moisture Content (dried @ 103°C)		1.0	%	12.3							
EG005T: Total Metals by ICP-AES											
Arsenic	7440-38-2	5	mg/kg	<5							
Cadmium	7440-43-9	1	mg/kg	<1							
Chromium	7440-47-3	2	mg/kg	<2							
Copper	7440-50-8	5	mg/kg	<5							
Lead	7439-92-1	5	mg/kg	<5							
Nickel	7440-02-0	2	mg/kg	<2							
Zinc	7440-66-6	5	mg/kg	<5							
EG035T: Total Recoverable Mercury	y by FIMS										
Mercury	7439-97-6	0.1	mg/kg	<0.1							
EP074A: Monocyclic Aromatic Hydr	ocarbons										
Benzene	71-43-2	0.2	mg/kg	<0.2							
Toluene	108-88-3	0.5	mg/kg	<0.5							
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5							
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5							
Styrene	100-42-5	0.5	mg/kg	<0.5							
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5							
Isopropylbenzene	98-82-8	0.5	mg/kg	<0.5							
n-Propylbenzene	103-65-1	0.5	mg/kg	<0.5							
1.3.5-Trimethylbenzene	108-67-8	0.5	mg/kg	<0.5							
sec-Butylbenzene	135-98-8	0.5	mg/kg	<0.5							
1.2.4-Trimethylbenzene	95-63-6	0.5	mg/kg	<0.5							
tert-Butylbenzene	98-06-6	0.5	mg/kg	<0.5							
p-lsopropyltoluene	99-87-6	0.5	mg/kg	<0.5							
n-Butylbenzene	104-51-8	0.5	mg/kg	<0.5							
EP074B: Oxygenated Compounds											
Vinyl Acetate	108-05-4	5	mg/kg	<5							
2-Butanone (MEK)	78-93-3	5	mg/kg	<5							
4-Methyl-2-pentanone (MIBK)	108-10-1	5	mg/kg	<5							
2-Hexanone (MBK)	591-78-6	5	mg/kg	<5							
EP074C: Sulfonated Compounds											
Carbon disulfide	75-15-0	0.5	mg/kg	<0.5							
EP074D: Fumigants											
2.2-Dichloropropane	594-20-7	0.5	mg/kg	<0.5							
1.2-Dichloropropane	78-87-5	0.5	mg/kg	<0.5							
cis-1.3-Dichloropropylene	10061-01-5	0.5	mg/kg	<0.5							

Page : 5 of 7
Work Order : ES0806723

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

ALS

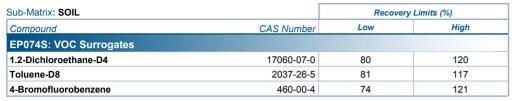
Sub-Matrix: SOIL		Clie	ent sample ID	130508-288-KW						
	Client sampling date / time		13-MAY-2008 15:00							
Compound	CAS Number	LOR	Unit	ES0806723-001						
EP074D: Fumigants - Continued										
trans-1.3-Dichloropropylene	10061-02-6	0.5	mg/kg	<0.5						
1.2-Dibromoethane (EDB)	106-93-4	0.5	mg/kg	<0.5						
EP074E: Halogenated Aliphatic Compounds										
Dichlorodifluoromethane	75-71-8	5	mg/kg	<5						
Chloromethane	74-87-3	5	mg/kg	<5						
Vinyl chloride	75-01-4	5	mg/kg	<5						
Bromomethane	74-83-9	5	mg/kg	<5						
Chloroethane	75-00-3	5	mg/kg	<5						
Trichlorofluoromethane	75-69-4	5	mg/kg	<5						
1.1-Dichloroethene	75-35-4	0.5	mg/kg	<0.5						
lodomethane	74-88-4	0.5	mg/kg	<0.5						
trans-1.2-Dichloroethene	156-60-5	0.5	mg/kg	<0.5						
1.1-Dichloroethane	75-34-3	0.5	mg/kg	<0.5						
cis-1.2-Dichloroethene	156-59-2	0.5	mg/kg	<0.5						
1.1.1-Trichloroethane	71-55-6	0.5	mg/kg	<0.5						
1.1-Dichloropropylene	563-58-6	0.5	mg/kg	<0.5						
Carbon Tetrachloride	56-23-5	0.5	mg/kg	<0.5						
1.2-Dichloroethane	107-06-2	0.5	mg/kg	<0.5						
Trichloroethene	79-01-6	0.5	mg/kg	<0.5						
Dibromomethane	74-95-3	0.5	mg/kg	<0.5						
1.1.2-Trichloroethane	79-00-5	0.5	mg/kg	<0.5						
1.3-Dichloropropane	142-28-9	0.5	mg/kg	<0.5						
Tetrachloroethene	127-18-4	0.5	mg/kg	<0.5						
1.1.1.2-Tetrachloroethane	630-20-6	0.5	mg/kg	<0.5						
trans-1.4-Dichloro-2-butene	110-57-6	0.5	mg/kg	<0.5						
cis-1.4-Dichloro-2-butene	1476-11-5	0.5	mg/kg	<0.5						
1.1.2.2-Tetrachloroethane	79-34-5	0.5	mg/kg	<0.5						
1.2.3-Trichloropropane	96-18-4	0.5	mg/kg	<0.5						
Pentachloroethane	76-01-7	0.5	mg/kg	<0.5						
1.2-Dibromo-3-chloropropane	96-12-8	0.5	mg/kg	<0.5						
Hexachlorobutadiene	87-68-3	0.5	mg/kg	<0.5						
EP074F: Halogenated Aromatic Compo	ounds									
Chlorobenzene	108-90-7	0.5	mg/kg	<0.5						
Bromobenzene	108-86-1	0.5	mg/kg	<0.5						
2-Chlorotoluene	95-49-8	0.5	mg/kg	<0.5						
4-Chlorotoluene	106-43-4	0.5	mg/kg	<0.5						
1.3-Dichlorobenzene	541-73-1	0.5	mg/kg	<0.5						
1.4-Dichlorobenzene	106-46-7	0.5	mg/kg	<0.5						

Page : 6 of 7
Work Order : ES0806723

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

ALS


Sub-Matrix: SOIL	Client sample ID			130508-288-KW				
	Client sampling date / time			13-MAY-2008 15:00				
Compound	CAS Number	LOR	Unit	ES0806723-001				
EP074F: Halogenated Aromatic Compounds - Continued								
1.2-Dichlorobenzene	95-50-1	0.5	mg/kg	<0.5				
1.2.4-Trichlorobenzene	120-82-1	0.5	mg/kg	<0.5				
1.2.3-Trichlorobenzene	87-61-6	0.5	mg/kg	<0.5				
EP074G: Trihalomethanes								
Chloroform	67-66-3	0.5	mg/kg	<0.5				
Bromodichloromethane	75-27-4	0.5	mg/kg	<0.5				
Dibromochloromethane	124-48-1	0.5	mg/kg	<0.5				
Bromoform	75-25-2	0.5	mg/kg	<0.5				
EP074H: Naphthalene								
Naphthalene	91-20-3	5	mg/kg	<5				
EP074S: VOC Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.1	%	93.1				
Toluene-D8	2037-26-5	0.1	%	102				
4-Bromofluorobenzene	460-00-4	0.1	%	94.3				

Page : 7 of 7 Work Order : ES0806723

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

Surrogate Control Limits

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **ES0806928** Page : 1 of 6

Client : CONSULTING EARTH SCIENTISTS Laboratory : Environmental Division Sydney

Contact : MS KELLY WEIR Contact : Ashwini Sharma

Address : JONES BAY WHARF 19-21, LOWER DECK, SUITE 121, Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

26-32 PIRRAMA ROAD

PYRMONT NSW, AUSTRALIA 2040

 Telephone
 : +61 85692200
 Telephone
 : +61-2-8784 8555

 Facsimile
 : +61 02 95524399
 Facsimile
 : +61-2-8784 8500

Project : CES050706-BCC : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number : ----

C-O-C number : 128659 Date Samples Received : 16-MAY-2008

Sampler : K.WEIR/L.JENKINS Issue Date : 28-MAY-2008

Site : AREA

No. of samples received : 2

Quote number : SY/096/08 No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category	
Edwandy Fadjar	Senior Organic Chemist	Inorganics	
Edwandy Fadjar	Senior Organic Chemist	Organics	
Hoa Nguyen		Inorganics	
Sarah Millington	Senior Inorganic Chemist	Inorganics	
Victor Kedicioglu	Business Manager - NSW	Inorganics	

Page : 3 of 6 Work Order : ES0806928

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

Page : 4 of 6 Work Order : ES0806928

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

ALS

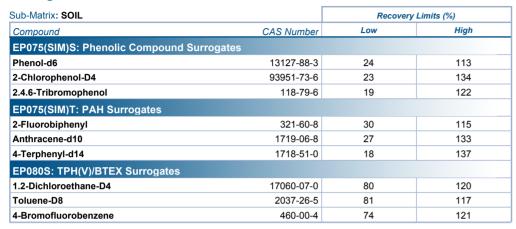
Sub-Matrix: SOIL		Clie	ent sample ID	150508-354-KW	150508-387-KW		
	Cl	ient sampli	ng date / time	15-MAY-2008 15:00	15-MAY-2008 15:00		
Compound	CAS Number	LOR	Unit	ES0806928-001	ES0806928-002		
EA055: Moisture Content							
^ Moisture Content (dried @ 103°C)		1.0	%	4.1	13.6		
EG005T: Total Metals by ICP-AES							
Arsenic	7440-38-2	5	mg/kg	<5	<5		
Cadmium	7440-43-9	1	mg/kg	<1	<1		
Chromium	7440-47-3	2	mg/kg	<2	4		
Copper	7440-50-8	5	mg/kg	<5	6		
Lead	7439-92-1	5	mg/kg	46	9		
Nickel	7440-02-0	2	mg/kg	<2	8		
Zinc	7440-66-6	5	mg/kg	13	26		
EG035T: Total Recoverable Mercury by I	FIMS						
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1		
EP075(SIM)B: Polynuclear Aromatic Hyd	rocarbons						
Naphthalene	91-20-3	0.5	mg/kg	<0.5			
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5			
Acenaphthene	83-32-9	0.5	mg/kg	<0.5			
Fluorene	86-73-7	0.5	mg/kg	<0.5			
Phenanthrene	85-01-8	0.5	mg/kg	<0.5			
Anthracene	120-12-7	0.5	mg/kg	<0.5			
Fluoranthene	206-44-0	0.5	mg/kg	<0.5			
Pyrene	129-00-0	0.5	mg/kg	<0.5			
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5			
Chrysene	218-01-9	0.5	mg/kg	<0.5			
Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5			
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5			
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5			
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5			
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5			
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5			
EP080/071: Total Petroleum Hydrocarbor	าร						
C6 - C9 Fraction		10	mg/kg	<10			
C10 - C14 Fraction		50	mg/kg	<50			
C15 - C28 Fraction		100	mg/kg	<100			
C29 - C36 Fraction		100	mg/kg	<100			
EP080: BTEX							
Benzene	71-43-2	0.2	mg/kg	<0.2			
Toluene	108-88-3	0.5	mg/kg	<0.5			
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5			

Page : 5 of 6
Work Order : ES0806928

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

ALS


Sub-Matrix: SOIL	Client sample ID		150508-354-KW	150508-387-KW				
	Client sampling date / time			15-MAY-2008 15:00	15-MAY-2008 15:00			
Compound	CAS Number	LOR	Unit	ES0806928-001	ES0806928-002			
EP080: BTEX - Continued								
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5				
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5				
EP075(SIM)S: Phenolic Compound	Surrogates							
Phenol-d6	13127-88-3	0.1	%	105				
2-Chlorophenol-D4	93951-73-6	0.1	%	70.9				
2.4.6-Tribromophenol	118-79-6	0.1	%	70.4				
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.1	%	83.8				
Anthracene-d10	1719-06-8	0.1	%	76.6				
4-Terphenyl-d14	1718-51-0	0.1	%	83.9				
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.1	%	90.1				
Toluene-D8	2037-26-5	0.1	%	89.3				
4-Bromofluorobenzene	460-00-4	0.1	%	79.5				

Page : 6 of 6 Work Order : ES0806928

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

Surrogate Control Limits

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **ES0807086** Page : 1 of 5

Client : CONSULTING EARTH SCIENTISTS Laboratory : Environmental Division Sydney

Contact : MS KELLY WEIR Contact : Ashwini Sharma

Address : JONES BAY WHARF 19-21, LOWER DECK, SUITE 121, Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

26-32 PIRRAMA ROAD

PYRMONT NSW, AUSTRALIA 2040

 Telephone
 : +61 85692200
 Telephone
 : +61-2-8784 8555

 Facsimile
 : +61 02 95524399
 Facsimile
 : +61-2-8784 8500

Project : CES050706-BCC QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number : ----

 C-O-C number
 : -- Date Samples Received
 : 21-MAY-2008

 Sampler
 : sue Date
 : 28-MAY-2008

Site : ----

No. of samples received : 1

Quote number : SY/096/08 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Hoa Nguyen		Inorganics
Pabi Subba	Senior Organic Chemist (Volatile)	Inorganics
Pabi Subba	Senior Organic Chemist (Volatile)	Organics

Page : 3 of 5

Work Order : ES0807086

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

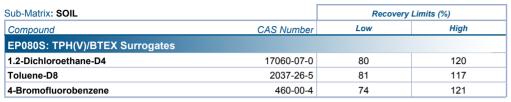
• EP080:The trip spike and its control have been analysed for volatile TPH and BTEX only. The trip spike and control were prepared in the lab using reagent grade sand spiked with petrol. The spike was dispatched from the lab and the control retained.

Page : 4 of 5 Work Order : ES0807086

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

ALS


Sub-Matrix: SOIL	Client sample ID			TRIP SPIKE CONTROL	 	
	Cl	ient sampli	ng date / time	05-MAY-2008 15:00	 	
Compound	CAS Number	LOR	Unit	ES0807086-001	 	
EA055: Moisture Content						
Moisture Content (dried @ 103°C)		1.0	%	6.1	 	
EP080: BTEX						
Benzene	71-43-2	0.2	mg/kg	0.7	 	
Toluene	108-88-3	0.5	mg/kg	11.6	 	
Ethylbenzene	100-41-4	0.5	mg/kg	1.6	 	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	8.3	 	
ortho-Xylene	95-47-6	0.5	mg/kg	3.1	 	
EP080S: TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	0.1	%	97.4	 	
Toluene-D8	2037-26-5	0.1	%	113	 	
4-Bromofluorobenzene	460-00-4	0.1	%	106	 	

Page : 5 of 5 Work Order : ES0807086

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

Surrogate Control Limits

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **ES0807714** Page : 1 of 10

Client : CONSULTING EARTH SCIENTISTS Laboratory : Environmental Division Sydney

Contact : MR LUKE JENKINS Contact : Ashwini Sharma

Address : JONES BAY WHARF 19-21, LOWER DECK, SUITE 121, Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

26-32 PIRRAMA ROAD

PYRMONT NSW, AUSTRALIA 2040

 Telephone
 : +61 85692200
 Telephone
 : +61-2-8784 8555

 Facsimile
 : +61 02 95524399
 Facsimile
 : +61-2-8784 8500

Project : CES050706-BCC QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number : ----

 C-O-C number
 : 130244
 Date Samples Received
 : 02-JUN-2008

 Sampler
 : LJ
 Issue Date
 : 11-JUN-2008

Site : COOKS COVE AREA A

No. of samples received : 1

Quote number : SY/096/08 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category	
Ankit Joshi	Inorganic Chemist	Inorganics	
Edwandy Fadjar	Senior Organic Chemist	Organics	
Sarah Millington	Senior Inorganic Chemist	Inorganics	

Page : 3 of 10 Work Order : ES0807714

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

• EP080: Level of Reporting raised for toluene due to ambient background levels in the laboratory.

Page : 4 of 10 Work Order : ES0807714

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

ALS

Sub-Matrix: WATER		Cli	ent sample ID	290508-07-LJ	 	
	C	lient sampli	ing date / time	29-MAY-2008 15:00	 	
Compound	CAS Number	LOR	Unit	ES0807714-001	 	
EA010P: Conductivity by PC Titrator						
Electrical Conductivity @ 25°C		1	μS/cm	1240	 	
EA015: Total Dissolved Solids						
^ Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	726	 	
EA020EC: Salinity						
Salinity		0.01	g/kg	0.62	 	
EA080: Resistivity						
^ Resistivity at 25°C		1	ohm cm	806	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	153	 	
Total Alkalinity as CaCO3		1	mg/L	153	 	
ED040F: Dissolved Major Anions						
Sulfate as SO4 2-	14808-79-8	1	mg/L	129	 	
ED045G: Chloride Discrete analyser						
Chloride	16887-00-6	1.0	mg/L	234	 	
ED093F: Dissolved Major Cations						
Calcium	7440-70-2	1	mg/L	76	 	
Magnesium	7439-95-4	1	mg/L	24	 	
Sodium	7440-23-5	1	mg/L	122	 	
Potassium	7440-09-7	1	mg/L	20	 	
EG020F: Dissolved Metals by ICP-MS						
Arsenic	7440-38-2	0.001	mg/L	0.010	 	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	 	
Chromium	7440-47-3	0.001	mg/L	<0.001	 	
Copper	7440-50-8 7439-92-1	0.001 0.001	mg/L mg/L	<0.001 <0.001	 	
Nickel	7439-92-1	0.001	mg/L	<0.001	 	
Zinc	7440-02-0	0.001	mg/L	<0.001	 	
EG035F: Dissolved Mercury by FIMS	7440-00-0	0.000	mg/L	10.000		
Mercury Mercury	7439-97-6	0.0001	mg/L	<0.0001	 	
EK055G: Ammonia as N by Discrete Ana		5.5001		2.3001		
Ammonia as N	7664-41-7	0.010	mg/L	0.971	 	
EK059G: NOX as N by Discrete Analyse		0.010	9/ -	0.011		
Nitrite + Nitrate as N		0.010	mg/L	0.022	 	
		0.010	9/ -	V.V22		
EK061: Total Kjeldahl Nitrogen (TKN)						

Page : 5 of 10 Work Order : ES0807714

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

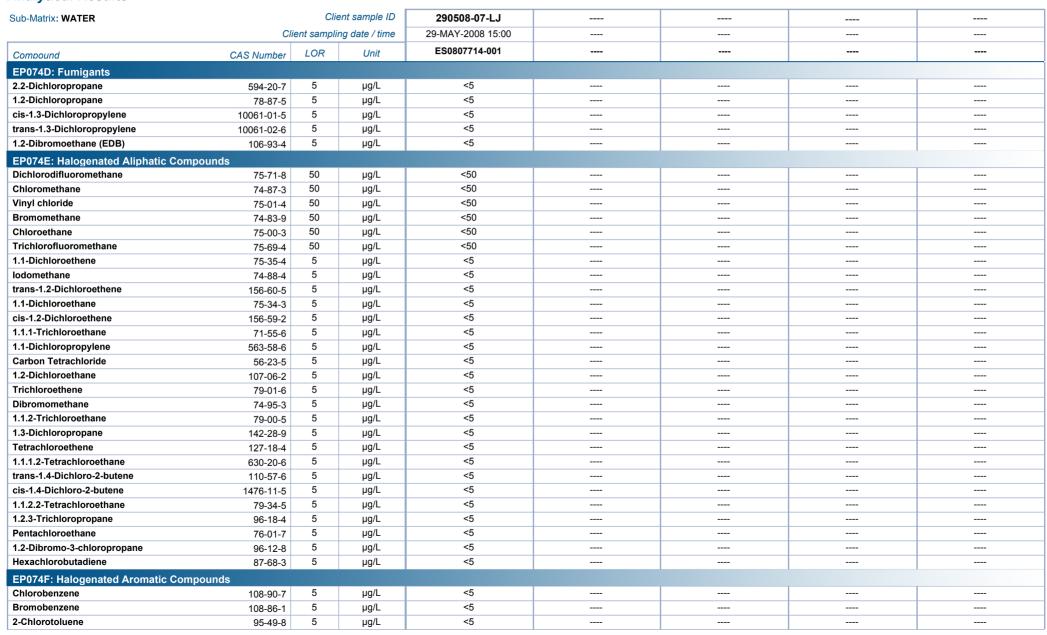
ALS

Sub-Matrix: WATER		Clie	ent sample ID	290508-07-LJ			
Sub-Matrix. WATER	Cl		ng date / time	29-MAY-2008 15:00			
	Cli	ent sampin					
Compound	CAS Number	LOR	Unit	ES0807714-001			
EK061: Total Kjeldahl Nitrogen (TKN)) - Continued						
Total Kjeldahl Nitrogen as N		0.1	mg/L	2.7			
EK062: Total Nitrogen as N							
^ Total Nitrogen as N		0.1	mg/L	2.7			
EK067G: Total Phosphorus as P by D	Discrete Analyser						
Total Phosphorus as P		0.01	mg/L	1.11			
EN055: Ionic Balance							
^ Total Anions		0.01	meq/L	12.4			
^ Total Cations		0.01	meq/L	11.6			
^ Ionic Balance		0.01	%	3.22			
EP066: Polychlorinated Biphenyls (P	CB)						
Total Polychlorinated biphenyls		1	μg/L	<1			
EP068A: Organochlorine Pesticides	(OC)						
alpha-BHC	319-84-6	0.5	μg/L	<0.5			
Hexachlorobenzene (HCB)	118-74-1	0.5	μg/L	<0.5			
beta-BHC	319-85-7	0.5	μg/L	<0.5			
gamma-BHC	58-89-9	0.5	μg/L	<0.5			
delta-BHC	319-86-8	0.5	μg/L	<0.5			
Heptachlor	76-44-8	0.5	μg/L	<0.5			
Aldrin	309-00-2	0.5	μg/L	<0.5			
Heptachlor epoxide	1024-57-3	0.5	μg/L	<0.5			
trans-Chlordane	5103-74-2	0.5	μg/L	<0.5			
alpha-Endosulfan	959-98-8	0.5	μg/L	<0.5			
cis-Chlordane Dieldrin	5103-71-9	0.5	μg/L	<0.5			
4.4`-DDE	60-57-1	0.5	μg/L	<0.5 <0.5			
Endrin	72-55-9	0.5	μg/L μg/L	<0.5			
beta-Endosulfan	72-20-8	0.5	μg/L	<0.5			
4.4`-DDD	33213-65-9 72-54-8	0.5	μg/L μg/L	<0.5			
Endrin aldehyde	7421-93-4	0.5	μg/L	<0.5			
Endosulfan sulfate	1031-07-8	0.5	μg/L	<0.5			
4.4`-DDT	50-29-3	2	μg/L	<2			
Endrin ketone	53494-70-5	0.5	μg/L	<0.5			
Methoxychlor	72-43-5	2	μg/L	<2			
EP068B: Organophosphorus Pesticio	des (OP)						
Dichlorvos	62-73-7	0.5	μg/L	<0.5			
Demeton-S-methyl	919-86-8	0.5	μg/L	<0.5			
Monocrotophos	6923-22-4	2	μg/L	<2			

Page : 6 of 10 Work Order : ES0807714

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC


ALS

Sub-Matrix: WATER		Clie	ent sample ID	290508-07-LJ	 	
	Cli	ent sampli	ng date / time	29-MAY-2008 15:00	 	
Compound	CAS Number	LOR	Unit	ES0807714-001	 	
EP068B: Organophosphorus Pestici						
Dimethoate	60-51-5	0.5	μg/L	<0.5	 	
Diazinon	333-41-5	0.5	μg/L	<0.5	 	
Chlorpyrifos-methyl	5598-13-0	0.5	μg/L	<0.5	 	
Parathion-methyl	298-00-0	2	μg/L	<2	 	
Malathion	121-75-5	0.5	μg/L	<0.5	 	
Fenthion	55-38-9	0.5	μg/L	<0.5	 	
Chlorpyrifos	2921-88-2	0.5	μg/L	<0.5	 	
Parathion	56-38-2	2	μg/L	<2	 	
Pirimphos-ethyl	23505-41-1	0.5	μg/L	<0.5	 	
Chlorfenvinphos	470-90-6	0.5	μg/L	<0.5	 	
Bromophos-ethyl	4824-78-6	0.5	μg/L	<0.5	 	
Fenamiphos	22224-92-6	0.5	μg/L	<0.5	 	
Prothiofos	34643-46-4	0.5	μg/L	<0.5	 	
Ethion	563-12-2	0.5	μg/L	<0.5	 	
Carbophenothion	786-19-6	0.5	μg/L	<0.5	 	
Azinphos Methyl	86-50-0	0.5	μg/L	<0.5	 	
EP074A: Monocyclic Aromatic Hydro	ocarbons					
Benzene	71-43-2	5	μg/L	<5	 	
Toluene	108-88-3	5	μg/L	<5	 	
Ethylbenzene	100-41-4	5	μg/L	<5	 	
meta- & para-Xylene	108-38-3 106-42-3	5	μg/L	<5	 	
Styrene	100-42-5	5	μg/L	<5	 	
ortho-Xylene	95-47-6	5	μg/L	<5	 	
Isopropylbenzene	98-82-8	5	μg/L	<5	 	
n-Propylbenzene	103-65-1	5	μg/L	<5	 	
1.3.5-Trimethylbenzene	108-67-8	5	μg/L	<5	 	
sec-Butylbenzene	135-98-8	5	μg/L	<5	 	
1.2.4-Trimethylbenzene	95-63-6	5	μg/L	<5	 	
tert-Butylbenzene	98-06-6	5	μg/L	<5	 	
p-lsopropyltoluene	99-87-6	5	μg/L	<5	 	
n-Butylbenzene	104-51-8	5	μg/L	<5	 	
EP074B: Oxygenated Compounds						
Vinyl Acetate	108-05-4	50	μg/L	<50	 	
2-Butanone (MEK)	78-93-3	50	μg/L	<50	 	
4-Methyl-2-pentanone (MIBK)	108-10-1	50	μg/L	<50	 	
2-Hexanone (MBK)	591-78-6	50	μg/L	<50	 	
EP074C: Sulfonated Compounds						
Carbon disulfide	75-15-0	5	μg/L	<5	 	

Page : 7 of 10 Work Order : ES0807714

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

Page : 8 of 10 Work Order : ES0807714

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

ALS

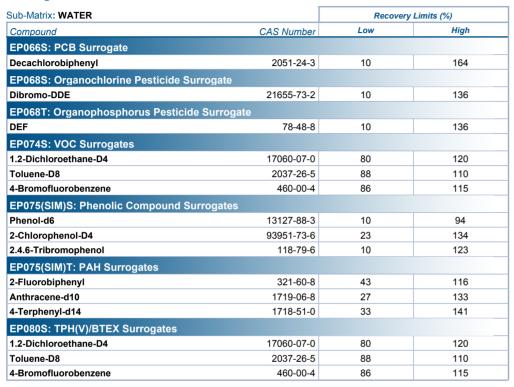
Sub-Matrix: WATER		Clie	ent sample ID	290508-07-LJ	 	
	Clie	ent sampli	ng date / time	29-MAY-2008 15:00	 	
Compound	CAS Number	LOR	Unit	ES0807714-001	 	
EP074F: Halogenated Aromatic Compoun	nds - Continued					
4-Chlorotoluene	106-43-4	5	μg/L	<5	 	
1.3-Dichlorobenzene	541-73-1	5	μg/L	<5	 	
1.4-Dichlorobenzene	106-46-7	5	μg/L	<5	 	
1.2-Dichlorobenzene	95-50-1	5	μg/L	<5	 	
1.2.4-Trichlorobenzene	120-82-1	5	μg/L	<5	 	
1.2.3-Trichlorobenzene	87-61-6	5	μg/L	<5	 	
EP074G: Trihalomethanes						
Chloroform	67-66-3	5	μg/L	<5	 	
Bromodichloromethane	75-27-4	5	μg/L	<5	 	
Dibromochloromethane	124-48-1	5	μg/L	<5	 	
Bromoform	75-25-2	5	μg/L	<5	 	
EP074H: Naphthalene						
Naphthalene	91-20-3	5	μg/L	<5	 	
EP075(SIM)B: Polynuclear Aromatic Hydr						
Naphthalene	91-20-3	1.0	μg/L	<1.0	 	
Acenaphthylene	208-96-8	1.0	μg/L	<1.0	 	
Acenaphthene	83-32-9	1.0	μg/L	<1.0	 	
Fluorene	86-73-7	1.0	μg/L	<1.0	 	
Phenanthrene	85-01-8	1.0	μg/L	<1.0	 	
Anthracene	120-12-7	1.0	μg/L	<1.0	 	
Fluoranthene	206-44-0	1.0	μg/L	<1.0	 	
Pyrene	129-00-0	1.0	μg/L	<1.0	 	
Benz(a)anthracene	56-55-3	1.0	μg/L	<1.0	 	
Chrysene	218-01-9	1.0	μg/L	<1.0	 	
Benzo(b)fluoranthene	205-99-2	1.0	μg/L	<1.0	 	
Benzo(k)fluoranthene	207-08-9	1.0	μg/L	<1.0	 	
Benzo(a)pyrene	50-32-8	0.5	μg/L	<0.5	 	
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	μg/L	<1.0	 	
Dibenz(a.h)anthracene	53-70-3	1.0	μg/L	<1.0	 	
Benzo(g.h.i)perylene	191-24-2	1.0	μg/L	<1.0	 	
EP080/071: Total Petroleum Hydrocarbon	S					
C6 - C9 Fraction		20	μg/L	<20	 	
C10 - C14 Fraction		50	μg/L	<50	 	
C15 - C28 Fraction		100	μg/L	<100	 	
C29 - C36 Fraction		50	μg/L	<50	 	
EP080: BTEX						
Benzene	71-43-2	1	μg/L	<1	 	

Page : 9 of 10 Work Order : ES0807714

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

ALS


Sub-Matrix: WATER	Client sample ID		290508-07-LJ	 	 	
	Cl	ient sampli	ng date / time	29-MAY-2008 15:00	 	
Compound	CAS Number	LOR	Unit	ES0807714-001	 	
EP080: BTEX - Continued						
Toluene	108-88-3	2	μg/L	<5	 	
Ethylbenzene	100-41-4	2	μg/L	<2	 	
meta- & para-Xylene	108-38-3 106-42-3	2	μg/L	<2	 	
ortho-Xylene	95-47-6	2	μg/L	<2	 	
EP066S: PCB Surrogate						
Decachlorobiphenyl	2051-24-3	0.1	%	60.0	 	
EP068S: Organochlorine Pesticide	e Surrogate					
Dibromo-DDE	21655-73-2	0.1	%	123	 	
EP068T: Organophosphorus Pest	icide Surrogate					
DEF	78-48-8	0.1	%	70.0	 	
EP074S: VOC Surrogates						
1.2-Dichloroethane-D4	17060-07-0	0.1	%	91.8	 	
Toluene-D8	2037-26-5	0.1	%	104	 	
4-Bromofluorobenzene	460-00-4	0.1	%	107	 	
EP075(SIM)S: Phenolic Compound	d Surrogates					
Phenol-d6	13127-88-3	0.1	%	26.0	 	
2-Chlorophenol-D4	93951-73-6	0.1	%	67.9	 	
2.4.6-Tribromophenol	118-79-6	0.1	%	82.7	 	
EP075(SIM)T: PAH Surrogates						
2-Fluorobiphenyl	321-60-8	0.1	%	93.0	 	
Anthracene-d10	1719-06-8	0.1	%	106	 	
4-Terphenyl-d14	1718-51-0	0.1	%	107	 	
EP080S: TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	0.1	%	91.6	 	
Toluene-D8	2037-26-5	0.1	%	103	 	
4-Bromofluorobenzene	460-00-4	0.1	%	107	 	

Page : 10 of 10 Work Order : ES0807714

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

Surrogate Control Limits

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **ES0808708** Page : 1 of 11

Client : CONSULTING EARTH SCIENTISTS Laboratory : Environmental Division Sydney

Contact : MS KELLY WEIR Contact : Victor Kedicioglu

Address : JONES BAY WHARF 19-21, LOWER DECK, SUITE 121, Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

26-32 PIRRAMA ROAD

PYRMONT NSW, AUSTRALIA 2040

 Telephone
 : +61 85692200
 Telephone
 : +61-2-8784 8555

 Facsimile
 : +61 02 95524399
 Facsimile
 : +61-2-8784 8500

Project : CES050706-BCC QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number : ----

 C-O-C number
 : 128711
 Date Samples Received
 : 19-JUN-2008

 Sampler
 : JENKINS
 Issue Date
 : 26-JUN-2008

Site : KGC - AREA 4

No. of samples received : 1

Quote number : SY/096/08 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Inorganics
Celine Conceicao	Spectroscopist	Inorganics
Gaston Allende		Organics
Hoa Nguyen		Inorganics
Pabi Subba	Senior Organic Chemist (Volatile)	Organics

Page : 3 of 11 Work Order : ES0808708

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

• EP080: Level of Reporting raised for toluene due to ambient background levels in the laboratory.

Page : 4 of 11 Work Order : ES0808708

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

ALS

					1	1	
Sub-Matrix: WATER			ent sample ID	170608-04-LJ			
	CI	ient sampli	ing date / time	17-JUN-2008 11:00			
Compound	CAS Number	LOR	Unit	ES0808708-001			
EA005P: pH by PC Titrator							
pH Value		0.01	pH Unit	7.47			
EA010P: Conductivity by PC Titrator							
Electrical Conductivity @ 25°C		1	μS/cm	16000			
EA015: Total Dissolved Solids							
^ Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	11000			
EA020EC: Salinity							
Salinity		0.01	g/kg	9.35			
EA070: pHs (pH of Saturation)							
pHS		0.01	pH Unit	6.86			
EA071: Langeliers Index							
Langelier Index		0.10	-	0.61			
EA080: Resistivity							
^ Resistivity at 25°C		1	ohm cm	62			
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1			
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1			
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	272			
Total Alkalinity as CaCO3		1	mg/L	272			
ED041: Sulfate (Turbidimetric) as SO4 2-							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	696			
ED045G: Chloride Discrete analyser							
Chloride	16887-00-6	1.0	mg/L	6140			
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	163			
Magnesium	7439-95-4	1	mg/L	336			
Sodium	7440-23-5	1	mg/L	3160			
Potassium	7440-09-7	1	mg/L	130			
EG020F: Dissolved Metals by ICP-MS							
Arsenic	7440-38-2	0.001	mg/L	<0.001			
Cadmium	7440-43-9	0.0001	mg/L	<0.0001			
Chromium	7440-47-3	0.001	mg/L	0.024			
Copper	7440-50-8	0.001	mg/L	0.002			
Lead	7439-92-1	0.001	mg/L	<0.001			
Nickel	7440-02-0	0.001	mg/L	0.004			
Zinc	7440-66-6	0.005	mg/L	0.006			
EG035F: Dissolved Mercury by FIMS							

Page : 5 of 11 Work Order : ES0808708

Client : CONSULTING EARTH SCIENTISTS

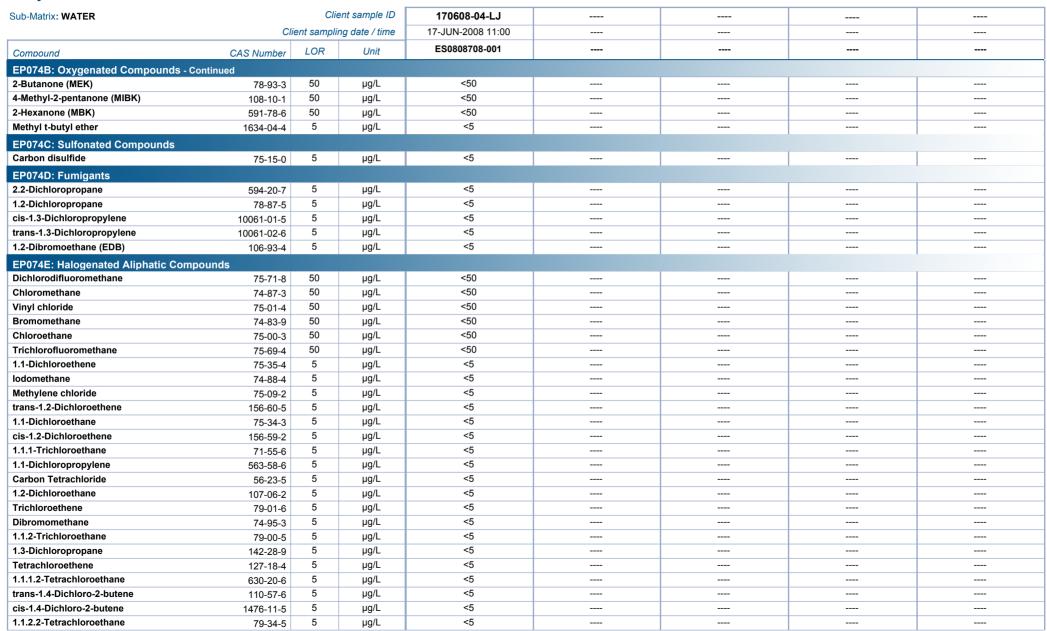
Project : CES050706-BCC

0.1.11.11.11.11.11.11.11.11.11.11.11.11.		Cli	ent sample ID	470000 04 1 1		
Sub-Matrix: WATER	0.11			170608-04-LJ	 	
	Cli	ent sampli	ing date / time	17-JUN-2008 11:00	 	
Compound	CAS Number	LOR	Unit	ES0808708-001	 	
EG035F: Dissolved Mercury by FIM	S - Continued					
Mercury	7439-97-6	0.0001	mg/L	<0.0001	 	
EK055G: Ammonia as N by Discrete	Analyser					
Ammonia as N	7664-41-7	0.010	mg/L	4.69	 	
EK059G: NOX as N by Discrete Ana	alvser					
Nitrite + Nitrate as N		0.010	mg/L	0.572	 	
EK061: Total Kjeldahl Nitrogen (TKI	N)					
Total Kjeldahl Nitrogen as N		0.1	mg/L	6.4	 	
EK062: Total Nitrogen as N						
^ Total Nitrogen as N		0.1	mg/L	7.0	 	
EK067G: Total Phosphorus as P by	Discrete Analyser					
Total Phosphorus as P		0.01	mg/L	0.76	 	
EN055: Ionic Balance						
^ Total Anions		0.01	meg/L	193	 	
Total Cations		0.01	meq/L	177	 	
Ionic Balance		0.01	%	4.39	 	
EP066: Polychlorinated Biphenyls (PCB)					
Total Polychlorinated biphenyls		1	μg/L	<1	 	
EP068A: Organochlorine Pesticides	(OC)					
alpha-BHC	319-84-6	0.5	μg/L	<0.5	 	
Hexachlorobenzene (HCB)	118-74-1	0.5	μg/L	<0.5	 	
gamma-BHC	58-89-9	0.5	μg/L	<0.5	 	
delta-BHC	319-86-8	0.5	μg/L	<0.5	 	
Heptachlor	76-44-8	0.5	μg/L	<0.5	 	
Aldrin	309-00-2	0.5	μg/L	<0.5	 	
Heptachlor epoxide	1024-57-3	0.5	μg/L	<0.5	 	
trans-Chlordane	5103-74-2	0.5	μg/L	<0.5	 	
alpha-Endosulfan	959-98-8	0.5	μg/L	<0.5	 	
cis-Chlordane	5103-71-9	0.5	μg/L	<0.5	 	
Dieldrin	60-57-1	0.5	μg/L	<0.5	 	
4.4`-DDE	72-55-9	0.5	μg/L	<0.5	 	
Endrin	72-20-8	0.5	μg/L	<0.5	 	
beta-Endosulfan	33213-65-9	0.5	μg/L	<0.5 <0.5	 	
4.4`-DDD	72-54-8	0.5	μg/L	<0.5 <0.5	 	
Endrin aldehyde Endosulfan sulfate	7421-93-4	0.5	μg/L μg/L	<0.5 <0.5		
4.4`-DDT	1031-07-8 50-29-3	2	μg/L μg/L	<0.5	 	
Endrin ketone	50-29-3	0.5	μg/L μg/L	<0.5	 	
Litariii ketolie	53494-70-5	0.0	ру/∟	٧.٥	 	
			· · · · · · · · · · · · · · · · · · ·		 	 Campbell Brothers Limited Compan

Page : 6 of 11 Work Order : ES0808708

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

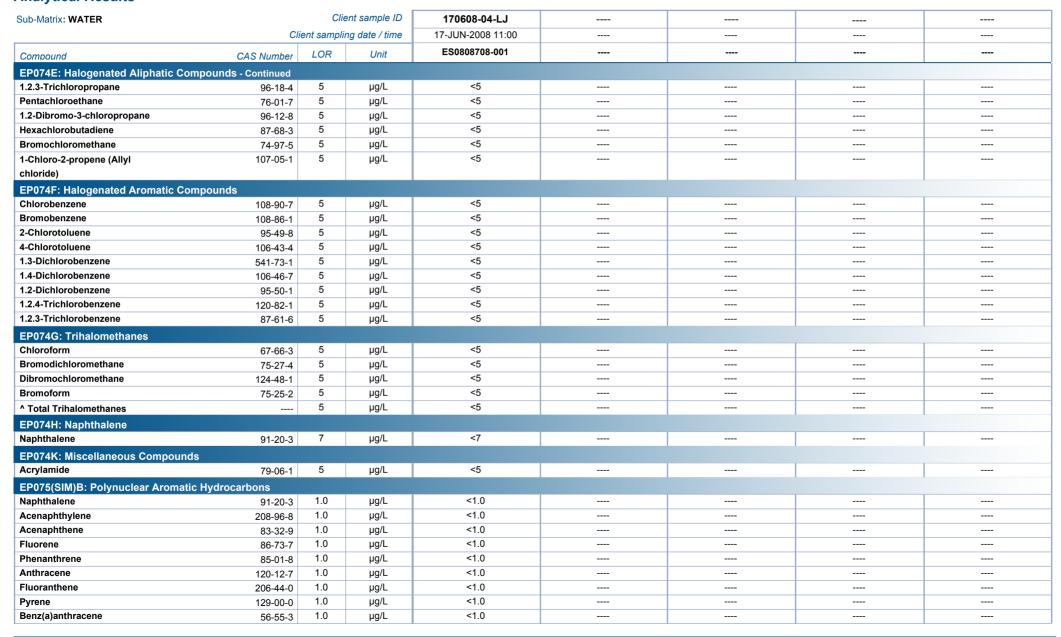

ALS

Sub-Matrix: WATER		Client sample ID		170608-04-LJ	 		
	Client sampling date / time		17-JUN-2008 11:00	 			
Compound	CAS Number	LOR	Unit	ES0808708-001	 		
EP068A: Organochlorine Pesticides							
Methoxychlor	72-43-5	2	μg/L	<2	 		
EP068B: Organophosphorus Pestici	des (OP)						
Dichlorvos	62-73-7	0.5	μg/L	<0.5	 		
Demeton-S-methyl	919-86-8	0.5	μg/L	<0.5	 		
Monocrotophos	6923-22-4	2	μg/L	<2	 		
Dimethoate	60-51-5	0.5	μg/L	<0.5	 		
Diazinon	333-41-5	0.5	μg/L	<0.5	 		
Chlorpyrifos-methyl	5598-13-0	0.5	μg/L	<0.5	 		
Parathion-methyl	298-00-0	2	μg/L	<2	 		
Malathion	121-75-5	0.5	μg/L	<0.5	 		
Fenthion	55-38-9	0.5	μg/L	<0.5	 		
Chlorpyrifos	2921-88-2	0.5	μg/L	<0.5	 		
Parathion	56-38-2	2	μg/L	<2	 		
Pirimphos-ethyl	23505-41-1	0.5	μg/L	<0.5	 		
Bromophos-ethyl	4824-78-6	0.5	μg/L	<0.5	 		
Fenamiphos	22224-92-6	0.5	μg/L	<0.5	 		
Prothiofos	34643-46-4	0.5	μg/L	<0.5	 		
Ethion	563-12-2	0.5	μg/L	<0.5	 		
Carbophenothion	786-19-6	0.5	μg/L	<0.5	 		
Azinphos Methyl	86-50-0	0.5	μg/L	<0.5	 		
EP074A: Monocyclic Aromatic Hydro	ocarbons						
Benzene	71-43-2	5	μg/L	<5	 		
Toluene	108-88-3	5	μg/L	<5	 		
Ethylbenzene	100-41-4	5	μg/L	<5	 		
meta- & para-Xylene	108-38-3 106-42-3	5	μg/L	<5	 		
Styrene	100-42-5	5	μg/L	<5	 		
ortho-Xylene	95-47-6	5	μg/L	<5	 		
Isopropylbenzene	98-82-8	5	μg/L	<5	 		
n-Propylbenzene	103-65-1	5	μg/L	<5	 		
1.3.5-Trimethylbenzene	108-67-8	5	μg/L	<5	 		
sec-Butylbenzene	135-98-8	5	μg/L	<5	 		
1.2.4-Trimethylbenzene	95-63-6	5	μg/L	<5	 		
tert-Butylbenzene	98-06-6	5	μg/L	<5	 		
p-Isopropyltoluene	99-87-6	5	μg/L	<5	 		
n-Butylbenzene	104-51-8	5	μg/L	<5	 		
EP074B: Oxygenated Compounds							
2-Propanone (Acetone)	67-64-1	50	μg/L	<50	 		
Vinyl Acetate	108-05-4	50	μg/L	<50	 		
					 1	Δ	Camphell Brothers Limited Company

Page : 7 of 11 Work Order : ES0808708

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC



Page : 8 of 11 Work Order : ES0808708

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

Page : 9 of 11 Work Order : ES0808708

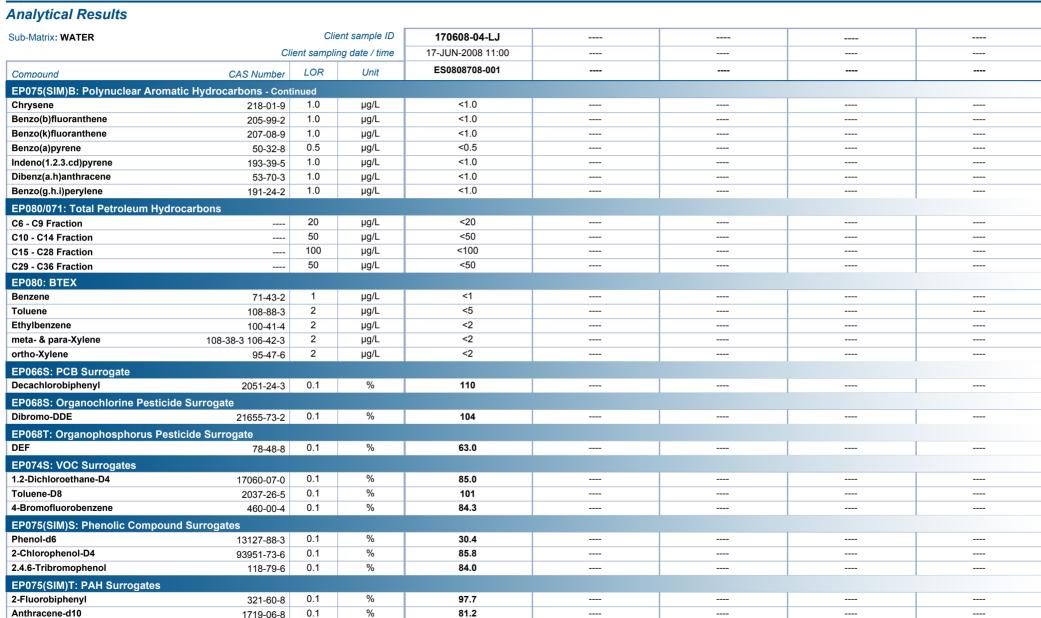
4-Terphenyl-d14

EP080S: TPH(V)/BTEX Surrogates

0.1

1718-51-0

%


80.1

Client : CONSULTING EARTH SCIENTISTS

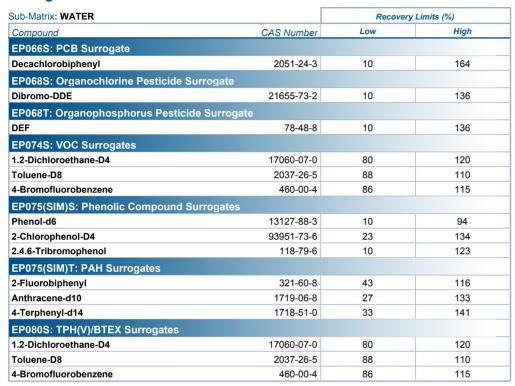
Project : CES050706-BCC

Page : 10 of 11 Work Order : ES0808708

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

ALS


Sub-Matrix: WATER		Cli	ent sample ID	170608-04-LJ	 	
	CI	lient sampli	ng date / time	17-JUN-2008 11:00	 	
Compound	CAS Number LOR Unit				 	
EP080S: TPH(V)/BTEX Surrogates	- Continued					
1.2-Dichloroethane-D4	17060-07-0	0.1	%	113	 	
Toluene-D8	2037-26-5	0.1	%	106	 	
4-Bromofluorobenzene	460-00-4	0.1	%	112	 	

Page : 11 of 11 Work Order : ES0808708

Client : CONSULTING EARTH SCIENTISTS

Project : CES050706-BCC

Surrogate Control Limits

CERTIFICATE OF ANALYSIS

Work Order : ES1703949 Page : 1 of 10

Amendment : 1

Client Laboratory CONSULTING EARTH SCIENTISTS : Environmental Division Sydney

Contact : Mr Mitchell Read Contact : Customer Services ES

Address Address : Suite 3. Level 1 55-65 Grandview Street

PYMBLE NSW. AUSTRALIA 2073

Telephone : +61 02 8569 2200 **Project** : CES130608-BP

Order number : ----C-O-C number

Sampler : TRISTAN GOODBODY

Site

No. of samples received

Quote number : SY/488/14

No. of samples analysed : 1

: 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61-2-8784 8555 **Date Samples Received** : 20-Feb-2017 15:00

Date Analysis Commenced : 21-Feb-2017

Issue Date · 27-Feb-2017 09:58

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

: 1

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ashesh Patel	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Celine Conceicao	Senior Spectroscopist	Sydney Inorganics, Smithfield, NSW
Dian Dao		Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW

Page : 2 of 10

Work Order : ES1703949 Amendment 1

Client : CONSULTING EARTH SCIENTISTS

Project · CES130608-BP

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

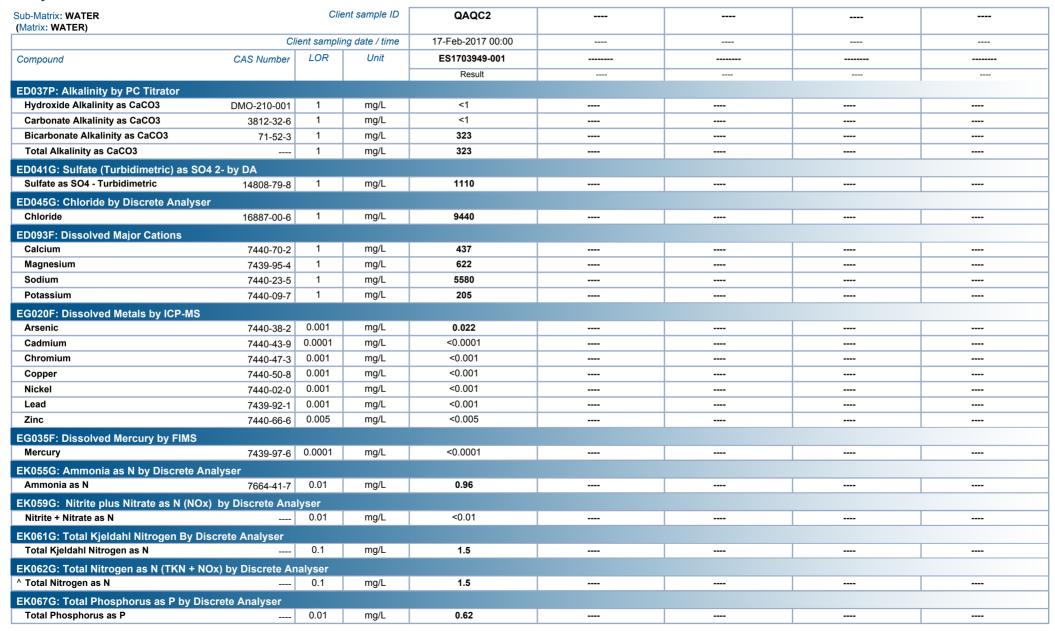
Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

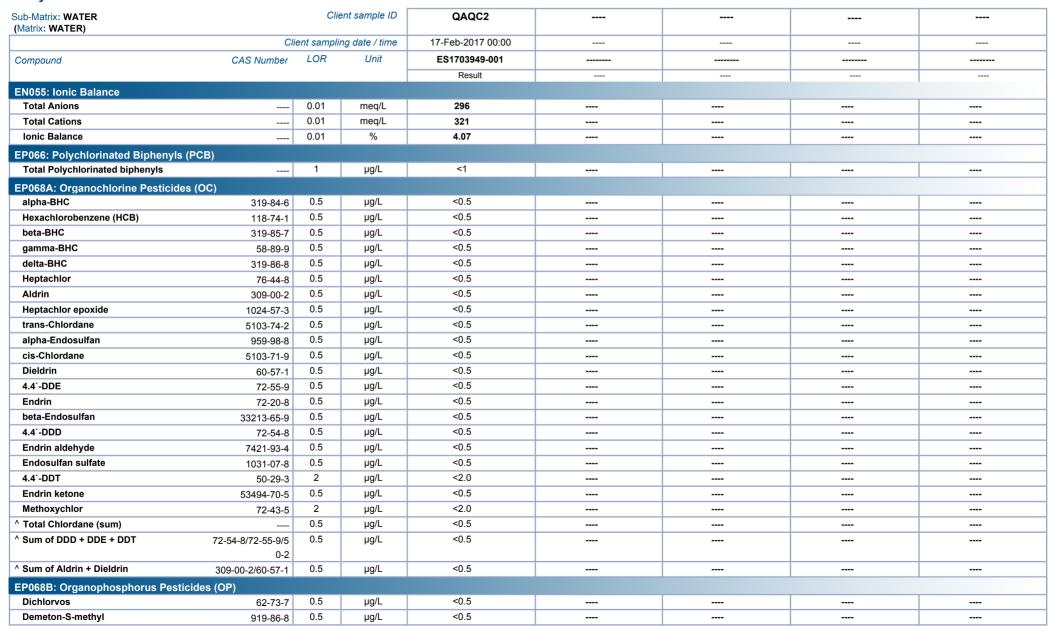

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Amendment (27/02/2017): This report has been amended to alter the project reference code. All analysis results are as per the previous report.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.

Page : 3 of 10

Work Order : ES1703949 Amendment 1

Client : CONSULTING EARTH SCIENTISTS

Project : CES130608-BP

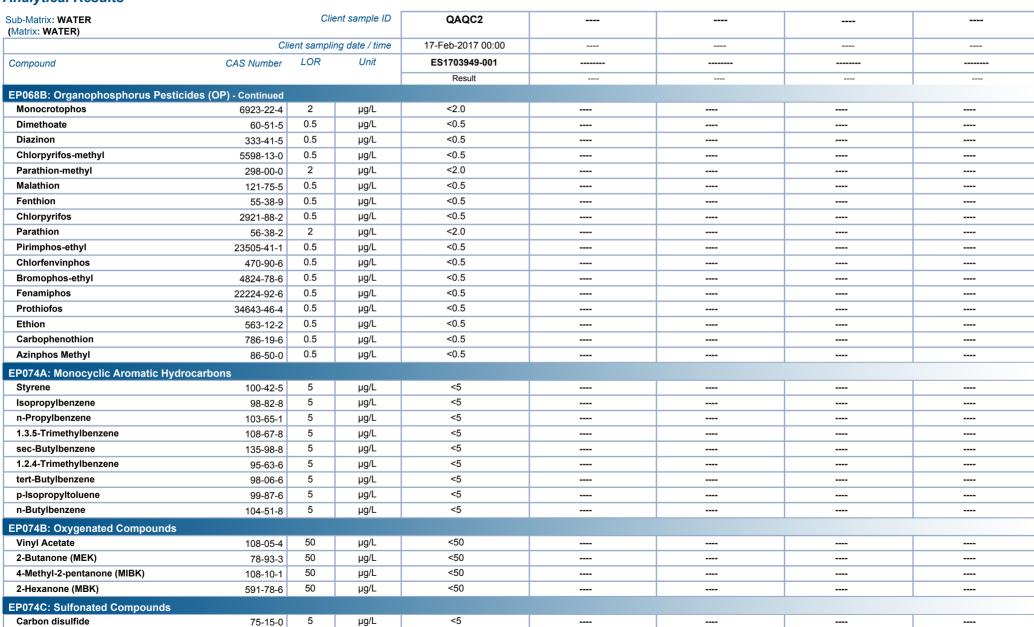


Page : 4 of 10

Work Order : ES1703949 Amendment 1

Client : CONSULTING EARTH SCIENTISTS

Project : CES130608-BP



Page : 5 of 10

Work Order : ES1703949 Amendment 1

Client : CONSULTING EARTH SCIENTISTS

Project : CES130608-BP

Page : 6 of 10

1.2.3-Trichloropropane

1.2-Dibromo-3-chloropropane

Pentachloroethane

Hexachlorobutadiene

5

5

5

μg/L

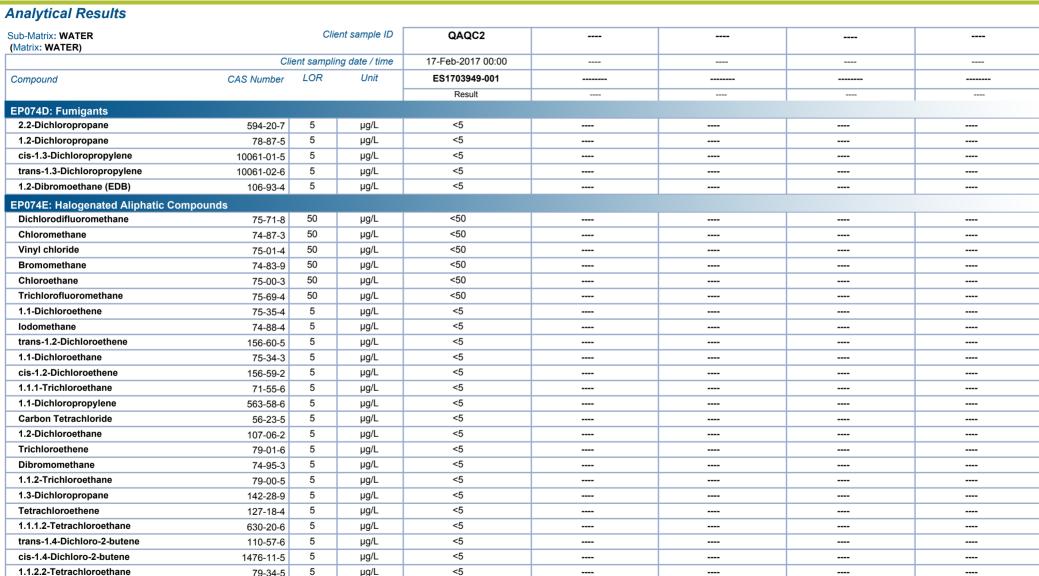
μg/L

μg/L

μg/L

96-18-4

76-01-7


96-12-8

87-68-3

Work Order : ES1703949 Amendment 1

Client : CONSULTING EARTH SCIENTISTS

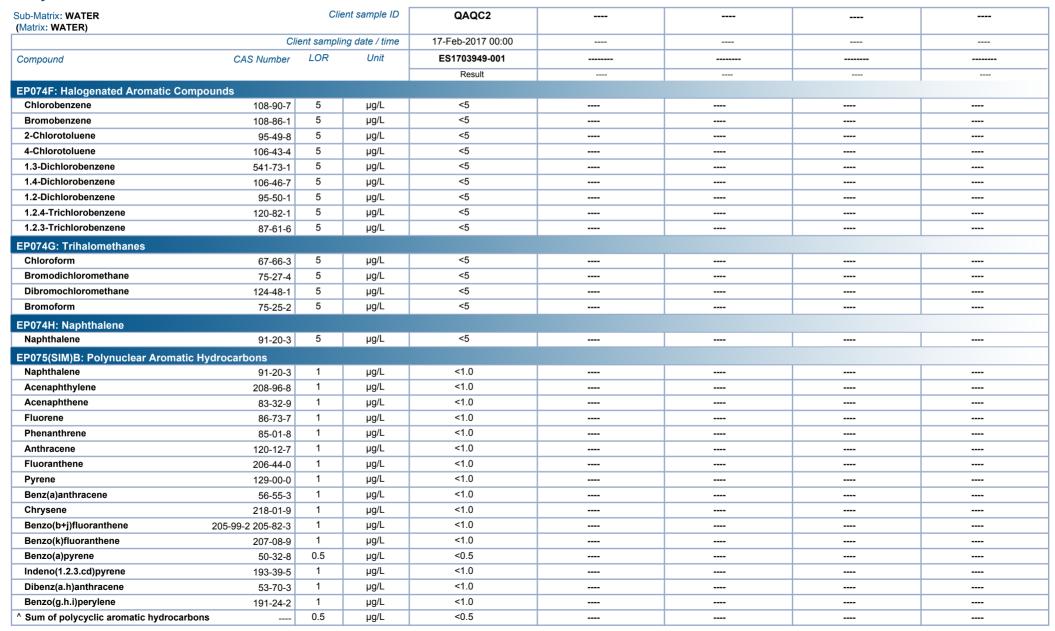
Project : CES130608-BP

<5

<5

<5

<5

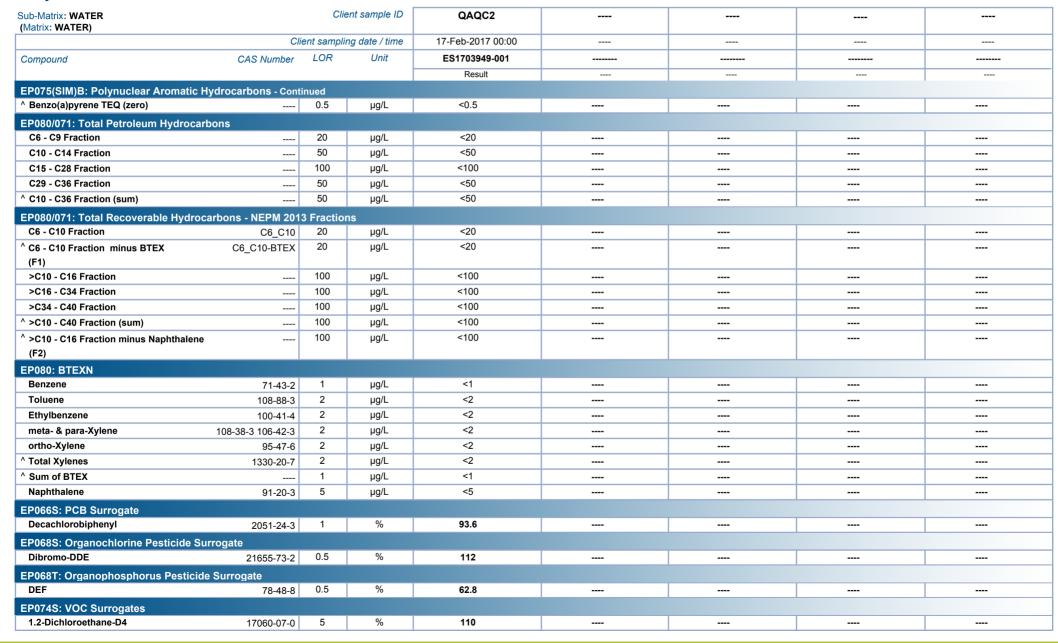


Page : 7 of 10

Work Order · ES1703949 Amendment 1

Client : CONSULTING EARTH SCIENTISTS

Project : CES130608-BP

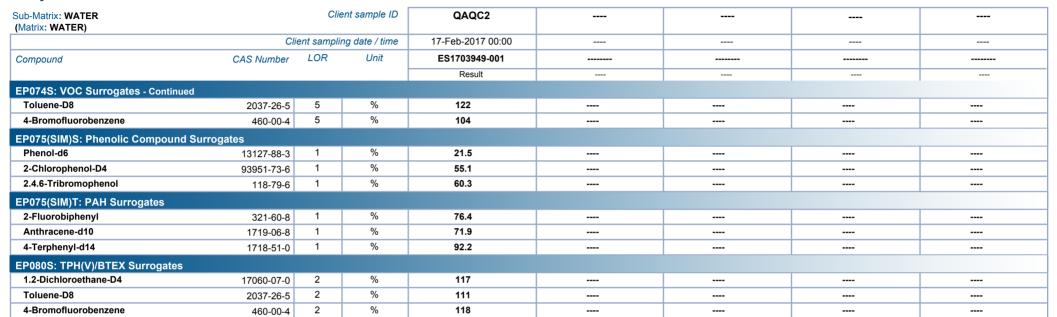


Page : 8 of 10

Work Order : ES1703949 Amendment 1

Client : CONSULTING EARTH SCIENTISTS

Project : CES130608-BP



Page : 9 of 10

Work Order : ES1703949 Amendment 1

Client : CONSULTING EARTH SCIENTISTS

Project : CES130608-BP

Page

: 10 of 10 : ES1703949 Amendment 1 Work Order

Client : CONSULTING EARTH SCIENTISTS

CES130608-BP Project

Surrogate Control Limits

Sub-Matrix: WATER		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP066S: PCB Surrogate			
Decachlorobiphenyl	2051-24-3	29	129
EP068S: Organochlorine Pesticide S	Surrogate		
Dibromo-DDE	21655-73-2	30	120
EP068T: Organophosphorus Pestici	de Surrogate		
DEF	78-48-8	27	129
EP074S: VOC Surrogates			
1.2-Dichloroethane-D4	17060-07-0	78	133
Toluene-D8	2037-26-5	79	129
4-Bromofluorobenzene	460-00-4	81	124
EP075(SIM)S: Phenolic Compound S	Surrogates		
Phenol-d6	13127-88-3	10	44
2-Chlorophenol-D4	93951-73-6	14	94
2.4.6-Tribromophenol	118-79-6	17	125
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	20	104
Anthracene-d10	1719-06-8	27	113
4-Terphenyl-d14	1718-51-0	32	112
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	71	137
Toluene-D8	2037-26-5	79	131
4-Bromofluorobenzene	460-00-4	70	128

Appendix 4 Field Data Sheets

	CES Project Code:
	Location:
Signature(s): MK	Project Manager:
·	Sample ID:
10:39	Sampling Date:
	-

Well Status			·			
Well damaged:		YES/NO	Well locks	ed:		KES/NO
Cement footing damaged:		YES/NO\	Cap on P	VC casi	ng:	YESANO
Internal obstructions in casing:		YES/NO	Well ID v	isible:		YES/NO
Standing water, vegetation around monume	ent:	YES/NO	Monumer	nt dama	ged:	YES/XO
Water between PVC and protective casing:		YES/NO	Odours fr	om grou	ındwater:	YES/NO
Well purged to dry?		YES/NO 45 Wea	ther Conditions			
Standing Water Level (SWL):	1.47	Z(mBTOC) 2.	Temperat	ure:	20	°C
Well volume:	6.2					
Water level after purging:	**************************************	(mBTOC)	Çlear	Partly	Cloudy	Overcast
Water level at time of sampling:		(mBTOC)	Cum			
Volume of water purged:	20	(L)	Calm	Slight	breeze	Moderate Breeze
Purging equipment:	_	Pump / micro-Purging /	Windy			
		Bailer / Foot Valve				
Sampling equipment:		Pump / Bailer	Fine	Show	ers	Rain

Purging Details

Ctails							
Water level mBTOC	Cumulative volume (L)	DO (mg.L ⁻¹)	EC (uS.cm ⁻¹)	рН	Eh mV	Temp. (°C)	Comments
	740 ,	054	2538	ぞな	-227.5	25.9	Grey tubid, strong
	80	0.67	2974	7.35	-2371	25.6	o money, s. turber
	ÍŠ	0.67	29672		-239.3	25.3	Crysituland bolor
	20	0.70	ZIQ OE	7.27	-239.1	25.3	orey, studid
			f			,)
·							
	Water level	Water level mBTOC Cumulative volume (L)	Water level mBTOC Cumulative volume (L) DO (mg.L ⁻¹) S 0.67 IS 0.67	Water level robust (cumulative volume (L) (mg.L ⁻¹) (us.cm ⁻¹) 054 2638 0 67 29672	Water level mBTOC Cumulative volume (L) DO (mg.L ⁻¹) EC (us.cm ⁻¹) pH (us.cm ⁻¹) 8 0.67 29.74 7.35 15 0.67 29672 7.30	Water level robust (mg.L-1) (uS.cm-1) = PH Eh mbTOC (mg.L-1) (uS.cm-1) = mV 054 2538 7.45 -227.5 0.67 27.74 7.35 -237.1 15 0.67 27672 7.30 -239.3	Water level mBTOC Cumulative volume (L) DO (mg.L¹) (us.cm¹) EC (us.cm¹) pH mV Eh mV Temp. (°C) 8 0.67 2538 7.45 -227.5 25.6 15 0.67 29672 7.30 -239.3 25.3

Groundwater field parameters at the end of purging to be marked "Field Measurements".

* Hit blockage? at 1.68 m8TOC, Roots + sard come up on slip. meter (has buzzing of bothom)

topof casing 2 @ 80 mm bgl

GROUNDWATER FIELD DATA SHEET

Client:		CES Project Code:
Project:		Location:
Sampler (s):	Signature(s): MR	Project Manager:
BHID: ABH 2100		Sample ID:
Purging Date: 16/02/17	11:00 AM	Sampling Date:

Well Status				
Well damaged:	YES/NO	Well lock	ed:	YESINO
Cement footing damaged:	YES/NO\	Cap on P	VC casing:	YESANO
Internal obstructions in casing:	YES/NO	Well ID v	isible:	YES/NO)
Standing water, vegetation around monument:	YES/NO	Monumer	nt damaged:	YES/NO
Water between PVC and protective casing:	YES/NO	Odours fr	om groundwater:	YES
			i	
Well purged to dry?	(YES/NO 1221 We	ather Conditions		
Standing Water Level (SWL):	(mBTOC) 6.48 m	Temperat	ure: 3.0	°C
Well volume:	(L)		ψ.	
Water level after purging:	(mBTOC)	Glear.	Partly Cloudy	Overcast
Water level at time of sampling:	(mBTOC)			•
Volume of water purged:	1 (L)	Calm	Slight breeze	Moderate Breeze
Purging equipment:	Pump / micro-Purging /	Windy		
Purging equipment:	Bailer / Foot Valve			
Sampling equipment:	Pump / Bailer	Fine	Showers	Rain

Purging Details

Elapsed time (min)	Water level mBTOC	Cumulative volume (L)	DO (mg.L ⁻¹)	EC (uS.cm ⁻¹)	рН -	Eh mV	Temp.	Comments	
		2_	0.98	5526		-168.1	235	Pale gray / brown / m Setubid stages	Uky ,
		8	0.77	5354	6.84	162.5	24.6	Brown/icrean, setuble	ay "
		15	0 8z	5311	6.71	-157.7	24. C	light brown , oream, tribid. od owness	
		D-20	0.85	5254	6·68	-1156	24.5	"	
			(g)						:
									;
									ر د
								2,	

Groundwater field parameters at the end of purging to be marked "Field Measurements".

& Slow recovery 1 cm = 1-2 secs.

\$491

Client:		- CES Project Code:	
Project:		Location:	
Sampler (s):	Signature(s): NAC	Project Manager:	
BH ID: A 33+12 110		Sample ID:	
Purging Date: 16102119	12:00 PM	Sampling Date:	·

Well Status	<i>a.</i>		
Well damaged:	YES/NG)	Well locked:	YES/NO
Cement footing damaged:	YES/NO	Cap on PVC casing:	YES/NO
Internal obstructions in casing,	YES/NO	Well ID visible:	YES/NO
Standing water, vegetation around monument:	YES/NO	Monument damaged:	YES/NO
Water between PVC and protective casing:	(E)/100	Odours from groundwater	YES/NO
Well purged to dry? Standing Water Level (SWL): Well volume:	YES/NO (mBTOC) Weather (L)	Conditions Temperature: 30	°C
Water level after purging:	(mBTOC)	Glear Partly Cloudy	Overcast
Water level at time of sampling:	(mBTOC)		
Volume of water purged: 0,5 4	(L)	Calm Şlight breeze	Moderate Breeze
Purging equipment:	Pump / micro-Purging / Bailer / Coot Valve	Windy	
Sampling equipment:	Pump / Bailer	Fine Showers	Rain

Purging Details

Purging D								
Elapsed time (min)	Water level mBTOC	Cumulative volume (L)	DO (mg.L ⁻¹)	EC (uS.cm ⁻¹)	pH -	Eh mV	Temp. (°C)	Comments
		0.5	208	3050	7.08	~109,s	267	orage, libid,
								-
		•						
		······································						
· ·	:							
			*					
		-	7					

Groundwater field parameters at the end of purging to be marked "Field Measurements".

bot @ 1.86 mgroz?

Very

b little recharge, but recovery,

only 500 ml brought up and put in cup

I cm = 20-30 seconds.

Top of casing = 60 mm bg 1

Client:		-	CES Project Code:
Project:			Location:
Sampler (s):		Signature(s):	Project Manager:
	11102		Sample ID:
Purging Date:	16/02/17	12:30 pm	Sampling Date:
	1		
Well Status		_	
Well damaged:		YES/NO	Well locked: YES/NO

Well Status	_		_
Well damaged:	YES/NO	Well locked:	YESINO
Cement footing damaged:	YES/NO	Cap on PVC casing:	YES/NO
Internal obstructions in casing:	YES/NO	Well ID visible:	YES/NO)
Standing water, vegetation around monument:	YES/NO	Monument damaged:	YES/NO
Water between PVC and protective casing:	YES/NO	Odours from groundwater:	YES
Well purged to dry?	EZ/NO Weathe	er Conditions	
Standing Water Level (SWL): 1.315	(mBTOC) 4.03	Temperature: 10	°C
,		· ·	
Water level after purging:	(mBTOC)	Glear) Partly Cloudy	Overcast
Water level at time of sampling:	(mBTOC)		
Volume of water purged:	у о (L)	Calph Slight breeze	Moderate Breeze
Purging equipment:	Pump / micro-Purging /	Windy	
Sampling equipment:	Bailer / Koot Valve Pump / Bailer	Fine Showers	Rain

Purging D	etails							
Elapsed time (min)	Water level mBTOC	Cumulative volume (L)	DO (mg.L ⁻¹)	EC (uS.cm ⁻¹)	pH -	Eh mV	Temp. (°C)	Comments
		2	0.30	1709	696	-135	24.8	Bran, V. Turbia,
, w. ,			1.30		6.78	-108,2	24.9	Bran, V. Turbia, octobress Rale brown, Sturbia odourless
				"16 ⁴ 4	6.71	-801	2°t. 4	ì\
				1607	6-71	-87.7	239	% k
	-		1-20					
		\$						
<u> </u>		Çi.						

Groundwater field parameters at the end of purging to be marked "Field Measurements".

Recherche waits = HHT

& & Moderate recovery.

2.715

Client:			CES Project Code:
Project:	*.		Location:
Sampler (s):		Signature(s): W-	Project Manager:
BH ID:	ABH 2105		Sample ID:
Purging Date:	16/02/17	1:00 pm	Sampling Date:

Well Status			
Well damaged:	YES/MO.	Well locked:	X ÉSINO
Cement footing damaged:	YES/NO	Cap on PVC casing:	YES/NO
Internal obstructions in casing:	YES/NO	Well ID visible:	YES/NO
Standing water, vegetation around monumer	nt: YE\$/NO	Monument damaged:	YESINO
Water between PVC and protective casing:	YEŚNÓ	Odours from groundwater:	YE8/NO
Well purged to dry?		eather Conditions	
Standing Water Level (SWL):	1.44(mBTOC) 3.87	Temperature: 30	$^{\circ}\mathrm{C}$
Well volume:) ((L)		
Water level after purging:	(mBTOC)	Clear Partly Cloudy	Overcast
Water level at time of sampling:	(mBTOC)		
Volume of water purged:	10 (L)	Calm Slight breeze	Moderate Breeze
Purging equipment:	Pump / micro-Purging /	Windy	
	Bailer (Foot Valve		
Sampling equipment:	Pump / Bailer	Kine Showers	Rain

Purging Details

Purging D	etans							
Elapsed time (min)	Water level mBTOC	Cumulative volume (L)	DO (mg.L ⁻¹)	EC (uS.cm ⁻¹)	pН	Eh mV	Temp.	Comments
· · · · · · · · · · · · · · · · · · ·		2	0.04	875	6.69	-79.2	241	Brack / dork grey V. Tibid, Strong HE o: Oak grey, turbed, HC odor
		10	0.68	845	6.59	-89.Z	23.8	Och grey, turia,
		15	0.98	3 53	6.57	-1271	23.3	tic odour
		20	0.70	8.33	6-53	747.1	225	Pula gray, S. harbit
ž.		25	1.15	δ37	6.55	-146.2	23.0	n .
· · · · · · · · · · · · · · · · · · ·		30	13.0	824	6,46	1442	22.8	N
			į					

Groundwater field parameters at the end of purging to be marked "Field Measurements".

A Strong HC adour on dup meter

A Top of casing = 40 mm bg/

A Good recovery

2.43

Client:			CES Project Code:	
Project:			Location:	
Sampler (s):		Signature(s): MQ	Project Manager:	
BH ID:	1MW 205		Sample ID:	
Purging Date:	16/02/17	"1:50 PM	Sampling Date:	

Well Status				
Well damaged:	YES/NO	Well locked	•	YES/NO
Cement footing damaged:	YES/NO	Cap on PV	C casing:	YES NO
Internal obstructions in casing:	YES/NO	Well ID vis	ble:	YES/NO
Standing water, vegetation around monume	nt: YES/NO	Monument	damaged:	YESNO
Water between PVC and protective casing:	YES/NO	Odours fror	n groundwater:	XE\$/NO
Well purged to dry?	YES/NO C ON We	eather Conditions		
Standing Water Level (SWL):	YES/NO (mBTOC) 2.04 WG	Temperatur	e: 25	°C
Well volume:	4 . (L)			
Water level after purging:	(mBTOC)	Clear 1	Partly Cloudy	Overcast
Water level at time of sampling:	(mBTOC)		- Continued to	
Volume of water purged:	(L)	Calm	Slight breeze	Moderate Breeze
Purging equipment:	Pump / micro-Purging / Bailer (Foot Valve	Windy		Comment
Sampling equipment:	Pump / Bailer	Fine)	Showers	Rain

Purging Details

rurging D	ctans							
Elapsed time (min)	Water level mBTOC	Cumulative volume (L)	DO (mg.L ⁻¹)	EC (uS.cm ⁻¹)	рН -	Eh mV	Temp. (°C)	Comments
)	0.50	3540	6.86	-244.9	23.0	Pale grey, S. terbiel
		PZ	2.23	3572	7.02	-238.8	22.7	Pole grey, S. turbed
		10-	1.31	3632	6.96	-2367	22.7	4 / grean, s. twold
				-		•		J
	_							

Groundwater field parameters at the end of purging to be marked "Field Measurements".

Purged to dry = 1st Recovered to 40 0.48 metoc

2nd " 0.45 metoc

3rd 0.45 metoc (impatient)

A Moderate recovery 10cm = 8 secs

			CES Project Code:	
Project:			Location:	
Sampler (s):		Signature(s): M	Project Manager:	
	5MW404		Sample ID:	
Purging Date:	16102117	2:30 PM	Sampling Date:	

Well Status					
Well damaged:	*	YES/NO	Well	l locked:	YESMO
Cement footing damaged:		YESNO)	Cap	on PVC casing:	YES/NO
Internal obstructions in casing:		XES/NO	Well	l ID visible:	YESANO
Standing water, vegetation around m	onument:	YBS/NO	Mon	nument damaged:	YES/NO
Water between PVC and protective casing:		YES/NO	Odo	ours from groundwater:	XE8/NO
Well purged to dry?		YES/NO We	ather Condit	ions	
Standing Water Level (SWL):	2.16	(mBTOC) 3. 64	Tem	iperature: 2-5	°C
Well volume:	6.5	(L)		\	
Water level after purging:		(mBTOC)	Clea	r Partly Cloudy	Overcast
Water level at time of sampling:		(mBTOC)	-	-	
Volume of water purged:	10	(L)	Caln	n Slight breeze	Moderate Breeze
Purging equipment:	U	Pump / micro-Purging / Bailer / Foot Valve	Win	dy	
Sampling equipment:		Pump / Bailer	Fine	Showers	Rain

Purging Details

I diging D	CHILLIS							<u> </u>	•
Elapsed time (min)	Water level mBTOC	Cumulative volume (L)	DO (mg.L ⁻¹)	EC (uS.cm ⁻¹)	pH -	Eh mV	Temp. (°C)	Comments	
		2	074	7946	7.19	-262.7	22 6	v. Pale greg, S. turbid, organic odow Atov. v pale grey/ gra v.s. turbid, organic v.v. Pale green, is. S organic odow.	
		10	0.78	11388	7.07	-277.3	21.7	Visturbed organie	oslow
		20	0.50	1157	7.08	-2821	21.6	ogenie odour.	1610
						,			
	:								٠.

Groundwater field parameters at the end of purging to be marked "Field Measurements".

* meds
weeds

* 105 ger inside well. (cable off lagger) 1.48

* Top of casing = 60 mm bg/

* coold recovery

		1 4 3		
Client:			CES Project Code:	
Project:			Location:	
Sampler (s):		Signature(s):	Project Manager:	
BH ID:	BMW403		Sample ID:	
Purging Date:	16/02/17	3:00 PM	Sampling Date:	

Well Status	<u>-</u>		^
Well damaged:	YES/NO	Well locked:	YES/NO
Cement footing damaged:	YES/NO\	Cap on PVC casing:	YE\$/NO
Internal obstructions in casing:	YES/NO)	Well ID visible:	YES/MO)
Standing water, vegetation around monument:	YES NO	Monument damaged:	YES/NO
Water between PVC and protective casing:	YESING	Odours from groundwater:	YES/NO
		÷ ,	
Well purged to dry?	YES/NO Weathe	er Conditions	
Standing Water Level (SWL): 3.50	(mBTOC) 4.66	Temperature: 75	°C
Well volume:	(L)		
Water level after purging:	(mBTOC)	Clear Partly Cloudy	Overcast
Water level at time of sampling:	(mBTOC)	<i>(4)</i>	
Volume of water purged:	(L)	Calm Slight breeze	Moderate Breeze
Purging equipment:	Pump / micro-Purging / Bailer / Foot Valve	Windy	
Sampling equipment:	Pump / Bailer	Eine Showers	Rain

Purging Details

Elapsed time (min)	Water level mBTOC	Cumulative volume (L)	DO (mg.L ⁻¹)	EC (uS.cm ⁻¹)	pH -	Eh mV	Temp. (°C)	Comments
		1	多0万	3450	6-91	-1887	23.7	Stight organiod
		3	3.82	2802	6.77	-143.5	22.9	grey, tubed, slight
		5	270	2907	6.94	-175.8	22.2	9 11
	.5							
•					:			
	2		-					***

Groundwater field parameters at the end of purging to be marked "Field Measurements".

Full recovery takes * 1937
about 1-2 ming * Top of casing = So mm bg!

*Moderate recovery.

* Preserved to 3.5/@ 1-1.51.tres

2nd - Recovered to 3.5/@ 1-5-2 litres

2nd - Recovered to 3.5/@ 1-5-2 litres

2nd - Recovered to 3.5/@ 1.5-2 litres

Client:			CES Project Code:	
Project:			Location:	
Sampler (s):	Signature(s):	MR	Project Manager:	
BHID: BMW401			Sample ID:	
Purging Date: 16/02/17 3	;40 bM		Sampling Date:	
Well Status	·-			
Well damaged:	YES/NO		Well locked:	XES/NO
Cement footing damaged:	YES/NO	. No.	Cap on PVC casing:	ves/no
Internal obstructions in casing:	YES/NC		Well ID visible:	YES/MO
Standing water, vegetation around monument:	YES/NO	•	Monument damaged:	YES/NO YES/NO
Water between PVC and protective casing:	YES/NO		Odours from groundwater:	YES/NO

Well purged to dry?

Standing Water Level (SWL):

Well volume:

Water level after purging:

Water level at time of sampling:

Volume of water purged:

Purging equipment:

Sampling equipment:

7 (mBTOC) 4.66

 $\tilde{\zeta}_{(\text{mBTOC})}^{(L)}$

(mBTOC)

£2 (L) Pump / micro-Purging /

Bailer / Koot Valve

Pump / Bailer

Weather Conditions

Temperature:

Partly Cloudy

Overcast

Slight breeze

Showers

Calm Windy

Kine

Clear)

Moderațe Breeze

Rain

Purging Details

Elapsed time (min)	Water level mBTOC	Cumulative volume (L)	DO (mg.L ⁻¹)	EC (uS.cm ⁻¹)	рН -	Eh mV	Temp. (°C)	Comments	
		0.5	2.45	941	6.85	-104.8	25.6	Stone sughty troud	Dr. Ori
		P	2.09	859	628	~7°8.8	24.3	11	On
		1.5	2.10	829	665	-101.7	23.5	11	Pr
								Recovered to	7 . `
								Fecarered to 19 4.13 mBTOC each time	
								each time	
								in about 3 min	,
								;	

Groundwater field parameters at the end of purging to be marked "Field Measurements".

1 cms 4 secs * Top of casing = 90 mm byl * Sia recovery. * logger installed Catached to itself)

Client:	· •	CES Project Code:	
Project:		Location:	
Sampler (s): MR	Signature(s): AAK	Project Manager:	
вн id: Дм/м203	•	Sample ID: AMW2	53, DAQ 4, JAQ 62
Purging Date: 17/02/17		Sampling Date: 4/02	117
Well Status		<u> </u>	
Well damaged:	YES/No	Well locked:	YESINO
Cement footing damaged:	YESANO	Cap on PVC casing:	YESINO
Internal obstructions in casing:	YES/NO	Well ID visible:	YES/NO
Standing water, vegetation around monument:	YESNO	Monument damaged:	YES/NO
Water between PVC and protective casing:	YESINO	Odours from groundwater:	YES/NO
Well purged to dry?	YES/NO Weather O	Conditions	
Standing Water Level (SWL):	(mBTOC)	Temperature: 30	· °C
Well volume:	(L)		
Water level after purging:	(mBTOC)	Clean Partly Cloudy	Overcast
Water level at time of sampling:	(mBTOC)		
Volume of water purged:	(L)	Calm Slight breeze	Moderate Breeze
Purging equipment:	Pump /micro-Purging / Bailer / Foot Valve	Windy	
Sampling equipment:	Pump / Bailer	Fane Showers	Rain

Purging Details

	Elapsed time (min)	Water level mBTOC	Cumulative volume (L)	DO (mg.L ⁻¹)	EC (uS.cm ⁻¹)	рН -	Eh mV	Temp.	Comments
9:52	0		0	0.64	9290	4.47	-594	25.6	Pale gray, storbia
	2		0.5	0.16	15261	4.52	-967	25.7	
	4	-	•	041	20082	4.61	-117.5	25-6	
	6		1.5	0.09	22120	4.67	-122.3	25.6	·
	8		2	80.0	24024	4.74	~133.7	25.5	
	10		2.5	0.08	25134	4.78	-131.7	25 ₋₅	
									Roots in water


Client:				CES Project Code:
Project:				Location:
Sampler (s):	MIK	Signature(s):	ME	Project Manager:
BH ID:	ABH2100			Sample ID: AGH 2100
Purging Date:	17/02/17			Sampling Date: 17/02/17

Well Status							
Well damaged:		YES/NO	Well lo	cked:		YESYNO	
Cement footing damaged:		YES/NO	Cap on	PVC cas	ing:	(YES/NO	
Internal obstructions in casing:		YES/NO	Well II	visible:		YES/NO	
Standing water, vegetation around monument	t:	YESNO	Monun	nent dam	aged:	YES	
Water between PVC and protective casing:		YES/NO	Odours	from gro	oundwater:	YES/NO	
Well purged to dry?		YES/NO Wea	ither Condition	s			
Standing Water Level (SWL):	64	(mBTOC)	Tempe	rature:	30	°C	
Well volume:	, O h	(L)			Ju		
Water level after purging:		(mBTOC)	Çlean -	Parth	y Cloudy	Overcast	
Water level at time of sampling:		(mBTOC)					
Volume of water purged:		(L)	Calm	(Sligh	t breeze	Moderate Breeze	
Purging equipment:		Pump / micro-Purging /	Windy				
		Bailer / Foot Valve					
Sampling equipment:		Pump / Bailer	Fine	Shov	ers	Rain	

Purging Details

10:45

Elapsed time (min)	Water level mBTOC	Cumulative volume (L)	DO (mg.L ⁻¹)	EC (uS.cm ⁻¹)	рН. -	Eh mV	Temp. (°C)	Comments
9		0	1.56	6041	4.04	72.6	25.5	Multing, s. twoid,
2_		0.5	0.93	5461	6.69	-104.6	25.6	
et-		(୦.ଖ	5354	6.60	-105.3	25.4	
б		1.5	0.83	5307	6.53	-105.2	25.3	
8		2	0.76	5263	6-51	-los.3	25.B	
		-						

Client:

Project:

GROUNDWATER FIELD DATA SHEET

Sampler (s):	Signature(s): [W	Project Manager:	
BH ID: ABH 2110		Sample ID:	
Purging Date: 17 102 17		Sampling Date:	
Well Status			
Well damaged:	YES/NO	Well locked:	YESNO
Cement footing damaged:	YES/NO	Cap on PVC casing:	VES/NO
Internal obstructions in casing:	YES/NO	Well ID visible:	YESANO
Standing water, vegetation around monument:	YES/NO	Monument damaged:	YESANO
Water between PVC and protective casing:	TEN SO	Odours from groundwater:	YES/NO
Well purged to dry?	YES/NO	Weather Conditions	
	9 (mBTOC) 1.86	Temperature: 30	$^{\circ}\mathrm{C}$
Well volume:	(U)		

Water level after purging:

Water level at time of sampling:

Volume of water purged:

Purging equipment:

Pump / micro-Purging / Windy

Bailer / Foot Valve

Calm Slight breeze Moderate Breeze

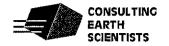
Partly Cloudy

Overcast

CES Project Code:

Location:

Pump / Bailer Cline Showers Rain


Purging Details

Sampling equipment:

Elapsed time (min)	Water level mBTOC	Cumulative volume (L)	DO (mg.L ⁻¹)	EC (uS.cm ⁻¹)	рН -	Eh mV	Temp. (°C)	Comments
0		0	2-77	4189	682	-85.2	27.)	
				41				with the same of t
		140 S1	JUN9 1	LE	WEH	T 04	24.	
	-							

Groundwater field parameters at the end of purging to be marked "Field Measurements".

11:30

Client:			CES Project Code:
Project:			Location:
Sampler (s):	MR	Signature(s):	Project Manager:
BH ID:	ABH202	•	Sample ID: ABH1202
Purging Date:	17/02/17		Sampling Date: 17/02/17

Well Status							
Well damaged:		YES/NO		Well lock	ed:		YE\$/NO
Cement footing damaged:	YES/NO\		Cap on P	ing:	YE\$/NO		
Internal obstructions in casing:		YES/NO		Well ID v	isible:		YES/NO
Standing water, vegetation around mo	nument:	YES/NO	Monument damaged:		iged:	YES/NO	
Water between PVC and protective ca	ising:	YEY/NO		Odours fr	om gro	undwater:	YES/AO
Well purged to dry?		YES/NO	Weather C	onditions		an and	
Standing Water Level (SWL):	1.49	(mBTOC)		Temperat	ure:	30	°C
Well volume:		(L)					
Water level after purging:		(mBTOC)		Clear	Partly	Cloudy	Overcast
Water level at time of sampling:		(mBTOC)		,			
Volume of water purged:		(L)	₹*	Calm	Slight	breeze	Moderate Breeze
Purging equipment:		Pump / micro-Purgin	.g /	Windy	C.		
		Bailer / Foot Valve					
Sampling equipment:		Pump / Bailer		Rine	Show	rers	Rain

Purging Details

	I urging D	CLAMS								
	Elapsed time (min)	Water level mBTOC	Cumulative volume (L)	DO (mg.L ⁻¹)	EC (uS.cm ⁻¹)	pH -	Eh mV	Temp.	Comments	
11:25	0		0	1.22	1833	7.23	-96.8	26.9	brown solutions	`wbu
	2		o ·5	0.34	1706	6.73	-102.4	26.4		
	4		ÿ	0.26	1679	6.64	-105.7	25.9		
•	6		1.5	0.18	1660	6.59	-109.9	25.5		
	S			0.16	1658	6.57	-113.3	25.3		
	·									
										
			<u> </u>							

Client:		CES Project Code:
Project:		Location:
Sampler (s): MR	Signature(s): ML	Project Manager:
ви ф: АВи 2105		Sample ID: ABH2105
Purging Date: 17/02/17		Sampling Date: 17/02/17

				- 7		
Well Status	-					
Well damaged:		YES/NO		Well loc	ked:	YESINO
Cement footing damaged:		YES/NO \		Cap on	YES/NO	
Internal obstructions in casing:		YES/NO		Well ID	visible:	YES(NO)
Standing water, vegetation around monument:		YES NO		Monum	ent damaged:	YES/NO
Water between PVC and protective casing:	•	YESNO		Odours	from groundwater	: YES/NO
Well purged to dry?		YES/NO	Weather C	onditions	1	
Standing Water Level (SWL):	50	(mBTOC)		Tempera	ature: 30	°C
Well volume:	0	(L)			حب	
Water level after purging:	,	(mBTOC)		Clear	Partly Cloudy	Overcast
Water level at time of sampling:		(mBTOC)				
Volume of water purged:		(L)		Calm	Slight breeze	Moderate Breeze
Purging equipment:		Pump / micro-Purgin	ਫ਼ੋ/	Windy	THE OWNERS OF THE OWNER, THE OWNE	
		Bailer / Foot Valve	;			
Sampling equipment:	,	Pump / Bailer		Ffee>	Showers	Rain

Purging Details

1136

Elapsed time (min)	Water level mBTOC	Cumulative volume (L)	DO (mg.L ⁻¹)	EC (uS.cm ⁻¹)	рН -	Eh mV	Temp. (°C)	Yellon Comments
0		Ó	1.15	1119	572	-120.1	261	strong HC oclast
2		0.5	0.30	1039	5.39	-125.0	24.9	
4		Ů	2.18	1025	5.27	-121.7	24.7	
6		1.5	0.14	1018	5.17	-118.2		
S		2	0.13	1015	5.07	-113.8	24.7	
lo		2.5	0.14	1013	5.02	-110.2	24.7	
							•	

Client:	<i>č</i>	CES Project Code:
Project:		Location:
Sampler (s):	Signature(s): NAK	Project Manager:
BHID: AMWAOS		Sample ID: AMABOS
Purging Date: 17/02/12		Sampling Date: 17/02/17
• • • • • • • • • • • • • • • • • • • •		
Well Status		
Well damaged:	YES/NO	Well locked: YE\$/NO

	•	
YES/NO	Well locked:	YE\$/NO
YES/NC	Cap on PVC casing:	VES/NO
YES/NO	Well ID visible:	YES/NO)
YES/NO	Monument damaged:	YES/NO
YES/NØ	Odours-from-groundwater	-XE\$/NO
YES/NO	Weather Conditions	
(mBTOC)	Temperature:	°C
(L)	_	
(mBTOC)	Clear Partly Cloudy	Overcast
(mBTOC)		
(L)	Calm Slight breeze	Moderate Breeze
The second of th	-	
Pump / Bailer	Fine Showers	Rain
	YES/NO YES/NO YES/NO YES/NO YES/NO (mBTOC) (mBTOC) (mBTOC) (mBTOC) (L) Pump / pricro-Purgin Bailer / Foot Valve	YES/NO Cap on PVC casing: YES/NO Well ID visible: YES/NO Monument damaged: YES/NO Codours-from-groundwater: YES/NO Weather Conditions (mBTOC) (L) (mBTOC) (mB

Purging Details

Elapsed time (min)	Water level mBTOC	Cumulative volume (L)	DO (mg.L ⁻¹)	EC (uS.cm ⁻¹)	pH -	Eh mV	Temp. (°C)	Comments
0		0	1.60	3837	6.54	-202	23.3	Coloness/chear
2		05	0.20	3761	5.97	-211.8		Colonless/chear Strong organic odor
4		1	0.11	3774	5.79	-2147	23.3	•
6		1.5	0.12	3787	5.68	-215.5	23.3	
8		2	0.13	3790	5.7 2	-222.5	23.3	
PO		2.5	0.12	3791	5.67	-220-1	23.3	
	. 1						·	
								·

Groundwater field parameters at the end of purging to be marked "Field Measurements".

12:33

Client:		CES Project Code:
Project:		Location:
Sampler (s):	Signature(s): MK	Project Manager:
ви ф: ЗМИЧОЧ		Sample ID: BMV1404
Purging Date: 17/02/17		Sampling Date: 17/02/17
	·	

•						•	
Well Status				٩		·	_
Well damaged:		YES/NO		Well lock	ed:		YENO
Cement footing damaged:		YES/NO		Cap on P	VC cas	sing:	kea No
Internal obstructions in casing:		YES/NO		Well ID v	isible:		YES/NO
Standing water, vegetation around monume	ent:	YES/NO		Monumer	ıt dam	aged:	YESNO
Water between PVC and protective casing:	!	YES/NO		Odours fr	om gro	oundwater:	VES/NO
Well purged to dry?		YES/NO V	Weather	Conditions			
Standing Water Level (SWL):	2.24	(mBTOC)		' Temperat	ure:	20	°C
Well volume:		(L)		٠		- And	
Water level after purging:		(mBTOC)		Clean	Parth	y Cloudy	Overcast
Water level at time of sampling:		(mBTOC)	-				
Volume of water purged:		(L)		Calm	Sligh	t breeze	Moderate Breeze
Purging equipment:		Pump / micro Purging	/	Windy			
		Bailer / Foot Valve					
Sampling equipment:		Pump / Bailer		Fine,	Shov	vers	Rain
				-			

Purging Details

Purging D	Ctails							
Elapsed time (min)	Water level mBTOC	Cumulative volume (L)	DO (mg.L ⁻¹)	EC (uS.cm ⁻¹)	pH -	Eh mV	Temp. (°C)	Comments
0		0	0.68	12361	6.79	-2968	22.7	organic sodow
2		0.5	0.18	14019	6.95.	-309.4	22.5	,
4		1	0.15	14820	6.93	-311.7	22.5	
દ		1.5	0114	14142	6.92	-313.9	22.4	
								·
ż*								

Client:

GROUNDWATER FIELD DATA SHEET

CES Project Code:

Fine

Showers

Rain

Project:		Location:
Sampler (s): M.L.	Signature(s): MR	Project Manager:
BH ID: BMW403		Sample ID: Brown 03
Purging Date: 17/02/17		Sampling Date: 17 102 17
,		,
Well Status	•	
Well damaged:	YES/MO	Well locked; ÆESNO
Cement footing damaged:	YES/NO \	Cap on PVC casing: YES/NO
Internal obstructions in casing:	YES/NO \	Well ID visible: YES/NO
Standing water, vegetation around monument:	YESNO	Monument damaged: YES/NO
Water between PVC and protective casing:	YES/NO	Odours from groundwater: YES NO
Well purged to dry?	YES/NO	Weather Conditions
Standing Water Level (SWL):	50 (mBTOC)	Temperature: 🗘 °C
Well volume:	(L)	3 -
Water level after purging:	(mBTOC)	Clean Partly Cloudy Overcast
Water level at time of sampling:	(mBTOC)	
Volume of water purged:	(L)	Calm Slight breeze Moderate Breeze
Purging equipment:	Pump / Micro-Purging	g/ Windy *

Bailer / Foot Valve

Pump / Bailer

Purging Details

Sampling equipment:

	rurging D	etans							
	Elapsed time (min)	Water level mBTOC	Cumulative volume (L)	DO (mg.L ⁻¹)	EC (uS.cm ⁻¹)	рН -	Eh mV	Temp. (°C)	Comments
:35	0		0	1.00	3077	7.02	-135.0	23.8	V. Pale brown, S. turbe
	2		0.5	0.53	1939	6.64	-164.3	22.9	V. Pale brown, S. tube S. organic ador
	4			0.52	1817	6.54	-192.8	22.9	0
	6		1.5			6.49	-200.0	22.9	
	જ		2_	037		6.	-190.3	22.9	
	10		2.5	0.35	1721	6.30	-1852	22.9	
1									

Client:		CES Project Code:
Project:		Location:
Sampler (s): WK	Signature(s):	Project Manager:
BHID: BMWWYOI		Sample ID: RAWY())
Purging Date: 17/02/17		Sampling Date: 17 07 17+

Well Status	, to 14			
Well damaged:	YES/NO	Well locke	ed:	NES/NO
Cement footing damaged:	YES/NO	Cap on PV	/C casing:	YE\$/NO
Internal obstructions in casing:	YESNO	Well ID vi	sible:	YES/NO)
Standing water, vegetation around monument:	YESANO	Monumen	t damaged:	YES/NO
Water between PVC and protective casing:	YES/NO	Odours fro	om groundwater:	YES/
Well purged to dry?	YES/NO Weathe	r Conditions	90	
Standing Water Level (SWL):	(mBTOC)	Temperati	ire: 30	°C
Well volume:	(L)			
Water level after purging:	(mBTOC)	Clear	Partly Cloudy	Overcast
Water level at time of sampling:	(mBTOC)		- Indiana	
Volume of water purged:	(L)	Calm	Slight breeze	Moderate Breeze
Purging equipment:	Pump / micro-Purging / Bailer / Foot Valve	Windy		
Sampling equipment:	Pump / Bailer	Fine	Showers	Rain

Purging Details

1	I diging D	· · · ·		-					
i	Elapsed	Water level	Cumulative	DO	EC	pН	Eh	Temp.	
	time (min)	mBTOC	volume (L)	(mg.L ⁻¹)	(uS.cm ⁻¹)	-	mV	(°C)	Comments
2:05	9	·		1.03	ઈ જે છૈ	7.09	-130	23.4	v. Pale brown yellow v. s. two ell odowness
	2		0.5	0-43	827	6.5%	-135.9	22.7	odowless
	<i>1</i>)	0.37	814	645	-141.5	22.6	
	6		1,5	0.32	606	6.55	-1557	22.6	
	G		2	0.30	804	6.54	-150.2	225	
	_								

Groundwater field parameters at the end of purging to be marked "Field Measurements".

Robbanes.

airmet

10/02/2017

Instrument

Geotech Interface Meter (60M)

Serial No.

4037

Air-Met Scientific Pty Ltd 1300 137 067

Item	Test	Pass	Comments
Battery	Compartment	✓	
	Capacity	1	8.8
Probe	Cleaned/Decon.	· ·	
	Operation	V	
Connectors	Condition	✓	
		✓	·
Tape Check	Cleaned	✓	
Connectors	Checked for cuts	✓	
Instrument Test	At surface level	✓	
1			

Certificate of Calibration

This is to certify that the above instrument has been cleaned and tested.

Calibration date:

Calibrated by:

10/02/201/7

Next calibration due:

11/04/2017

airmet

15/02/2017

Instrument

YSI Quatro Pro Plus

Serial No.

12D100012

Air-Met Scientific Pty Ltd 1300 137 067

Item	Test	Pass	Comments
Battery	Charge Condition	V	
	Fuses	✓	
-	Capacity	*	
Switch/keypad	Operation	✓	
Display	Intensity	✓	
	Operation (segments)	✓	
Grill Filter	Condition	✓	
	Seal	✓	
PCB	Condition	✓	
Connectors	Condition	✓	
Sensor	1. pH	1	
	2. mV	-	
	3. EC	· ·	
	4. D.O	*	
	5. Temp	*	
Alarms	Beeper		
	Settings		····
Software	Version		
Data logger	Operation		
Download	Operation		
Other tests:			

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Serial no	Standard Solutions	Certified	Solution Bottle	Instrument Reading
				Number	
1. pH 10.00		pH 10.00	Ì	291176	pH 9.72
2. pH 7.00		pH 7.00		288773	pH 6.84
3. pH 4.00		pH 4.00		288994	pH 4.20
4. mV		229.6mV		OB1388/OB1390	229.5mV
5. EC		2.76mS		290786	2.76mS
6. D.O		0.00ppm		4347	0.00ppm
7. Temp		22.0°C		MultiTherm	21.8°C

Calibrated by:

Joanna Wong

Calibration date:

15/02/2017

Next calibration due:

14/08/2017

MONITORING WELL DEVELOPMENT FIELD DATA SHEET

Sampler (s):	Project:	Client:
Signature(s):		
Project Manager:		CES Project Code:

Well Development Record

The state of the s		
FU 2.52/2.54 3.56/3.56	BMbs for	12/06/09
FU 3.49/100 4.57/4.57	BMLWG03 F	12/06/09
AN 0.96/2.21 2.53/2.58	Brustor &	1406/08
FU 3.92/4.09 4.57/457	J. MWG	12/06/09
FV 1.17/2.50 2.62/2.62	Byward F	21.5.08
=U 2.45/2.43 3.56/3.53	BMW404 F	21.5.08
3.57/4.40 4.49/4.49	BMW403 F	21.5.08
4.04/4.20 4.57/4.57	8 100 MMB	21.5.08
verlopment Standing Water Level Depth to Bottom of Well Water Volume Removed Method (5) (before/after) (before/after) (L)	Well ID Dev	Date
Depth to Bottom of Well (before/after) 4.49/4.49 3.56/3.57	oment d(S)	Development Method (s)

GROUNDWATER FIELD DATA SHEET

		CES Project Code:	CES050706-BCC
Client: Boyds Cooks Cove		Location: Area	В
Project: Kograh Golf Course			Petrozzi
Sampler (s): J4	Signature(s):		
BH ID: BBH 304	·	Sample ID: 1806	08-06-LJ
Purging Date: 18/06/08		Sampling Date: 18/0	6/08
			(
Well Status			
Well damaged:	YES/NO)	Well locked:	(YESANO
Cement footing damaged:	YES (NO)	Cap on PVC casing:	YES(NO)
	YESINO	Well ID visible:	YES/NO)
Internal obstructions in casing:	A (055)	Monument damaged:	YESMO)
Standing water, vegetation around monument	YESMO - MASS YESMO COUCLED	Odours from groundwa	
Water between PVC and protective casing:		Odonis ilom Bionnews	
Comments: sand falling into Well	from no cap.		
- 1 THE T LEADING 117	(mBTOC) Weather C	onditions	
Standing Water Level (SWL): 0-43	(22-1-)	Temperature (15-20)	20-25
Well volume:	(L)		>30
Water level after purging: 0 - 47	(mBTOC)	25-30	
Water level at time of sampling: 0-47	(mBTOC)	Clear Partly cloudy	Overcast
Volume of water purged: 23	(L)	Calm Slight breeze	Moderate Breeze
Well purged to dry?: YES/NO)		Windy	
Purging equipment: Pump/micro-	Purging / Bailer / Foot valve	Fine Showers	Rain
Sampling equipment: Pump/Bailer	TFoot valve peristantic		

22

Purging Det	ails	_		W2				
Elapsed time (min)	SWL m BTOC	Cumulative volume (L)	DO (mg L ⁻¹)	EC (uS-cm ⁻¹)	р Н -	Eh (mV)	Temp. (°C)	Comments
10:17	0.47	4	-0-01	6 39ms	695	-99	19.0	Slightforbid, SIME, partial matter, black green / Hzs odour
1073	0.47	8	- 0.08	6.96ms		-137	10 1	9
10:34	0.47	12	-0.14	6.21	6.99		18.2	clow don't brown, some p. matter, MZS od
10:47	0.47	ib	-0.04	6.25	7.02	- 184	18-1	clear 114hd bown; some p.matte, Hzsoda
10:47	0.47	20	-0.07	6.32	7.03		18.1	11
10:56	0.47	24	-0.16	6-41	7.04	-196	18.1	((
10.03	0.41	23	-0.23	6.44	7.05	-211	18.0	Clear, boun, Hzsodour
	·							

Purging Det				-	777	m	C
SWL	Cumulative	DO	EC .	$\mathbf{p}\mathbf{H}$	Eh	Temp.	Comments
m BTOC	volume (L)	$(\operatorname{mg} L^{-1})$	(uS cm ⁻¹)	-	(mV)	(°C)	
CES Groundwater				vision 1. Undate	0014413003		Page 1

Client: Boyds Cooks Cove Project: Kograh Golf Course Sampler (s): Chlud Signature(s) BH ID: BMV GDO GO	CES Project Code: CBS050706-BCC Location: Area & Project Manager: Petrozzi Sample ID: 120608-01-45 Sampling Date: 12-06-08
Well Status Well damaged: YES/NO Cement footing damaged: YES/NO Internal obstructions in casing: YES/NO Standing water, vegetation around monument: YES/NO Water between PVC and protective casing: YES/NO Comments:	Well locked: YESNO Cap on PVC casing: YES/NO Well ID visible: YES/NO Monument damaged: YES/NO Odours from groundwa YES/NO
Standing Water Level (SWL): 3.96 (mBTOC) Well volume: (L) Water level after purging: C4.0 (mBTOC) Water level at time of sampling: 4.0 (mBTOC)	Weather Conditions Temperature (5-20) 20-25 25-30 >30 Clear Partly cloudy (verdast

Calm Windy

Fine

Moderate Breeze

Rain

Slight breeze

Durwing Datails

Volume of water purged:

Well purged to dry?:

Purging equipment: Sampling equipment:

Purging Det Elapsed	SWL	Cumulative	DO	EC _1	pН	Eh	Temp.	Comments
time (min)	m BTOC	volume (L)	(mg L ⁻¹)	(uS cm ⁻¹)	-	(mV)	(0)	0/2 1 1 1 1 1 1 1 1
10:42	4.00	4	0.16	938	6.32	102	21.1	Clear, brown tot Colocaless.
0 - 55	4.00	e	0.06	937	6.33	100	21-1	c/c/odomkes
14:09	4.0	12	-0.101	939	6.32	99	21-1	r. u
11:26	4.0	16	-0.07	942	6.31	87	21.1	C/c /oclowless
11:42	4.0	20	-0.16	944	6.30	85	21.1	clear i colombis
(1- (-								keold neosurements.
<u></u>		 						
	 			-	 			
				 			 	
			<u> </u>		 		-	
	1	1		1	1			

Groundwater field parameters at the end of purging to be marked "Field Measurements".

20

YES/NO

(L)

Purp / mero-Purping / Bailer / Foot valve

religionent reging Det SWL	Cumulative	DO (mg L ⁻¹)	EC (uS cm ⁻¹)	pН	Eh (mV)	Temp.	Comments
m BTOC	volume (L)	(mg L)	(us cm)		(1111)	- ()	
	Field Data Sheet			vision 1. Undate	004440003		Page

		CES Project Code: CES050706-BCC
Client: Boyds Cool		/ CES 120/100
Project: Kograh Gol	f Course	Location: Area 4
Sampler (s): Jenki	Signature(s)	Project Manager: Petrozzi
BH ID: BMW 402		Sample ID: 170608-05-45
	.08	Sampling Date: 126.08

Well Status

Well damaged: Cement footing damaged: YESANO

Standing water, vegetation around monument: YES

Well locked:

Cap on PVC casing:

Well ID visible: Monument damaged:

Odours from groundwa

YES/NO,

YES/NO

Comments:

Well volume:

Standing Water Level (SWL):

Water level after purging:

Volume of water purged:

Well purged to dry?:

Purging equipment:

Sampling equipment:

Water level at time of sampling:

Internal obstructions in casing:

Water between PVC and protective casing:

2.13

2.18

(mBTOC)

(L)

(mBTOC)

(mBTOC) 2.18

Pump / micro-Purging / Bailer / Foot yalve rump/Bailer/Foot valve

Weather Conditions

Temperature (5-20)

25-30

Partly cloudy Clear

Calm

Slight breeze

Moderate Breeze

Windy Fine

Showers

Rain

20-25

Oxercaşi

>30

...ina Dataile

Purging Det	SWL	Cumulative	DO	EC	pН	Eh	Temp.	Comments
Elapsed time (min)	m BTOC	volume (L)	$(mg L^{i})$	(uS cm ⁻¹)		(mV)	(°C)	<u> </u>
15:19	2.18	5	0.13	2.32	6.76	-171	18.1	Pale byour fut oclowless.
15:26	2.18	10	-0-18	2.60	6.80	-162	19.2	4
15:34	2-18	15	-0.23	2.70	6.78	-168	19.2	Pak bour hwo!
15:44	2.18	20	-0.24	2.75	6.78	- 167	14.2	4
15:52	2.18	25	-0.25	2.78	6.77	-167	19.3	Field masonement.
					<u></u>			
			1					
			 					
				<u> </u>	<u> </u>			·
		(1,	<u> </u>	1-4 97%	old Magazire	mentell		

Groundwater field parameters at the end of purging to be marked "Field Measurements".

Development

Porcing Details

21.5.08

2:30pm

SWL	Cumulative	DO	EC	pН	Eh	Temp.	Comments
m BTOC	volume (L)	$(\operatorname{mg} \operatorname{L}^{-1})$	(uS cm ⁻¹)	-	(mV)	(°C)	
2.50	5	2.15	2744	7-33	-197	19.1	Drown V. furbil octobress
2.50	10	2.60	3:07	2.28	-188	19.3	Brown . turbed odowless
2.30							
GES Groundwater			January 2, 13	evision 1. Undat	e/i 06/11/2002		Page 1

Client: Boyds Cooks Cove	CES Project Code: CES050706-BCC
1 0 100	Location: Avea B
	Signature(s): Project Manager: Petrozzi
Sampler (s): 3 Ch/lus	Sample ID: 170608-02-L5
BH ID: BMW 403	Sampling Date: 17.6.08
Purging Date: 12.6.08	

Well Status

Well damaged: Cement footing damaged: YESÆ Internal obstructions in casing: Standing water, vegetation around monument: YESO Water between PVC and protective casing:

Well ID visible: Monument damaged: Odours from groundwa

YES(NO) YES/NO

YES/NO

(YES/NO

YESONO

Comments:

Standing Water Level (SWL): Well volume:

3.48 (mBTOC) 3.59

(L) (mBTOC)

Weather Conditions Temperature (15-20) 25-30

20-25 >30

Water level after purging: Water level at time of sampling: Volume of water purged:

3.59

(mBTOC) (L)

Clear Calin

Well locked:

Cap on PVC casing:

Partiy cloudy Overcast Slight breeze Moderate Breeze

Well purged to dry?: Purging equipment:

Sampling equipment:

Pump / micro-Purging / Bailer / Foot valve perestaltie Pump / Bailer / Foot valve

Windy Fine

Showers

Rain

Purging Det			DO.	EC	pН	Eh	Temp.	Comments
Elapsed time (min)	SWL m BTOC	Cumulative volume (L)	DO (mg L ¹)	(uS cm ⁻¹)		(mV)	(°C)	
12:32	3-8859	5	-0.01	2.94	6.77	-96	20.6	Pale brown / yellow hat I
12:44	3.57	10	-0.01	2 - 59	6.78	- 94	20.6	a ~
12:59	3-59	15	-0.03	2.50	6.78	-94	20.6	4
13:17	7.59	20	-0.01	2.46	6.77	-87	20.6	Pale brown / yellow S. tuhid Odowless
13:32	3.59	25	0.01	2.46	6.77	- 93	20.5	S. tuhid odowless
								
	 							
			 					
			1			<u> </u>		·
i	1	F	1	ı	l			

Groundwater field parameters at the end of purging to be marked "Field Measurements".

Development

21.5.08 Parging Details 1:30pm Temp. Comments Eh EC pHDO Cumulative SWL (°C) (uS cm⁻¹) (mV) $(\operatorname{mg} L^{-1})$ volume (L) m BTOC Dark brown V.tu 20-5 2-10 -2 2360 سي 2.90 4.40 Oarh boun 7.09 - 11 20.4 2202 2-68 10 4.46 Page 1 ES Groundwater Field Data She

		CES Project Code: CES050706-BCC
Client: Boyds Cooks Cove		Location: Area A
Project: Kograh Golf Course		Project Manager: Petrozzi
Sampler (s): Senhuis	Signature(s):	Sample ID: 170608 -02/04/LT
BH ID: BMW 404		Sampling Date: 12 · 6 · 08
Purging Date: 12.6.08		Bamping Date: 17 to 5

Well Status

YES/NO Well damaged: YES/NO Cement footing damaged: YES/NO Internal obstructions in casing: Standing water, vegetation around monument: YES/

Water between PVC and protective casing: Comments:

Standing Water Level (SWL): Well volume:

Water level after purging: Water level at time of sampling:

Volume of water purged:

Well purged to dry?: Purging equipment: Sampling equipment: 2.38 (L) 2 · 4 (mBTOC)

2.45 (mBTOC) 25 (L)

YES/NO Pump/micro-Purging/Bailer/Foot valve Pump/Bailer/Foot valve Perstallic

(mBTOC)

Weather Conditions

Temperature (15-20

Clear

Fine)

Well locked:

Cap on PVC casing:

Monument damaged:

Odours from groundwa

Well ID visible:

25-30 Partly cloudy Slight breeze

Calm Windy

Showers

Rain

20-25

Overcas

Moderate Bre

>30

YES/NO

WES/NO

YES/NO

YESNO

XES/NO

Durging Details

Purging Det				TO C	»II	Eh	Temp.	Comments
Elapsed time (min)	SWL m BTOC	Cumulative volume (L)	DO (mg L ¹)	EC (uS cm ⁻¹)	р Н 	(mV)	(°C)	
14:01	2.44	5	Q -0.33	15.02	6.89	-290	19.7	Black . V turbel rich organic odon.
14:08	2.45	10	-0.33	15.30	6.90	-292	19.7	4
14:17	2-45	15	-6.23	15-53	6.88	- 291	19-7	le k
14.28	2-45	20	-0.31	15.74	6.87	-298	19-7	a
	2.45	25	-0.33	15.80	6.83	- 299	19.7	Plack V, habid Mich organic octom. Protel resources.
14:35	2 14		 				Ī	nich organic oclow.
	 	L.	 					Feolel neasurements.
		<u> </u>		1				
ļ								
			 					
	 		-		 		1	
	 		-		1	+		
1	Ì			<u> </u>	1	1		

Groundwater field parameters at the end of purging to be marked "Field Measurements".

Developing 21.5.08 2:000m

*10.5			nH	Eh	Temp.	Comments
			p	1	ţ -	
volume (L)	(mg L 1)	(us cm)	-		<u> </u>	1 11 111 11 11 11
25	0-11	16-39	6.98	-31/	19. 2	Dark brew V. tertich He sodoen.
<u></u>	6.29	144.000	698	-307	19.8	Pale bour Med for hill Het odeur
				- 207	19.7	Pale brown Mod Lubid H2S,
75	0.21	14.74	6, 7,	1 307	//·/	octour.
		1		<u> </u>		
						Page 1
	Cumulative volume (L)	Cumulative volume (L) DO (mg L ⁻¹) 25 0-11 CO 6 · 2 · 9	Cumulative volume (L) DO (mg L ⁻¹) EC (uS cm ⁻¹) 25 0-11 /6-39 CO 6-29 /4-44 75 0-21 /4-74	Cumulative volume (L) DO (mg L ⁻¹) EC (uS cm ⁻¹) pH (uS cm ⁻¹) 25 0-11 16-39 6.98 CO 6.29 140-44 695 75 0.21 140-74 6.95	Cumulative volume (L) DO (mg L ⁻¹) EC (uS cm ⁻¹) pH (mV) Eh (mV) 25 0-11 /6-39 6-98 -31/ CO 6-29 /4-44 6-97 -307	Cumulative volume (L) DO (mg L ⁻¹) EC (uS cm ⁻¹) pH (mV) Eh (Temp. (mV) Temp. (°C) 25 0-11 16-37 6.98 -311 19.9 CO 6.29 14-44 6.98 -307 19.8 75 0-21 14-74 6.95 -307 17.7

Client:	Boyds Cooks Cove		CES Project Code: CES050706-BCC
Project:	Kograh Golf Course		Location: Avea A
Sampler (s):	K. Weir 1L. Jenkins	Signature(s):	Project Manager: Petrozzi
BH ID:	Amw203		Sample ID: 290508-01-LT
Purging Date			Sampling Date: 29.05-08

Well Status

Well damaged:

VES/10

Cement footing damaged:

YES/10

Cap on PVC casing:

YES/10

Internal obstructions in casing:

YES/10

Standing water, vegetation around monument: YES/10

Water between PVC and protective casing:

Well ID visible:

YES/10

Monument damaged:

YES/10

Odours from groundwa

YES/10

Under the standard of the stand

Standing Water Level (SWL):

1.59

(mBTOC)

Weather Conditions

Temperature 15-20

Well volume: Water level after purging: (L) 1.64 (mI

(mBTOC)

. .

25-30

Water level at time of sampling:

1.64

(mBTOC)

Clear

Partly cloudy Ove

Volume of water purged:

25

(L)

Calm

Slight breeze Moderate Breeze

Well purged to dry?:

YES/NO

YES/NO

Windy

Showers Rain

Purging equipment: Sampling equipment: Pump / micro-Purging / Bailer / Foot yalve
Pump / Bailer / Foot valve / Personal Page 1

Purging Details

Elapsed time (min)	SWL m BTOC	Cumulative volume (L)	DO (mg L ⁻¹)	EC (uS cm ⁻¹)	р Н -	Eh (mV)	Temp. (°C)	Comments
9:48	1-63	5	6.39	12.59	7.07	-131	20.1	Almost C/C grey brown hat.
9.53	1-64	40	0.27	10.39	7.09	-152	20.1	
9:59	1-64	15	0.22	10-15	7-10	- 167	20.1	brown hit He Soclar
10:05	1.64	20	0.18	9-72	7-11	427 128	20.1	, Tc
10510	1.64	25	0.18	9.64.	7.12	-180	20.1	brown funt the sader
								Keild sen, de.
3								
								· · · · · · · · · · · · · · · · · · ·

Groundwater field parameters at the end of purging to be marked "Field Measurements".

Development

Purging Details 21,5.08 8.00en

SWL	Cumulative	DO	EC	pН	Eh	Temp.	Comments
m BTOC	volume (L)	(mg L ⁻¹)	(uS cm ⁻¹)		(mV)	(°C)	
1.54	2	2.78	i0,110	7-10	-33	18.6	Grey twoid, It's Sodow.
1.67	15	5.03	10.660	7.14	-98	19.3	Grey fint, slightly tuled 4, sodo
1.55	25	1.08	10566	ク・リ	-134	19.7	three that, should the bod the sook
1.50	50	0.82	10000	7.15	-154	19-7	Crey hat slightly belief, Hes ada
CES Groundwater	Field Data Sheet	0-94	10 40(2) Issue 2. Re	フ・2(vision 1. Update	- ! 7 ! 06/11/2002	19-7	light grey but obrost che Mes arbour
		2-1	•	. 0-	109	r o	111 11 101 1101

1.50

100

0-81

10740

7-18

- 189

19.7

light grey but about clan Har sole

			CES Project Code: CES050706-BCC
Client:	Boyds Cooks Cove		/ CES Project Code: CES050706-BCC
	Kograh Golf Course	- //	Location: Area A
Project:		Signature(s):	Project Manager: Petrozzi
Sampler (s)		- Digital D(3)	Sample ID: 290508-02-LT
BH ID:	AB2105		Sampling Date: 29.5-08

Well Status

Well damaged:

Cement footing damaged:

Internal obstructions in casing:

YES/NO
YES/NO

Standing water, vegetation around monument: YES NO Water between PVC and protective casing: YES NO

Comments:

Standing Water Level (SWL):

Well volume:
Water level after purging: /- GG

Water level at time of sampling: Volume of water purged: Well purged to dry?:

Purging equipment: Sampling equipment: 1.59

(L) (mBTOC)

(mBTOC)

1.66 (mBTOC)

YES NO Pump / mioro Purging / Bailer / Foot valve Pump / Bailer / Foot valve Well locked:

Cap on PVC casing:
Well ID visible:
Monument damaged:
Odours from groundwa

Weather Conditions

Clear

(Calin)

Fine

Windy

Temperature (15-20) 25-30

Partly cloudy (vercas)

Slight breeze Moderate Breeze

Showers

Rain

20-25

>30

YES/((O)

YES/NO

Purging Details

Elapsed time (min)	SWL m BTOC	Cumulative volume (L)	DO (mg L ⁻¹)	EC (uS cm ⁻¹)	рH	Eh (mV)	Temp.	Comments
11:35	1.66	2	0.31	1121	6.41	-126	18.9	Clear brown kint HC odow.
11:40	1.66	4	0.24	1073	6.42	-140	18-9	£
11:44	1.66	6	0.24	1049	6.42	146	18.9	τ
11:47	1.66	8	0.21	1041	6.43	-149	18.9	4 4
11.50	1.66	16	0.21	1064	6.44	-153	18-9	
[1: 5-3	1.66	12	0.23	1022	6.44	_161	18-9	almost clear brown to 4 HC oclow
11:50	1.66	14	0.23	1071	6.44	_ 162	19.0	Fedd sample
					1			
			<u> </u>					

Groundwater field parameters at the end of purging to be marked "Field Measurements".

Development

Development

Details 21.5.08

SWL	Cumulative	DO	EC	pН	Eh	Temp.	Comments
n BTOC	volume (L)	$(\operatorname{mg} \operatorname{L}^{-1})$	(uS cm ⁻¹)	-	(mV)	(°C)	
.50	15	0.25	902	6.64	-81	19.1	Brown turbill HC oclow.
.50	30	0-47	920	6-61	-22	19.0	Brown terbill HC oclour
.50	!	0 - 37	927	6-60	-78	19.7	Brown table He solour
.50	45	0.43	963	6.61	~73	19.0	Brown tarbid He Oclow
. 3	1 60	0.43		vision 1. Update			Page

CES050706-BCC CES Project Code: Boyds Cooks Cove Client: Location: Kograh Golf Course Project: Petrozzi Project Manager: LJenkins Signature(s): Sampler (s): 290508-03-65 Sample ID: RH 202 BH ID: Sampling Date: Purging Date:

Well Status

YES/NO Well locked: Well damaged: KES/NO Cap on PVC casing: Cement footing damaged: Well ID visible: Internal obstructions in casing: Monument damaged: Standing water, vegetation around monument: YESA MES/NO Odours from groundwa YES/XO Water between PVC and protective casing: HC odow Comments:

Weather Conditions 1.40 (mBTOC) Standing Water Level (SWL):

(L) Well volume: 1.66 (mBTOC) Water level after purging: 1-66 (mBTOC) Clear

Water level at time of sampling: 12 (L) Volume of water purged: YES/NO Well purged to dry?:

Pump / micro-Purging / Bailer / Foot, yalve Purging equipment: Yump Bailer / Foot valve Peroth the Sampling equipment:

20-25 Temperature 15-20 >30 Overcas Partly cloudy

Moderate Breeze Slight breeze <u> Zalj</u>n

Windy Fine

Rain Showers

Purging Det Elapsed time (min)	SWL m BTOC	Cumulative volume (L)	DO (mg L ⁻¹)	EC (uS cm ⁻¹)	pН	Eh (mV)	Temp.	Comments
12:37	1.65	2	0.29	1102	6.85	-12	21-0	Pale brown hit sheen will the odon
12:42	1.66	4	0.27	1084	6.85	- 9	21-0	c
12:52	1.66	6	0.26	1117	6.84	- 2	21-1	4
13:00	1-66	8	0-25	1126	6.84	-6	21.1	<i>a</i>
13.08	1.66	10	6.25	1064	6.84	-4	21.1	Pale brown front steer with He orlow.
13:15	1.66	12	0.25	1092	6.83	- 5	21-1	Feeler sample
√								
								·

Pereloging Details		2. 2.3
Para Details	21.5.08	3: 3 co you

SWL	Cumulative	DO	EC	pН	Eh	Temp.	Comments
m BTOC	volume (L)	(mg L^{-1})	(uS cm ⁻¹)	-	(mV)	(°C)	
3.90	10	1.20	1173	7.09	-67	19-6	Brown V. formed slight HC odown
7.90	20	2.78	994	1.09	-31	19.9	Brown Uterbrol St. HC adour
3.90	30	3.53	894	7.01	1-15	20-0	Brown Vturbil SLAC oclour.
<u> </u>		2-65	970	6.90	1-2	20.1	Brown V. tuhol St HC oslow
3-90	40	12-60	-		le : 06/11/2002	 	Page 1

Client: Boyds Cooks Cove		CES Project Code: CES050706-BCC
		Location: Area A
	Signature(s):	Project Manager: Petrozzi
Sampler (s): Jerlui	Signitur (i)	Sample ID: 290508-04-L3
BH ID. /////		Sampling Date: 29.05-08
Purging Date: 29.6.08		

Well Status

YES/NO Well locked: YES/MO Well damaged: ON/S Cap on PVC casing: YES/NO Cement footing damaged: YES/M Well ID visible: YES (SO) Internal obstructions in casing: YESA Monument damaged: Standing water, vegetation around monument: YES/NO YES/NO Odours from groundwa YES/NO Water between PVC and protective casing:

20-25

Overcast

Moderate Breeze

>30

Rain

25-30

Cail)

Windy

Fine

Partly cloudy

Slight breeze

Showers

Comments:

Weather Conditions (mBTOC) 0.49 Standing Water Level (SWL):

Temperature (15-20) (L) Well volume: (mBTOC) Water level after purging: 0.69 Clear

0-69 (mBTOC) Water level at time of sampling: Volume of water purged: (L) 14

YES/(O) Well purged to dry?: Pump / micro-Purging / Bailer / Foot valve Purging equipment:

Sampling equipment:

Durging Details

Purging Det Elapsed time (min)	SWL m BTOC	Cumulative volume (L)	DO (mg L ⁻¹)	EC (uS cm ⁻¹)	р Н -	Eh (mV)	Temp. (°C)	Comments
13:50	0.67	Qt.	0.28	3.83	7.08	-149	17.8	grey but almost down.
14:03	66490.68	G	0.19	3.96	7.09	-190	17.6	4
14:10	0.68	8	0.17	4.00	7.08	-211	17.6	1
14:18	0.68	10	0.17	4.23	7.06	-235	17.6	grey but sherbil
14. 14.22	0.60	12	0.16	4.17	7.06	-240	17-6	
14:29	0.69	14	0.17	4.20	7.04	-249	17-G	gry hart S. terbiel.
								Feild sample
	<u> </u>							
	-			<u> </u>				
			 	1				
			 					
				1 1 117	<u> </u>		<u> </u>	<u></u>

Groundwater field parameters at the end of purging to be marked "Field Measurements".

Development 21.5.08 9:00 Well was pused dy approximately every 5%.

Star Stars Der	ans 2,						[G
SWL	Cumulative	DO	EC	pН	Eh	Temp.	Comments
m BTOC	volume (L)	$(\operatorname{mg} \operatorname{L}^{-1})$	(uS cm ⁻¹)	-	(mV)	(°C)	
CHECK 204		4-11	5.72	7.38	-101	18.6	sight organic odor
2.04	20	1.00	4.90	2-16	-144	18.6	Brown total fambil dight
	30	2.28	5.82	7.19	-136	19-1	Brown turbil organic odour
2.04	1 80		 			1	
			 	1 1		<u> </u>	
	Field Data Short	1	Issue 2. Re	vision 1(4)ndelte	# 06/11/2002	<u> </u>	Page 1
CES Groundwater	Field Oald Stied			2 57X			

		CES Project Code: CES050706-BCC
Client: Boyds Cooks Cove		CES Project Code: CES050706-BCC
1.0.100		Location: Area A
	S: 421	Project Manager: Petrozzi
Sampler (s): Ochlus	Signature(s):	10 10 10 10 10
BH ID: AMW 201		
Purging Date: 99.5.08	r.	Sampling Date: 29.05-06

Well Status

Well locked: Well damaged: Cap on PVC casing: Cement footing damaged: Well ID visible: Internal obstructions in casing: Monument damaged: Standing water, vegetation around monument: YES YES/NO Odours from groundwa Water between PVC and protective casing:

Comments:

Weather Conditions (mBTOC) 0.41 Standing Water Level (SWL):

20-25 Temperature (15-20) (L) Well volume: >30 25-30

(mBTOC) Water level after purging: 0.55 Overcast Partly cloudy (mBTOC) Clear

Water level at time of sampling: 0.55 Moderate Breeze Calm^L slight by Volume of water purged: Windy

Well purged to dry?: Pump / micro-Purging / Bailer / Foot valye (Fine) Showers Purging equipment: Purap / Bailer / Foot valve Pers tolhic

Sampling equipment:

Purging Det	ails					777		Comments	
Elapsed time (min)	SWL m BTOC	Cumulative volume (L)	DO (mg L ⁻¹)	EC (uS cm ⁻¹)	р Н 	Eh (mV)	Temp.		
15:00	0.51	2	0.35	1098	6.31	-46	18.2	Alngst, C/c	
15:04	0.51	4	0.27	1066	6.29	-49	18-2	4	4
15:09	0.51	6	0.23	1060	6.29	-50	18.2	4	4
15:15	0.51	8	0-21	1092	6.28	-63	18-3	1.	
15:17	0.51	10	0.21	1086	6.28	-61	18-3	poly brown fur	
15:28	0.55	15	0.16	1089	6.25	-64	18.4	4	
15:36	0.55	20	0.14	1080	6.22	- 66	18.4	lr .	/
15:44	0.55	25	6-16	1082	6.22	-69	18-4	Paleibroun +	floor telec
13 - 11	0.00		†					Feetel sample	<u>. </u>
		 	-						
				<u> </u>					
					<u> </u>				

Rain

SWL	Cumulative	DO	EC	pН	Eh	Temp.	Comments
m BTOC	volume (L)	(mg L^{-1})	(uS cm ⁻¹)	-	(mV)	(°C)	
0-40	25	1.37	1287	6.40	-25-8	18.4	Pork/pale brown V. turbiel.
0.80	50	1-37	1/9.3	6.57	-35	18.9	Pale brown mod turbid oclawbss
050	25	1.39	1159	6.85	1-31	18.7	Brown turbed adouters
700					100		
			*	evision 1. Updat	08/11/2002		Page 1

ocation: Area A
roject Manager: Petrozzi
ample ID: 290508-08-55
ampling Date: 29.5.68

Well Status

Well damaged: Cement footing damaged:

Internal obstructions in casing: Standing water, vegetation around monument: YES/NO

Water between PVC and protective casing: Comments:

Standing Water Level (SWL):

Well volume: Water level after purging:

Water level at time of sampling: Volume of water purged:

Well purged to dry?: Purging equipment:

Sampling equipment:

YES/NO YES/ARO

(mBTOC)

(mBTOC)

(mBTOC)

Pump/micro-Purging/Bailer/Foot valve

(L)

(L)

0.72

0.86

25

0.86

Weather Conditions

Temperature (15-20)

25-30 Partly cloudy Slight breeze

Well locked:

Cap on PVC casing:

Monument damaged:

Odours from groundwa

Well ID visible:

Windy

Showers

Rain

20-25

Overcast

Moderate Breeze

>30

YES/NO

(YES/NO

YES(NO)

	Purging Det	ails						
1	Elapsed	SWL	Cumulative	DO	EC	pН	Eh	ļ '
1	time (min)	m BTOC	volume (L)	$(mg L^{-1})$	(uS cm ⁻¹)	1	(mV)	<u>_</u>

Elapsed time (min)	SWL m BTOC	Cumulative volume (L)	DO (mg L ⁻¹)	EC (uS cm ⁻¹)	PH -	Eh (mV)	Temp. (°C)	Comments
16.55	0.84	5	0-16	5.08	6-42	-95	18-6	orange feel fut for these
16: 26	0.84	10	0.15	4.91	6.41	-98	18-6	11
16-34	0.84	15	0.14	4.54	6.40	-99	18-6	4 4
16:42	0.85	20	0.13	4-13	6.41	-96	18.6	4
16:50	0.65	25	0.12	4.15	6.41	-94	18.6	fund odowless Feith sample.
10 30					-			Feith sample.
								·
								·

looned Hein g Det SWL	Cumulative	DO	EC	Нq	Eh	Temp.	Comments
m BTOC	volume (L)	(mg L^{-1})	(uS cm ⁻¹)	-	(mV)	(°C)	a la de les
7-67	10	1.00	4-38	6.53	-44	18-5	Brown furbill adarties.
5.67	2025	0.66	3.21	6.53	-35	18.4	Brown turbel odowless
- 67	35	1-14	3.86	6.53	-20	18.5	The pale brown turbid odowless
-67	50	1.18	3.61	6.53	-16	18.€	Pale brown Latel adoctess

Client: Boyds Cooks Cove		CES Project Code: CES050706-BCC
- 100		Location: Area A
Project: Kograh Golf Course Sampler (s): Sentucy	Signature(s):	Project Manager: Petrozzi
		Sample ID: 300000 - 09- L5
7		Sampling Date: 30-5-0-
Purging Date: 30-5-08		

Well Status

YES/MO Well locked: YES/NO Well damaged: Cap on PVC casing: YESINO Cement footing damaged: Well ID visible: YES/ISO Internal obstructions in casing: Monument damaged: Standing water, vegetation around monument: YES/Kg YES/NO

Odours from groundwa YES/NO Water between PVC and protective casing:

Comments:

Weather Conditions (mBTOC) 1.50 Standing Water Level (SWL):

(L) Well volume: 2.28 (mBTOC) Water level after purging:

2.28 (mBTOC) Water level at time of sampling: 12 (L) Volume of water purged:

YESIND Well purged to dry?: Pump / mioro-Purging / Bailer / Foot, valve Purging equipment:

Pump Bailer / Foot valve Para telfte Sampling equipment:

Temperature 15-20

(Fine)

25-30 >30 Overcast Partly cloudy Clear

Slight breeze Moderate Breeze

20-25

Showers Rain

Purging Det Elapsed time (min)	SWL m BTOC	Cumulative volume (L)	DO (mg L ⁻¹)	EC (uS cm ⁻¹)	р Н -	Eh (mV)	Temp.	Comments
g:56	2.22	4	2.36	19.35	6-69	-32	18.0	Clogr Kolowless
9:14	2.24	6	2.33	18-89	6.64	-30	18-0	e- le
7:24	2.26	F	2-88	17.89	6-64	-26	18-0	Pale brown but
9:46	2 - 26	16	2-27	18.04	6.60	-28	18-1	6
9:51	2: 28	12	2.13	18-22	6.59	- 31	18-1	Pale brown trit & the b
7.07								reitel sample.
		,						
	1							
	 	 						
				1				
·	 			 	 			

SWL	ails 2/·S	DO	EC	pН	Eh	Temp.	Comments
n BTOC	volume (L)	(mg L ⁻¹)	(uS cm ⁻¹)		(mV)	(°C)	0 111 1 1
2.81	3	2.65	17.58	6.64	-6	18.3	Brown twich odowless
2.81	6	8-41	17.79	6.75	-16	18.4	Brown turbid adoutes
						<u> </u>	
					1	į	

			CES Project Code: CES050706-BCC
Client:	Boyds Cooks Cove		CISC XXO,
Project:	Kograh Golf Course		Location: Area A
Sampler (s)		Signature(s):	Project Manager: Petrozzi
			Sample ID: 200808 - 10/11-L5
BH ID: A			Sampling Date: 30.5.05
Purging Da	ite: & . S - 0 &		Intribute a service

Well Status

Well damaged: Cement footing damaged:

Cement footing damaged: Internal obstructions in casing:

Standing water, vegetation around monument: YES/NO Water between PVC and protective casing: YES/NO

Comments:

Standing Water Level (SWL):

Well volume: Water level after purging:

Water level at time of sampling:
Volume of water purged:

Well purged to dry?:

Purging equipment: Sampling equipment: 0.85

1.08

1.08

(mBTOC) (L)

YES/NO

(mBTOC) (mBTOC)

(L)

Pump/micro Purging/Bailer/Foot valve

Well locked:

Cap on PVC casing:
Well ID visible:

Monument damaged: Odours from groundwa

Weather Conditions

Temperature 15-20

25-30

Partly cloudy Overcast

Stight breeze Moderate Breeze

>30

YES/NO

MES/NO

ly

Showers

Rain

Comments

Purging Deta	ails						
Elapsed time (min)	SWL m BTOC	Cumulative volume (L)	DO (mg L ⁻¹)	EC (uS cm ⁻¹)	р Н -	Eh (mV)	Temp (°C)
10:57	1-09	4	0.40	8.70	6.75	-94	18.6
11:07	1.10	6	6.44	8.44	6.25	- 43	18.7
11.07				2 20		90	1.0

c. -92 11: 13 8.38 6.75 18.7 1.07 P 0.49 18-7 8.06 6.75 -93 0.49 11:20 10 1.07 t, - 94 18.7 6-25 0-49 12 11:28 1.07 -96 18.7 6.25 2.35 14 0.49 1.07 moun Studiel 11:40 -800 7.81 6.77 18-7 16 0.54 1.08 11:50 Reitel sample.

Groundwater field parameters at the end of purging to be marked "Field Measurements".

Real point Purging Details 21.5.08 3:00 pm

Enging Deta	ans 27.0	<u> </u>	0 100 /211			793	C
SWL	Cumulative	DO	EC	pН	Eh	Temp.	Comments
m BTOC	volume (L)	$(\operatorname{mg} \operatorname{L}^{-1})$	(uS cm ⁻¹)		(mV)	(°C)	
2-30	-ت	0.69	9.21	6.98	-155	185	Park grey . V turbel odowless
I	10	2-29	9-46	6-93	-120	18.0	Dak brown Vturbel geloerless
2.30		<u> </u>					
					 		
				 	<u> </u>		
CES Groundwater	Field Data Sheet		Issue 2, Re	vision 1. Undat	eli 06/11/2002	<u> </u>	Page 1

			CES Project Code: CES050706-BCC
Client:	Boyds Cooks Cove		CES Project Code: CES050706-BCC
Project:	Kograh Golf Course		Location: Area A
		Signature(s):	Project Manager: Petrozzi
Sampler (s): <u>Senkus</u> AMW 202	Signature (6).	Sample ID: 200505-12-LJ
BH ID:	*//**		Sampling Date: 30.05.05

Well Status

Well locked: Well damaged: Cap on PVC casing: Cement footing damaged: Well ID visible: YESAÑ Internal obstructions in casing: Monument damaged: Standing water, vegetation around monument: YES Odours from groundwa Water between PVC and protective casing:

Comments:

Weather Conditions 0.67 (mBTOC) Standing Water Level (SWL): Temperature 15-20 (L) Weli volume:

>30 (mBTOC) 1.74 Water level after purging: Partly cloudy Overcast

(mBTOC) Clear Water level at time of sampling: 1.74 Slight breeze Moderate Breeze (L) Volume of water purged: 12

YES/NO Windy Well purged to dry?: Rain Fine) Showers Pump / migro-Purging / Bailer / Foot valye

Purging equipment: Pump / Bailer / Foot valve Perwhalhe Sampling equipment:

Purging Det	ails ·						1 100	Comments
Elapsed time (min)	SWL m BTOC	Cumulative volume (L)	DO (mg L ⁻¹)	EC (uS cm ⁻¹)	pH -	Eh (mV)	Temp.	
QU 12:57	1.72	4	0.26	7.85	6.32	9	18.9	Pale forour turbid odowless
13:01	1-22	6	0.26	8.70	6.32	11	18-9	4 4
)3:0 G	1.74	8	0.26	8.16	6.32	5	18.9	4
13:0 13:10	1.74	10	0-23	8-14	6.32	4	189	4
13:14	1.74	12	0.22	8-14	6.33	2	18.9	pale brayn duntial pelou lies Festal sangole.
								Ketd sanjole.
		1						
				ļ <u>-</u>		-		
				<u> </u>				
		1	<u> </u>	1			 	
ĺ			1	.l				

Development	4.11	12
<i>Percloprust</i> Parging Details	21/5/06	11:40

SWL	Cumulative	DO	EC	pН	Eh	Temp.	Comments
m BTOC	volume (L)	$(\operatorname{mg} \operatorname{L}^{-1})$	(uS cm ⁻¹)	_	(mV)	(°C)	
0.67	60	0.62	8.33	6.45	21	18.9	Pale brown V. tubill.
0-67	2.0	6.86	8-24	6.36	22	18.9	Pade brown Vturbiel.
0-67	80	0.12	8-81	6.32	13	[8.8	Pale brown turbiel.
0-67	Kar 75	1.61	8.98	6.35	3	18-9	Pale brown furbid.
CES Groundwater				ivision 1. Undate	06/11/2002		Page 1

			CES Project Code: CES050706-BCC
Client:	Boyds Cooks Cove		CES 110just 1
	Kograh Golf Course		Location: Area A
Project:		Signature(s):	Project Manager: Petrozzi
Sampler (s):		Signature(s).	Sample ID: 300508-13-L7
BH ID: 🦯	1BH 2110		Bumpie 22
Purging Dat	e: 29.5.06		Sampling Date: 30056-

YES/ Well locked: YES/MO Well damaged: Cap on PVC casing: YES/AO Cement footing damaged: Well ID visible: Internal obstructions in casing: YES/I Monument damaged: Standing water, vegetation around monument: YES YESMÔ Odours from groundwa YES/NO Water between PVC and protective casing: Comments: Weather Conditions (mBTOC) 1.69 Standing Water Level (SWL): 20-25 Temperature 15-20 (L) Well volume: >30 (mBTOC) Water level after purging: 1.86 Partly cloudy Overcast (mBTOC) Clear 1-69 Water level at time of sampling: Slight breeze Moderate Breeze CAMP) (L) Volume of water purged: Windy Well purged to dry?: Rain Kine Showers Pump / micro-Purging / Bailer / Foot Valve Purging equipment: Pump / Bailer / Foot valve Sampling equipment:

Purging Details

Purging Deta			D.O.	EC	707	Eh	Temp.	Comments
Elapsed	\mathbf{SWL}	Cumulative	DO	EC (uS cm ⁻¹)	PЩ	(mV)	(°C)	
time (min)	m BTOC	volume (L)	(mg L*1)		-			7
		Not eno	ugh vo	lane	for file	lel me	asurenca	fr.
		Only	HCL V	les wer	e fleet	up.		Alnost Clear puch bound furt odowiless.
						\	ļ	odowiless.
<u> </u>					 			
				<u> </u>				
						Ì		
		 	 		<u> </u>			
<u> </u>			<u> </u>		<u> </u>		<u> </u>	
		1	1					
			 	 	 		 	
ļ					ļ		 	
			1	 		1		
			<u> </u>	1	ald Magazire		<u> </u>	<u> </u>

Purging Det	ails 23.	08 9:2		 			I Cammonto
SWL	Cumulative	ро	EC	pН	Eh	Temp.	Comments
m BTOC	volume (L)	(mg L ⁻¹)	(uS cm ⁻¹)	-	(mV)	(°C)	
169	Not	persugh us	for for	develops.			
10,		0.0					
	<u> </u>						
OFF Conventions	Field Data Sheet		Issue 2. Re	vision 1. Update	06/11/2002	!	Page 1

			CES Project Code: CES050706-BCC
Client:	Boyds Cooks Cove		CBD 170,000
Project:	Kograh Golf Course		Location: Area 4
Sampler (s		Signature(s):	Project Manager: Petrozzi
	/		Sample ID: 300508-14-CT
BH ID:	ABHZIOO		Sampling Date: 30/5/68
Poroing Da	ate: 75.5.08		

Well Status

YES/NO Well locked: YES/X Well damaged: YES/NO Cap on PVC casing: YES/NO Cement footing damaged: YES/KO Well ID visible: YES/NO Internal obstructions in casing: YESMO Monument damaged: Standing water, vegetation around monument: YES YES/MO Odours from groundwa Water between PVC and protective casing:

Comments:

Weather Conditions 1.59 (mBTOC) Standing Water Level (SWL):

Temperature 16-20 20-25 (L) Well volume: >30 25-30

(mBTOC) Water level after purging: Partly cloudy Overcast Clear (mBTOC) Water level at time of sampling: Moderate Breeze Slight breeze

Windy Volume of water purged:

Well purged to dry?: Pump / micro-Purging / Bailer / Foot valve Pump / Bailer / Foot valve / Lan lebre Rain Fine) Showers Purging equipment:

Sampling equipment:

urging Deta Elapsed time (min)	SWL m BTOC	Cumulative volume (L)	DO (mg L ⁻¹)	EC (uS cm ⁻¹)	pH -	Eh (mV)	Temp.	Comments
time (mm)	7.04	S	Ò · 21	7-35	6.25	-40	22-8	Pale brown that almost clear oclowless
ŢWZENŢ								Octow-less.
				1				
				 				
<u></u>				 		-		
		 					 	
			 	<u> </u>				
			<u> </u>		 			

Groundwater field parameters at the end of purging to be marked "Field Measurements".

Development 23.5.08

SWL	Cumulative	DO (mg L ⁻¹)	EC (uS cm ⁻¹)	pН	Eh (mV)	Temp.	Comments
m BTOC 2-34	volume (L)	1.58	5.32	6-46	49	21.0	Pale brown, burbel oclarless
7.78	20	0-99	5.76	6.46	52	22-0	Pale brown tertial.
5.20	20	5.00	5.66	6.64	85	21-4	Pale brown turbid
			į.		<u> </u>		
CES Groundwater	Field Data Sheet		Issue 2. Ru	evision 1. Undat	er 06/11/2002	<u> </u>	Page 1

Dry

Calibration Record Sheet

Meter: GA 45 Landfill Gas Analyser

Serial no:

	i -	,		·	7	T		Τ	1	_			7-	, .		-	1	<u> </u>	_		3	-	^			
					ŀ											;		306/08	8106/08	6 /06/08	40468	106/st	80/20/86		Date	
	i										,							LAY SON	17-17 pm	30-12 av	75.30	11:00	15-30 pm		Time	CALIBRATION
															<u> </u>			Z	35	育	Z.	¥	, /X/G	ьу	Calibrated	
																		7	7	7	7	<	7	0.0%		
							-											6	7	7	l	<	/	2.5%	CH4	
-		•	·															6	1	6			7	50.0%		Gas Ch
							:											,	0	(ノシ	?	7	0.0%		Gas Channel (tick)
																			7	((<	7	17.0%	02	
			 		İ										•			/	7	し、	7	1	7	10.0%	CO2	
																	-	, 7	12/10/6	10/06/21	13/06/08	111/6/08	10/06/01	,	Day B	
										,									8 9-15am	9.30 a	2.60m	4.30,pm	10/02.to		Time	Calibration check
			-								•						:		À.	A A	Rich	下で	n AG	Calibrat by		
													-						7	7			7	0.0%	<u> </u>	•
																			7	7	7	78	7	2.5%	CH4	6
							a		•			-							7)	7	SO	7	50.0%		Gas Channel (results check)
								•											7	_	1	1.0	7	0.0%		(results ch
																, .			1	6	7	74	Ţ	17.0%)2	eck)
			,																7		7	01	7	10.0%	G 02	
			,														0 1	RENATA MONUMAN Chen.							Comments	
																				Mo C C C C C C C C C C C C C C C C C C C	May C C C C C C C C C C C C C C C C C C C	Re	TA V V V V V V V V V V V V V V V V V V V	24	No 100% 10	AC C C C C C C C C C C C C C C C C C C

Calibration Record Sheet

Meter: GA 45 Landfill Gas Analyser

1						_	1	1				_	_	-		-		<u> </u>			J		\overline{a}				ı
																		13/06/08	80/60/8	6/06/0	18040h	1 Malos	80/20/180	, <u>i</u>			
																		25/06/08 14.20 pm	MJ-15 DM	\$ 4-15 av	15.30	11:00	15-30 pm		1	CALIBRATION	
																		7%			- 4	,	, <u>A</u> G	by	Calibrate		
													<u></u>					6	7	7	7		7	0.0%	<u>a.</u>		Serial no:
																	# IB	7	7	7	7	<u> </u>	7	2.5%	다.4		
																	 	· ·	1	6	1	1	7	50.0%	-	Gas Ch	06013
				_							,							1	0	7	j	<u>'</u>	7	0.0%	-	Gas Channel (tick)	
																		1	7	(<u> </u>	7	17.0%	02	٠.	
		<u>. </u>					-											1	7	して)	(7	10.0%	CO2		
									_									,	123/0	114/0	13/06	111/6/	10/06/01		Date		
																		- 1	2/08	6/08 9	108 3	1 80	000			Calib	
٠													:						108 9-150m	114/06/08 9.30 am	C COPM	4.30,000	cat. Supum		Time	Calibration check	
					<u> </u>										-				P .	A A	3	7	7 AC		Calibrat		
				<u> </u>									i						7	70		o,	7	0.0%	<u>e</u> .		
														_					7	(7	75	7	2.5%	CH4		
	_	<u></u>	_					-		-		<u>, </u>							7	,	7	3	1	50.0%		Gas Channel (results check)	
									-						-				4	-	1	0	7	0.0%		el (results	
		ļ				1	<u> -</u>												1	5	ί,	77%	1	17.0%	22	check)	
													ļ				·		7	7	7	015	5	10.0%	CO2		
					-				<u> </u>									ক			•		-		<u> </u>	<u></u>	
																٠		RINTO MONUNIA CHAS.					4				
																		MONG							Com		
																	9	1/14 6							Comments		
																		Ry									
																								-			

Client:	Boyd Cooks Cove		<u> </u>	CES Project Code:	CES050706-BCC
Project:	ESA			Location: Area	A-RGC
Sampler (s):	15	Signature(s):	41.	Project Manager:	M. Petrozzi
	turer and model:	Minirae 2000	/ 0	Serial no:	

Calibration gas type and concentration:	Isobutylene 97.5 ppm	Lamp voltage:	10.6 mV
Calibration date: 6/5/08		Calibration check and d	late: 920

<u> </u>	T 41	Depth	Madhad	Dunation	Background	Donding	gs (ppm)	Comments
Date dd/mm/yyyy	Location Details	терш	(Note 1)		ррш		Maximum	Commence
6/05/08	43		1+5	l	0.0	19 · G	0.7	
07 00/08	4.4		1	 	6.0	1.2	1.3	
	45			1	6.0		6.0	
 	46			,	0.0	12.9.1	23.1	-
 	4.7			<u></u>	0.0	12.1	14.2	
	49			<u>'</u>	0.0	9.3	9.4	Cal Check: 86.6
	50				0.0	1.0	1-1	the creek. 800
	21		 	1	0.0	0.5	0.7	·
				1	0.0	0.8	0.9	
	52			1	0.0	0.0	0.6	
 \!/-	53		1-	<u>'</u>	0.0	0.4	0.5	
	54_		\vdash	<u> </u>	0.0		0.3	
	<u> </u>	<u> </u>			-			
						 	-	
							 	
	<u> </u>						-	
						<u> </u>		
	·							
			ļ					
					ļ		<u> </u>	
							ļ	
							·	
	L							· ·
							<u></u>	
			1					
					1			
			1	1				
				1				
		 	1				1	
			 		<u> </u>	1	 	
i	ŀ	1	1	I	1		1	l

Note 1: HS - Headspace method. SG - Ambient soil gas method.

Client: Boyd Cooks Cove	/	CES Project Code: CES050706-BCC
Project: ESA		Location: Area: A-146C
Sampler (s): 45	Signature(s):	Project Manager: M. Petrozzi
PID manufacturer and model:	Minirae 2000	Serial no:

Calibration gas type and concentration:	Isobutylene 97.5 ppm	Lamp voltage:	10.6 mV
Calibration date: 7/5/08		Calibration check and d	ate: <u>62-3</u> 7-505

Date	Location	Depth	Method	Duration	Background	Reading	gs (ppm)	Comments
dd/mm/yyyy	Details	m	(Note 1)	min.	ppm		Maximum	
7/5/68	55/56/57		145	1	. 0	0.0	0 < 3	
1	58	1	ı	.	0	0-0	0.2	
	59				0	0.0	0.0.	
	60				0	0.0	0-0	
	GI				0	0.2	0-4	
	63	i i			0	0.4	0.8	·
	64				0	0-1	0.2	
	65				O	0.1	0.2	
	66	1 1			B	0.2	0.3	
	67				0	0-3	0.4	
	68				0	0-2	0-3	
	69				0	0.4	0.5	
	70				0	0-0	0.0	
	71				B	0.2	0-3	
	72				0	0.5	0.2	
	73				0	0.4	0-6	
	74.				0	0-1	0.2	
	75				0	0-1	0.3	
	76				0	0.2	0.3	·
	78	1 1			В	0-3	p·4	
	81/82				0	0.5	0.7	
	83				0	0-1	0.3	Clack: 98.6 ppm
	84	1			В	0.0	0.2	
	85/86		1		0	0-0	0 - 1	
	88	1			0	1.1	1.2	
	89				0	0.2	0-4	
	90				6	0.0	<i>3</i> ⋅ 3	
	91	1			0	0.0	0.3	
	92	11		İ	0	0.1	0.2	
	93	11			0	1-3	1-4	
	94/95	11-			0	2.2	2.6	
	96	11			Ō	3-0	3 · 2	
\\	97	11			0	1.5	2.0	
V-	98/99	TV	1 V	IV	6	1.2	1.9	

Client: Boyd Cooks Cove		CES Project Code: CES050706-BCC
Project: ESA		Location: Area A - KGW
Sampler (s): 45	Signature(s):	Project Manager: M. Petrozzi
PID manufacturer and model:	Minirae 2000	Serial no:

Calibration gas type and concentration:	Isobutylene 97.5 ppm	Lamp voltage:	10.6 mV
Calibration date: 7/5/08		Calibration check and date	92.3. 7.5.08

Date	Location Details	Depth	Method (Note 1)	Duration min.	Background ppm	Reading	gs (ppm) Maximum		Comments
dd/mm/yyyy		m 	1/S	}	0 - 0	2.7	2-9		
7/5/08 7/5/6t	100			<u> </u>		10-3	10-5	Cheese	67-8
7/5/84	loi		1+5	<u> </u>	0.0	10.2	10-3	veer.	7(1/10
						<u> </u>			
					· '				
					<u>"</u>				

 				- :					
<u> </u>				·					<u> </u>
							-		<u>. </u>
			<u> </u>						
									<u>u-</u> -
"	ï		!						
							ĺ		
		**							
	·					<u> </u>			
	···-	 	1		\				
			1	-	-		<u> </u>	 	<u></u>
		<u> </u>	 	}					
		ļ	 		<u> </u>		<u> </u>	-	
				ļ			<u> </u>		
			<u> </u>	<u> </u>			<u> </u>		
								<u> </u>	
									·
		 	 	1			1	 	
 		├──	1						
		1		 			+		
		 	 			 		-	
		.	<u> </u>			 	<u> </u>	 	
								<u> </u>	·
		<u> </u>						<u> </u>	

Note 1: HS - Headspace method. SG - Ambient soil gas method.

Client:	Boyd Cooks Cove	- 1-	CES Project Code: CES050706-BCC
Project:	ESA		Location: Area H - KGC.
Sampler (s):	L. Jenkins	Signature(s):	Project Manager: M. Petrozzi
PID manufa	cturer and model:	Minirae 2000	Serial no:

Calibration gas type a	and concentration:	Isobutylene 97.5 ppm	Lamp voltage:	10.6 mV
Calibration date:	8/5/08		Calibration check and d	late: \$15/08-90.4 pm

Date	Location	Depth	Method	Duration	Background	Reading	gs (ppm)	Comments
dd/mm/yyyy	Details	m	(Note 1)	min.	ppm	Minimum	Maximum	
08/05/2006	102	_	115		0.0	15.00	15.3	
,	103	1			0	6.8	2.0	
	104				0	21-6	21-8	
	105			<u> </u>	0	21.5	21.6	
	106/107				0	20.7	20.9	
	108				0	4.0	4.3	
	109				0	8.4	8.6	
	110				0	6.9	7.4	
	111				0	9.4	9.5	
	112				0	2-1	2-3	
·	113				0	4.0	4.1	
	114				0	2.7	2.8	
	115				0	0.1	0.2	
	116			1	0	3.1	3.2	
	117				.6	2.9	3.1	
	118				0	2.9	2-1	
	119				0	2-1	7-3	
	120				0	0.3	0.4	Check: 98.4 ppm.
	121				Ô	3.0	3.1	,
	122				0	2.4	2.5	
	123/124/125				0	20	2.9	
	126				0	104	1.3	
	127				0	2.1	2.2	
	128				0	3.6	3.7	
	129				0	4.0	3.4	
	130				0	1.0 ,	Τ,	
	131				0	1.2	1.3	
	132				0	2.4	2.5	
	123				G	1.9	2-0	App.
	134				0	1.3	1.4	
	135				0	2.8	2.9	
	136				0	2.0	3.2	
1/	137	1',	11/	11,	G	1.2	1.0	
	138	V	TV		Û	1.0	2.1	

Client:	Boyd Cooks Cove		- 0	CES Project Code:	CES050706-BCC
Project:	ESA	-1/	<u>r</u>	Location:	
Sampler (s):	Locakins	Signature(s):	1	Project Manager:	M. Petrozzi
PID manufact	turer and model:	Minirae 2000		Serial no:	

Calibration gas type and concentration:	Isobutylene 97.5 ppm	Lamp voltage:	10.6 mV
Calibration date: 8/5/08		Calibration check and da	te: 8/5/08 48.4pp

						·			
Date	Location	Depth			Background				Comments
dd/mm/yyyy	Details 139	m	(Note 1) HS	min.	ppm	1.8	Maximum 1.9	Check 9	(1.4
8/5/68		*-	140	<u> </u>	0-0	1.6	1.8	Cheen 10	ריקשן ו
	140	<i> </i>			0	1.4			
	191	<u> </u>			0		1.5		
	142	<u> </u>			0	12	1.4		
	143				0	1.4	1.5		
	145/146				0	2.2	2.4		
:	144				0	1-2	1.3	·	
	147				0	2.2	2-3		
	148		\downarrow		В	1.9	2 · !		
	149	V			0	2.6	2-7		
	150								
	151	<u> </u>	14-5	1	0	2.8	3-0		
	152/158	1	1		0	29	3.0		
	154			 	0	2.0	2 · 1		
 	10-	1-1			0	3-2	3.3		<u></u>
	155				0	0.9	1-0		
		 	-		0	2.4	2.5	·	
	157	 	 		0	2-6	2.7		<u></u>
	158	 	-		0		4-9		
	159	 	 	 	0	4.3 3.8	3.9	 	
	160	 			0		4.4	 -	
	(6)	1	_	 		2.6	2.0	 	<u></u>
	162	\bot	1/-	1	0			61.1	G = 1
	163		L	V	6	2,0	4.4	thech:	95.6 pp
			<u> </u>			<u> </u>	-		
					<u> </u>				
			 	1	1	1			
		 	 	 		1			
	 	<u> </u>	 	1	1	┪┈		<u> </u>	
	-	-	 	 	 	 			
	 	-	 	 		<u> </u>			
ļ		-	<u> </u>	1			-	 	
ł			<u> </u>		<u></u>			<u> </u>	

Client: Boyck Cooks	Cove		CES Project Code: CESOS0706-BCC
Project: 154		-1/	Location: Area A- KCC
Sampler (s): Locakus	Signature(s):		Project Manager: Petrozzi
PID manufacturer and model:	Minuae 2000		Serial no:

Calibration gas type and concentration:	Southland	97.500m	Lamp voltage: 10 5 ml
	7420,000,00	1 3 4 5 -1	Calibration chack and date QCL &
Calibration date: 9/5/08			Calibration check and date: 94,8

Date	Location	Depth	Mathad	Duration	Background	Reading	gs (ppm)	Comments
dd/mm/yyyy		m m	(Note 1)		ppm		Maximum	Commonts
9/5/08	164	-	1+5	ŧ	0		0.0	**************************************
1	165	1	1		0	0.5	1.1	
	166	1			0	1.3	1-4	
	167	_			0	O-2	0.3	
	168	_			0	0.7	0.8	
	169	-			0	1-5	1.6	
	170	-			0	0.1	0.2	,
	171	_			0	0.5	0.6	
	172	_	,		0	0-6	0-7	
	173	4			0	0.6	0.7	
4	174				0	1-3	1-24	
	125	-			0	1.2	1-3	
	176	*****			0	0-9	1.0	
	177	_			0	2-4	2.5	
	178	_			0	1.6	1.7	
	179	-			0	1.5	2.0	
	180				0	1-1	1.2	
	181	-			6	1.3	1.4	
	182				0	1.1	1.2	
	184				0	0-9	1.0	Chech: 96-2 ppm.
	185	.مىسى			0	1-3	f•Q	
	186	-			0	1.2	1.4	
į	187	_			Q	1.0	<i>t</i> • t	
	188	_			0	8001.0	(+)	
	189				0	1.4	1.5	
	140				0	2.6	2.8	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	191				0	3.3	7.5	
	192	_			0	2.7	2.8	
	193	ــــى			0	3.7	3.8	
	194/195	_			0	4-6	4-7	
	196	_			٥	4-5	4-8	
	197				0	2.1	2.5	
	198	<u>-</u>			0	3.3	3.6	
Va	199		1		0	2.8	7.0	

Client: Boyd Cool	es love	CES Project Code: CES 050706-BCC
Project: ESA		Location: Area A- KGC
Sampler (s): Loenhie	J Signature(s):	Project Manager: Petro221
PID manufacturer and mode	1: Minirae 2000	Serial no:

Calibration gas type and concentration: 150by and 97-5pm Lamp voltage: 164 m. Calibration date: 9/5-68 Calibration check and date: 94-8 mon

ı	Date	Location	Depth	Mathod	Duration	Background	Reading	gs (ppm)	Comments
	dd/mm/yyyy	Details	m	(Note 1)		_ppm	Minimum	Maximum	
	9/8/08	200	1	148	1	0	2-7	2-8	
		201	_			O	3-6	4-1	
		202	-			0	7.8	8.0	
		203				0	5.9	6.1	
Ī		204				0	6-0	6.2	
`,		205				0	6-2	6.4	
		206				0	5.5	5.7	
		207				0	6.5	6.7	
	ì	208	1			0	8-1	8.3	
		209				0	8.8	9.0	
		210	1	\bigvee	1	O	6.4	2.2	Chech: 98-2 ppm
					•				
							·		
Ņ									
					•				
								•	
		·							
						<u>-</u>			
					<u> </u>	l	l		

Client:	Boyd Cooks Cove		CES Project Code: CES050706-BCC
Project:	ESA		Location: Area A - KGC
Sampler (s):	L. Jeshur	Signature(s):	Project Manager: M. Petrozzi
	cturer and model:	Minirae 2000	Serial no:

Calibration gas type and concentration:	Isobutylene 97.5 ppm	Lamp voltage:	10.6 mV
Calibration date: 12.5.08		Calibration check and date:	94-6 ppm

Date	Location	Depth	Method	Duration	Background	Reading	gs (ppm)	Comments
dd/mm/yyyy	Details	m	(Note 1)		ppm	Minimum		
12.5.08	211	~	1+0	ı	0	4.2	2.2	
	212			1	6	3.0	2-5-	
	213	1			0	4-0	4.6	
	214	1			0	2.4	3.5	
	215/216	-			6	2.8	3.0	
	217	_			0	3 5	3.8	
	218	Į			<u></u>	1.0	1.2	
	/219	1			0	1.7	1-9	
	220	ı			0	3.4	4.0	
	221	1			0	3.5	3-7	
	222	_			0	12-9	17.0	
	224	1			0	43	4.5-	
	225	ł			0	4.1	4.2	
	226				0	2.9	3-0	
	227				0	2-1	3.4	
	228				0	12.5	12.8	
	280/229	-			0	Ž-1	7.2	chech: 97.5 ppn
	231	. 1			0	2.7	2.9	
	232	_			0	6.2	6.3	
	233				0	4-6	Le . 8	,
	234				Ó	8.6	9.0	
	235	-			0	6-4	6.9	
	236	-			0	10.8	10.9	
	237	-			0	7-3	2-7	
	238	-			0	6.1	6-4	
	241				Q	3.4	3.5	
	242				ð	12-2	8.1	
	248/246				6	11-1	12.8	
	247	_			0	5.1	53	
	248				0	10.2	10.6	
	249	-			0	2.4	13-1	
	250				0	6.5-	6.8	
	252				0	8-6	8.8	
V	253		₩	\downarrow	O	128	7.9	

Client:	Boyd Cooks Cove		CES Project Code: CES050706-BCC
Project:	ESA	21	Location: Area A-KGC
Sampler (s):	Loenhus	Signature(s):	Project Manager: M. Petrozzi
PID manufac	cturer and model:	Minirae 2000	Serial no:

	The state of the s		
Calibration gas type and concentration:	Isobutylene 97.5 ppm	Lamp voltage:	10.6 mV
Calibration date: 12-5-08		Calibration check and	late: 94-6 1902

Date	Location	Depth	Method	Duration	Background	Reading	es (ppm)	Comments
dd/mm/yyyy	Details	m	(Note 1)		ррш		Maximum	
12.8.08	254	-	14,50	1	0	6.7	7.1	Cleck -98.1 ppm
	265			1	0	6.9	7.1	
T T	256	ŀ			0_	3.4	4-1	
	257	-			0	6-1	7.3	
	281	- 1			0	8-3	8.4	
	260/25/259	_			0	1.8	2.1	·
	261	_			α	7-0	2-2	
	262	-			6	3-0	3-3	
	263	-			0_	10.8	11.4	
	264				0_	S.S	6.3	
	265	-			0	2.3	5.7	
	266				6	名10.8	11.2	
	267	1			0	2.3	2.2	
	268	-			0	10-8	11.2	
	269				0	6.8	6.5	
	220				Э	9.0	9.4	
	271/272				o	4.4	4.8	
	223	_		1	٥	2.4	2.8	Check: 96.3 ppn
	274				0	5.0	5.2	96.3 pon
+′	<u> </u>							
								
	-		<u> </u>				•	
	<u> </u>		 			1		
		 -						
	<u> </u>							
			-			 		
		 	 		 	1		
-		 	\dagger			1	1	
			1	 	 	1		
<u> </u>		 	 	 		1	 	
	-	 	+	 		-	 	
	 	 		+	 	1 .		
	 	 	1	├	 	<u> </u>	+	
!	<u> </u>	1	I	<u> </u>		<u> </u>		<u> </u>

				GEG D : (G I G GEGGGGGGG DCC
Client:	Boyd Cooks Cove			CES Project Code: CES050706-BCC
Project:	ESA		11	Location: Avea A - KGC
Sampler (s):	Listenhiss	Signature(s):	all.	Project Manager: M. Petrozzi
PID manufa	cturer and model:	Minirae 2000		Serial no:

Calibration gas type and concentration:	Isobutylene 97.5 ppm	Lamp voltage: 10.6 mV
Calibration date: 13.5.08		Calibration check and date: 96.7 ppm

Date	Location	Depth	Method	Duration	Background	Reading	es (ppm)	Comments
dd/mm/yyyy	Details	m	(Note 1)		ррт	Minimum	Maximum	
17.5.08	276		H5	1	0	11-6	12.4	
1	277	1	1	1	Ø	13.4	17.0	
	280	7			•	5.4	6.2	
	281				0	4-0	4.8	
	282				0	3.1	4.2	
	283				0	2-7	2-9	
	284				0	4-4	5.6	
	285	\sqcap			0	2.6	2.8	
	286/287/28	e			0	7-9	8.5	
	289				0	3.5	4.2	
	290				0	2.7	2.9	
	291				0	2.5	2.7	
	292				0	3.0	3.4	
	293/294/295				0	2.2	2.4	
	296		 			3.2	3.4	
	297	- -	1		0	5.4	6.0	
	298				0	1.3	1.5	
	299		┢		0	3.1	3.3	Check 98-2 ppn
	300				0	5.8	6-8	
	301		1 1		0	9-4	10.2	
	302	 			0	3.4	3.8	
	103				0	3.3	3.4	
	304/205				0	3-6	3.9	
	306				0	8.4	8.5	
	307		1		0	4.9	5-8	
	308				0	5.1		
	309	 			0	6.0	2.8	
	310		11		Ó	7.4	8.1	
	3/1		11	 	B	5-1	5.3	
	312	1	11-	 	0	8.9	6.0	
	3/3		11		0	9-1	9.8	
 	314		11	\sqcap	0	6-7	6.9	
		1,17		 	ŏ	6.8	7.2	
I V		17	11	V	0	6.6	7-2	Check 96.4 ppm
1	316	1	1				_	Check 96.4 ppm

Client: Boyd Co	oks Cove		/ CES Proj	ect Code:	CES050706-BCC	====
Project: ESA			/ Location:	Area	A-KGC	
	nhus	Signature(s):	Project M	anager:	M. Petrozzi	
PID manufacturer and	<u>''</u>		Serial no:			

Calibration gas type and concentration:	Isobutylene 97.5 ppm	Lamp voltage:	10.6 mV
Calibration date: 13-5-08		Calibration check and da	ate: 96-7 pph

Date	Location	Depth	Method	Duration	Background	Reading	(maa)	Comments
dd/mm/yyyy	Details	m	(Note 1)		ррт	Minimum	Maximum	
13.5.08	317		HS	1	O	7.8	8-3	
}	318	ī		1	0	7.9	8.2	
	319				D	2-4	2.6	
	320				0	0.4	0.5	
	321		_		0	11.0	12.0	
- \ 	322				0	6.5	6.9	
· ·	322/324				0	4.0	4.2	
	325				0	£-7	5.1	
	327				O	7.3	7-4	
	328				0	0.9	1.0	
	329	5		1	0	3.7	3.8	
-V	331	10	HV	W-	0	4.6	6-0	Check 92.1 ppm
	1001	-				<u> </u>		
			 		<u> </u>	 		
		<u> </u>	-					
				<u></u>				
		· ·	1					· · · · · · · · · · · · · · · · · · ·
		<u> </u>	-		-			
		1			<u> </u>		İ	
		 	 					
			<u> </u>			ļ <u>~</u> .		
		ļ	<u> </u>			ļ		
			<u> </u>			<u> </u>		
						<u></u>		
		<u> </u>						
	<u> </u>							
		T	1 "		İ			
		<u> </u>		 		1	1	
		 -	1	†	†			
 			 	 				
	-{	-	-		 			
Į.	1		J	<u> </u>	<u> </u>		1	

				·
G11 /	Paral Carlos Corre	<u> </u>	_	CES Project Code: CES050706-BCC
Client:	Boyd Cooks Cove		/ -	1 1001
Project:	ESA	/	1	Location: Area A - 1866
		S: 4 4 4 4 1	245	Project Manager: M. Petrozzi
Sampler (s):	L'Denkins /K. Wei	Signature(s):	20	110 CCL Hanager, Land Land
		Minirae 2000		Serial no:
IPID mabutac	turer and model:	Militac 2000		<u> </u>

Calibration gas type and concentration:	Isobutylene 97.5 ppm	Lamp voltage:	10.6 mV
Calibration date: /V-5-08		Calibration check and date:	92.5 ppin

Date	Location	Depth	Method	Duration	Background	Reading	s (ppm)	Comments
dd/mm/yyyy	Details	m	(Note 1)		ppm	Minimum	Maximum	
15/5/08	332	_	J#S	8	0	184	191	
1	390	-			0	4.4	45	
	393/394				0	7.8	8.2	
	395	} —			0	2-1	2.2	
	392	-			θ	7.0	2.1	
	251	_			0	29.12.1	2-4	
	380	-			0	4.1	5.3	
	381				0	9.6	10.3	
	382				0	4.8	4.4	
	383				0	6-6	6.8	
	384				0	5.2	2.3	
	385/384/387				0	2-6	3.4	
		_			0	3-9	4.0	<u> </u>
	388 320/32,389		\Box		0	5.5	6.0	
	370/371				0	9.8	10.3	
	372	_			0	5.8	6.0	
	323				0_	6-4	6.6	
	374	_			0	2.8	3.4	·
	375	 -			0_	4:4	4-2	Clech: 96.1 ppn
	376	-			0	3.6	4.0	
	377			<u> </u>	0	2.1	3.6	
	378/379				0	ابخ	69	
	360/361	 -		1	6	4.4	12.9.	
	362	-			0	5.2	ねつ	
	363	-		11	6	2.5		
	764	-	1	1	0	69	15.9	
	365	 _		-1-1-	0	1.5	13-3	
 	366	 _	\top	1 -	0_	2.3	10.5	
	367	 -	1	1	0	7.5	14.9	
	368	 		11	0	1.9	H-1	
 	369	1	1 +	1	0	2.0	11.5	
	351	_		 	0	4.0	17-0	
	1552/353/354	+	++		0_	1.8	13.8	
 	355	 -	1 1,	1	6	10-4	14.2	

Cit - ti David	i Cooks Cove		CES Project Code:	CES050706-BCC
			 	eald-KEC.
Project: ESA			 	
Sampler (s): ヒルノー	• •	Signature(s):	Project Manager:	M. Petrozzi
PID manufacturer		Minirae 2000	 Serial no:	

Calibration gas type and concentration:	Isobutylene 97.5 ppm	Lamp voltage:	10.6 mV
Calibration date: 15.7.08	1500110775110	Calibration check and date:	92-5pm

Date	Location	Depth	Method	Duration	Background	Reading	gs (ppm)	Comments
dd/mm/yyyy	Details	m	(Note 1)		ppm		Maximum	
15/5/08	356	- \$= 5	45		0	51	14.6	
	357		1		Ð .	2,3	15.3	
	35%	_		1	0	1.8	15.2	
	359				Ð .	4.3	14.4	
	340	د			0	104	204	
	341				0	538	2927	
-	312	_			0	1664	1670	
	3H}				0	139	471	
	344	-			0	296	388	
	345	1			0	1126	1432	
	346				0	103	126	
	347				0	49.2	55.4	
	348	-			D.	628	80-6	
	349				0	580	608	
	350				,D	260	35.9	Cleek: 92.1 ppm
	339				<u> </u>	50.3	53.7	
	338	<u> </u>			0		19-3	-
	337	<u> </u>	<u> </u>		Ð	23.0	27.6	
	336	<u> - </u>			0	24-6	26.8	
	335				0	11-7	12.7	
	334				0	58.3	59.2	· · · · · · · · · · · · · · · · · · ·
	333	_			0	901	920	
	322	l		<u> </u>		<u> </u>		
	600				0	98.1	102	
	601		1		0	0.4	0.6	Chell: 925 pm.
						<u> </u>		
						1		
					<u> </u>			
								·
						<u> </u>		
							1	

Note 1: HS - Headspace method. SG - Ambient soil gas method.

	<u> </u>		
Client:	Boyd Cooks Cove		CES Project Code: CES050706-BCC
Project:	ESA		Location: Firem 6 - KGC
Sampler (s):	L. Weir /L. Jenkins	Signature(s):	Project Manager: M. Petrozzi
PID manufac	cturer and model: Minira	e 2000	Serial no:

Calibration gas type and concentration:	Isobutylene 97.5 ppm	Lamp voltage:	10.6 mV	
Calibration date: 2514 128		Calibration check and da	ite: 29/1/08	97-500

Date	Location	Depth	Method	Duration	Background	Reading	zs (maga) az	Comments
dd/mm/yyyy	Details	m	(Note 1)	min.	ppm		Maximum	
29/04/2008	29		AS		0.0	0.0	0.0	
11300	30		i' S	1	0.0	4.8	5.0	
	3)	-	145		0.0	2.8	3.0	
	32 <i>13</i> 3	_	HS	i	0.0	٥٠٥	0.0	
	34	_	145		0.0	ti+5	1.1.	
	35	1	HS	1	0.0	g. 9	1.0	·
	36	_	143	Ī	Ð.O	1.5	9.6	
Ì	37	_	HS	1	0.0	20	요-고.	
	38	-	145	(0-0	00	0 0	
	39/44/41	į	145	ſ	8.0	16·0	16.7.	
	42		HS	1	0.0	3-4	3.7	
	43	_	145	.	0.0	0.4	0.4	
	44	~	145	1	0.0	0.0	Q.D	
	45	-	115	1	0.0	1.1	1.2.	
	46	-	H5	1	0.0	1.6	1.8	
	47		145	I	0.0	カーゥ	6.0	
	48	-	HS		0.0	1.6	1.9	
	49	-	145	1	0.0	65	6.6	
	50	1	HS		0.0	4.4	4.9	
	51/52	ł	145	-	0.0	9.8	9.9	Chael 97.5
	53	<u> </u>	HS		0,0	5.8	6.2	
	34	-	¥		0.0	(D -	10.2	
	55	-	HS	١	0.0	13.6	13.8	
1	576	_	HS	1	0.0	6.6	7.2.	
	57	_	145	Į.	0.0	11.7	11.8	
	58	_	H5	1	0.0	7.4	7.5	
	59	· -	K	1	0.0	1.3	4.2	·
	60	_	扔	1	0.0	1-1	8-0	
	61	-	148	1	0.0	3.4	10.4.	
	62		HS.		0.0	8.1	8.5	
	63	-	针5	1	0.0	0.0	0.0	
	64	-	#5	1 .	0.0	1.6	2.4	
	65	-	45	1	0.0	2-1	2-2	
	67		145		0.0	5.6	6-0	·

Client:	Boyd Cooks Cove	CES Project Code: CES050706-BCC
Project:	ESA	Location: Pres B - KGC
Sampler (s):	K. Weiv & L. Jenkins Signature(s):	Project Manager: M. Petrozzi
PID manufac	cturer and model: Minirae 2000	Serial no:

Calibration gas type and concentrat	tion: Isobutylene 97.5 ppr	Lamp voltage:	10-6~ 10.6 mV
Calibration date: 29/4/08		Calibration ch	eck and date: 29/4/08 97/5/pm

Date	Location	Depth	Method	Duration	Background	Reading	(maa) sg	Comments
dd/mm/yyyy	Details	m	(Note 1)	min.	ppm		Maximum	
29/4/2008	68		15	1	0.0	9.1	9.3	
2111120	70		HS	1	0.0	7.4	ブク	
	71		113	1	6.0	0.7	1-0	
	72	p~	45	1	0.0	<u>ッ</u> フ	4.1	
 	73	-	113		0-0	3.0	3.3	
	74	-	HS	1	00	4.9	5-1	Check an Spom
	75		H5	1	0.0	6.8	7.0	Check
			1-15	1	0.0	7.8	7-9	Check on com
	76	-20	رستور المرابع	سرستاليس	200	, φ	, r · \	Creek a/is pri
	142	and a		2.4				
					<u> </u>			
								#*#***********************************
				•				
				!				
							,	
			-					
							Ì	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				<u>'</u>		<u> </u>	
			<u> </u>				<u> </u>	
<u> </u>					 			
	· ·				-		 	
					ļ			
				<u> </u>				
				<u> </u>				
			<u></u>					
								
L	L	<u> </u>	<u></u>		<u>, </u>	1	1,	<u> </u>

Note 1: HS - Headspace method. SG - Ambient soil gas method.

			<i>t</i>
Client:	Boyd Cooks Cove	/	CES Project Code: CES050706-BCC
Project:	ESA	111	Location: Area B-KGC
Sampler (s):	L. Jenlin	Signature(s):	Project Manager: M. Petrozzi
	cturer and model:	Minirae 2000	Serial no:

Calibration gas type and concentration:	Isobutylene 97.5 ppm	Lamp voltage:	% 10.6 mV	
Calibration date: Sobutylene		Calibration check and	l date: 30.4.08	94.6 pcm

Date	Location	Depth	Method	Duration	Background		gs (ppm)	Comments
dd/mm/yyyy		m	(Note 1)		ppm		Maximum	
30.4.08	306408-76-16	pe -	45	İ	0.0	4.5	4.7	
	78-KV		ì	1		4-4	4.7	4
	79					3 - 3	4.3	
.	80					7.5	4-3 7-6	
	81					1-8	1.9	
	82					1.2	1-9	,
	83					0.5	5.5	
	84					1.1	1-6	
	85				ĺ	4-4	45	
	86					11.3	11-3	
	87					3.5	3.6	
.	68	·				1.2	1.4	
	91		1			1.6	1-9	
	92		1-1			1.3	1-3	
	43		1			1.9	2.1	-
	94		 			2.1	2.2	
_	95-					0.0	6.9	
	96		1 1	H		1.5	1.7	<u> </u>
	97			 		2.8	2.1	
	98					1.6	1.8	Check! all bopon
	99		1-1-			1.6	1-7	THERE THOUSE
	100					3.3	3.6	
	101/102	<u> </u>				1.8	2.0	
- 	103		 		1 1	0.9	1-0	, <u>;</u>
	104				1-1-	6.7	2-3	****
	106					2.2	2.4	The second description is a second se
	107		 			2.7	3.2	
	109			-		3.4	3-5	,
	110			$\vdash \vdash$		4.3	9.9	
	H1					4.4	5.2	
	112					1.4	2.4	<u> </u>
	113		+			2-1	2.3	Check: 94.6 pm
			11/	1,	1.17		<u> </u>	1011
	 \		 V	$\vdash \lor \vdash$	 \'/ 	1	 	

Client:	Boyd Cooks Cove		CES Project Code: CES050706-BCC
Project:	ESA		Location: Area B KGC
Sampler (s):	L. Senking	Signature(s):	Project Manager: M. Petrozzi
PID manufa	cturer and model:	Minirae 2000	Serial no:

Calibration gas type and concentration:	Isobutylene 97.5 ppm	Lamp voltage:	10.6 mV
Calibration date: 1.5.68		Calibration check and date:	1.508 95000

Date	Location	Depth	Method	Duration	Background	Reading	gs (ppm)	Comments
dd/mm/yyyy	Details	m	(Note 1)		ppm		Maximum	
1/5/08	115	ng-ur-	145	(0.0	1.2	1.6	
1	116		<u> </u>	P	0-0	8->	9-2	
	117	سيت		1	0.0	3.2	3.6	
	118	ن		1	0.0	10.1	10.2	
	118			1	0.0	\$.3	9.1	
	126	ł		1	0.0	8.7	9.0	
	122/123/124			ì	0.0	7.2	7.4	
	121	1		į	0.0	1.8	1.9	
	125	-		1	0.0	5.1	6.0	
	126	/		1	0.0	8.4	8.5	·
	128	1		1	0.0	15.3	15.1	·
	129	1)	0.0	7-4	7.2	
	130	~)	0.0	-ی . ځ	7.0	
	131)			0 ! 0	13-2	14-1	
	132	- خ		I	0.0	10.6	4.9	
	173	1		1	0'0	5-2	6.3	
	134	1		1	0 0	7-9	8.1	·
	136/137/138	-		1	0.0	2.8	2.57	
	139	_		1	0.0	10.8	11.4	
	140	-			0.0	2.7	3.0	Check 95.0ppm
	141	_		1	0.0	1-5	1.9	
	143	-			0.0	2.4	3.2	
	144	_		Ti.	0.0	2.7	3.0	
	145			1	0.0	1-3	1.4	
	146	_		1	0.0	8.2	8.4	
	147	-		Î	0 . 0	6.0	6.3	
	152	_		1	0.0	2.2	2.3	
	153	_		1	0.0	4.0	4.2	
	155	ì		1	0.0	14.9	15.0	
	156/157	-		ı	0.0	1.8	2.1	
	158	•		: 1	0.0	2.0	2.1	
	159	_		١	0.0	8.0	8.1	
	160	-	1/	1	0.0	2.1	2 3	
	161	-		(0.0	1.4	2.2	

Client:	Boyd Cooks Cove			CES Project Code:	CES050706-BCC	
Project:	ESA		1/	Location: Area	8 KGC	
Sampler (s):	4. Jenhinis	Signature	e(s):	Project Manager:	M. Petrozzi	
	urer and model:	Minirae 2000		Serial no:		

Calibration gas type and concentration:	Isobutylene 97.5 ppm	Lamp voltage:	10.6 mV
Calibration date: 1.5.08		Calibration check and date:	1.5.08 95-0ppu

Data Locasion Depth Method Duration Background Minimum Maximum Maximum Minimum Maximum Minimum									
1/5/8				Method	Duration		Reading	gs (ppm)	Comments
1 163 - 1 1 0.0 S.2 S.8 164 - V 1 0.0 26.1 26.2 Check 95-0pm	dd/mm/yyyy		m	(Note 1)	min.	ppm			
1 163 - 1 1 0-0 S.2 S.8 164 - 1 0.0 26.1 26.2 Check 95-0pp	1/5/08	162	-	<i>145</i>	1	0.0	15.9	16.2	
)	163		1		0-0	5.2	5.8	
	V		_	V	1	0.0	26.1	26.2	Check 95-0pm
								,	
				-				<u> </u>	
							<u> </u>		
			**						
							<u> </u>		
		<u> </u>							
									· · ·
				<u> </u>					
						<u> </u>			
					ļ				
									
				1					
					 	 			
				 	<u> </u>		ļ		
				-		<u> </u>	ļ	ļ	<u> </u>
				<u> </u>	<u> </u>				
							-		
	1					Ī .			
					<u> </u>				
	 			1	 		<u> </u>	1	·
	<u> </u>			1			 	 	
	<u> </u>				-	 	 	 	
			ļ	 		ļ	 	<u> </u>	
		ļ							
		1							

Client:	Boyd Cooks Cove		CES Project Code: CES050706-BCC
Project:	ESA	21/	Location: Avez 13
Sampler (s):	1.5 copys	Signature(s):	Project Manager: M. Petrozzi
PID manufa	cturer and model:	Minirae 2000	Serial no:

Calibration gas type and concentration:	Isobutylene 97.5 ppm	Lamp voltage:	10.6 mV	7 .
Calibration date: 02/05/08		Calibration check and	date: 98.6000	2/8/68

Details Details Depth Method Duration Background Readings (ppm) Minimum Maximum									7, .,
2.5-06 65	Date	Location	Depth						Comments
166			m						
167	2.5.08	165	-	<i>l</i> +3	- 1	0.0			
18/19/120 19.7 20.1 18.4 16.2 13.5 13.5 13.5 12.4 12.4 12.4 12.7 12.4 12.7 12.4 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 13.5 13		166		}			28.0	28.9	
171		167				·	20.3	20.4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		168/169/170					19.7	20.1	·
173							18.4		
174		172					13-7	13.5	
179 12-9 12-9 12-9 17-9 17-9 17-9 17-9 17-9 17-9 17-9 17		173					10-6	10.7	
129 129 177 17.7 17.9 179 2.1 7.4 181 20.2 20.9 182 15.7 16.3 183 19.8 22.1 184 10.4 10.5 185 196 17.1 17.5 187 10.2 10.4 188 22.2 22.4 Chall As began		174					22.4	22.4	
177 179 179 179 179 20-2 20-9 181 182 183 193 194 16-4 16-4 16-4 185 196 197 197 197 197 197 198 10.2 10.4 198					-			12-4-	
177	1								
179 181 20.2 20.9 181 182 183 193 194 10-4 10-5 185 196 197 197 197 197 198 10.2 10.4 12.2 22.4 Chark 98 byp.		1					17-7	17.9	
179		1							
181 182 183 193 194 10-4 10-5 196 197 197 198 10.2 10.4 10.7 10.7 10.8 10.7 10.8 10.							2-1	7.4	
182 15.7 16.3 19.8 22.1 184 10-4 10.5 19.0 19.0 19.0 19.0 19.1 17.5 19.2 10.2 10.4 19.8	l i			 				20-9	
183 19.8 22.1 184 10.4 10.5 185 19.0 19.3 196 17.1 17.5 10.2 10.4 188 22.2 22.4 Chall All Sppn									
184 10-4 10.5 185 19-0 19-3 196 17-1 17-5 187 10-2 10-4 188 22-2 22-4 Chall All bypen			1 -	 		- :-			
185 19-0 19-3 19-0 19-3 19-0 19-1 17-5 19-1 17-5 19-2 19-4 19-8 19-8 19-4 19-8		1"	 			,			
196 187 188 198 10.2 10.4 22.2 22.4 Chad ag bpp.	1		 		- - 		19-0	· —	
187 188 22.2 22.4 Charl ay began			╂┉╁──	+ + -					
188 22.2 22.4 Chark as began			 		-			·	-
			 \'/-	 \'/-	1	ľ		21.4	el - h Ger 1
		ins	 	-	<u> </u>		72,2	2 - 7	Charles Gept
	ļ		ļ .				<u> </u>		
	<u> </u>		<u> </u>	<u> </u>					
		<u> </u>		ļ		<u> </u>	ļ	<u> </u>	
			<u> </u>	ļ					
			<u> </u>						
							<u> </u>		
							ļ		
								1	
					1				

Note 1: HS - Headspace method. SG - Ambient soil gas method.

SUBSURFACE GAS FIELD DATA SHEET

		7	~	
Client: Boycls Cook Cove		CES Project Code: CE	5050706-8	cc
Project: Kograh Golf Course		Location: Cooks Cove	Area A	
Sampler (s): AG Signs	iture(s):	Project Manager:	L.Jenkins	
BHID: ALG ZON		Monitoring Date / Time:	10/06/2008	
1.0	_ ==			
Well Status		·		_
Well damaged: YES/	<u>(vo)</u>	Well locked:		(yı̂s/NO
Cement footing damaged: YES/	16	Cap on PVC casing:		YEZ/NO.
Standing water, vegetation around monument: YES/	((0)	Well ID visible:		YES/NO
Water between PVC and protective casing: YES		Monument damaged:		YES/NO
Comments	∕	Odours from well		YES/NO
Water was sacked into	He vacuum bank			
Ambient reading (FID): ppm				
Initial well pressure: O kPa				
Initial vent:	Initial pulse / Pulse > 5 s / Conti	านอบร		
Gas Flow rate: 0 % 44	0 L/hr or %	i 3000L/hr OR	% 10 000	
Well pressure after initial vent: O kPa				
Standing Water Level (SWL): (mB')	roc)			

Readings

				Land	fill Gas An	alyser		
Cumulative volume (L)*	Cumulative time vented (min)	Maximum Vacuum on Well (psi)	Recovery Time - to equilibrate to atmospheric pressure (min)	CH₄ (%)	CO ₂ (%)	O ₂ (%)	Flow rate at time of sampling	Comments
Initial	-	-		0.3	8.4			Corld not pump -
								Corld not purp - 1120 level bo high.
								high.
							<u> </u>	
				<u></u>				
					-			·
			,					

^{*} where one tank volume = 12 L

Volume of Gas: 4.2 L/m air in 50mm

Unit conversions

¹ Measured as methane equivalents

Project: Kogra Colf Come Location: Cooks Cove Arca A Sampler (s): AG Signature(s): Project Manager: L.Jonkins	
Secretary (a) A Secretary (a) A Project Manager Lenking	
Sampler (s): AG Signature(s): Project Manager: L.Jenkins	
BH ID: AUS 202 Monitoring Date / Time: 10/06/2008	

Well Status							
Well damaged:		YES(NO)			Well locked:	•	(YES)NO
Cement footing damaged:		YES/NO)			Cap on PVC casing:		YE\$/NO
Standing water, vegetation around mo	nument:	YES(NO)			Well ID visible:	•	YESMO
Water between PVC and protective ca	sing:	YES(NO)			Monument damaged:		YES(NO)
Comments:					Odours from well		YES/NO
A of the control of t	_					<i>y</i> .	
Ambient reading (FID):		ppm			·		
Initial well pressure:	0	kPa				P . *	
Initial vent:		hil/ Initial pu	ilse / Pulse >	5 s / Continuous			
Gas Flow rate:	-	% 440 L/hr	or	% 3000L/hi	OR	% 10 000	
Well pressure after initial vent:	0	kPa					
Standing Water Level (SWL):		(mBTOC)					
						•	

Readings								
				Land	fill Gas An	ılyser		
Cumulative	Cumulative time	Maximum Vacuum on Well	Recovery Time - to equilibrate to atmospheric	CH₄	CO ₂	O ₂	Flow rate at time	Comments
volume (L)*	vented (min)	(psi)	pressure (min)	(%)	(%)	(%)	of sampling	
Initial	-	-	-	0.2	2.6	18.4		
10		- 20	a	0.3	0.4	19.4		
20		-20	a	0.3	0.3	20.7		
30		-20	2	O · 3	0.3	20.8		
40		- 20	2	0.3	0 · \$1	20.8		t.
.4								•
2.								

^{*} where one tank volume = 12 L

Volume of Gas: 4.2 L/m air in 50mm

Unit conversions

¹Measured as methane equivalents

Client: Project: Cook Cove

SUBSURFACE GAS FIELD DATA SHEET

Danthier (s). AC		Dignatur c(a).	11 /	-	1 Tojece mannger.	The Citizan	
BHID: ALS 203		-		7	Monitoring Date / Time:	10/06/2008	· · ·
Well Status							
Well damaged:		YES/NO			Well locked:		(YES/NO
Cement footing damaged:		YES/NO			Cap on PVC casing:		(YES/NO
Standing water, vegetation around	l monument:	YESINO			Well ID visible:		YES(NO)
Water between PVC and protective	e casing:	YES/NO			Monument damaged:		YES/MO
Comments:		_			Odours from well		YES(NO)
Ambient reading (FID):		ppm					
							
Initial well pressure:	<u></u>	kPa			•		
Initial vent:		Nil) Initial pu	lse / Pulse > :	5 s / Continuous			
Gas Flow rate:	0	% 440 L/hr	or	% 3000L/h	r OR	% 10 000	
Well pressure after initial vent:	0	kPa					
Standing Water Level (SWL):		(mBTOC)					
i e e e e e e e e e e e e e e e e e e e							

CES Project Code: CESOSO > OG - BCC Location: Cooks Cove Area

Readings				and	fill Gas An	alvser	4. *		
Cumulative	Cumulative time vented (min)	Maximum Vacuum on Well (psł)	Recovery Time - to equilibrate to atmospheric pressure (min)	CH₄ (%)	CO ₂ (%)	O ₂ (%)	Flow rate at time of sampling	Comments	
Initial	-	-		0.1	0.3	20-0			
10		-20	\	0.2	0.2	20.7			
20		-20		0.2	0.2	20.8			
30		~20	1	B.Z	0.2	20.8			
40		-20	ţ	0.2	0.2	20.8			
** **									-
							·		Fac-
									-

^{*} where one tank volume = 12 L

Volume of Gas: 4.2 L/m air in 50mm

Unit conversions

¹ Measured as methane equivalents

Client:	Boyds	Cook	Core		CES Project Code: CGS050706- PCC
Project:	KGC			1	Location: Cooks Cove Arca A
Sampler (s):	AG		Signature(s):	(1) <u>(1)</u>	Project Manager: L.Jenkins
BH ID:	366-204	c			Monitoring Date / Time: 10/06/2008

Well Status							
Well damaged:		YES(NÓ)		Well	l locked:	,	YES/NO
Cement footing damaged:		YES/NO		Cap	on PVC casing:		YES/NO
Standing water, vegetation around	monument;			Well	l ID visible:		YE8/NO)
Water between PVC and protective	casing;	YESNO		Mon	ument damaged;		YES/NO
Comments:	4				urs from well		YE&/NO
water was	sucked	into the	vacuum	tank. Only	initial come	led be Jaken.	
Ambient reading (FID):		ppm		•			
Initial well pressure:	0	kPa				•	
Initial vent:		(Nil) Initial pu	lse / Pulse > 5 s	/ Continuous			_
Gas Flow rate:		% 440 L/hr	or	% 3000L/hr	OR	% 10 000	
Well pressure after initial vent:	0	kPa					
Standing Water Level (SWL):		(mBTOC)					

				Land	fill Gas Ana	lyser		
Cumulative volume (L)*	Cumulative time vented (min)	Maximum Vacuum on Well (psi)	Recovery Time - to equilibrate to atmospheric pressure (min)	CH ₄ (%)	CO ₂ (%)	O ₂ (%)	Flow rate at time of sampling	Comments
Initial	* *** *	- ·	• •	0.2	10,5	4.5		to high the olen
				{	{	1		to high Hzoleve
			:					
				-		·		
,								
	7							
							·	
6.								
***			,					

^{*} where one tank volume = 12 L

¹ Measured as methane equivalents

Volume of Gas: 4.2 L/m air in 50mm

Unit conversions
1 kPa = 0.145 psi
1 psi = 6.90 kPa

Client:	Boyds Cooles Con	-c	CES Project Code: C	ESOSO706-BCC
Project:	KGC		Location: Cooks Cove	Area A
Sampler (s):	AG	Signature(s):	Project Manager:	L.Jenkins
BH ID: A	6205		Monitoring Date / Time:	10/06/2008

Well Status						
Well damaged:	YES/NO			Well locked:		YES/NO
Cement footing damaged:	YES/NO			Cap on PVC casing:		YESINO
Standing water, vegetation around monument:	YES/NO /			Well ID visible:		YESANO,
Water between PVC and protective casing:	YES/NO/			Monument damaged:		YES/NO
Comments:	_			Odours from well		YES/NO
Ambient reading (FID):	ppm					
Initial well pressure:	kPa	_				
Initial vent:	Nil / Initial pul	se / Pulse > 5 s / C	ontinuous			
Gas Flow rate:	% 440 L/hr	or	% 3000L/h	r OR	% 10 000	
Well pressure after initial vent:	kPa					
Standing Water Level (SWL):	(mBTOC)					

Dondings

				Land	fill Gas An	alyser	-	
Cumulative volume (L)*	Cumulative time vented (min)	Maximum Vacuum on Well (psi)	Recovery Time - to equilibrate to atmospheric pressure (min)	CH ₄ (%)	CO ₂ (%)	O ₂ (%)	Flow rate at time of sampling	Comments
Initial	-	-	-	0.2	3.5	14.3		
10		-20	1	0.5	3.7	13.6		,
20		-20	1	0.5	3.7	13.6		
30		-20	1	0-2	3.8	13.6		
40		-20	1	0.2	3.7	13.6		
				,				
			·					

^{*} where one tank volume = 12 L

Volume of Gas: 4.2 L/m air in 50mm Unit conversions

 $^{^{1}\}mathrm{Measured}$ as methane equivalents

CES Project Code: CC COVE COVE COVE CES Project Code: CC CC CC CC CC CC CC CC	Client: BOYD COOKS	core				CES Project Code: CE	3050706	-BCC
Sampler (s): AG Signature(s): Project Manager: L.Jenkins HID: A L C 20K Monitoring Date / Time: 10/06/2008 Well Status Well damaged: YES/NO Well locked: Cap on PVC casing: YES/NO Standing water, vegetation around monument: YES/NO Well ID visible: YES/NO Well ID visible: YES/NO Monument damaged: YES/NO Ambient reading (FID): ppm Initial well pressure: Ambient reading (FID): ppm Initial vent: NIN Initial pulse / Pulse > 5 s / Continuous Gas Flow rate: % 440 L/hr or % 3000L/hr OR % 10 000 Well pressure after initial vent: APA			sul-cultura	a(10	1666	·		<u> </u>
Well Status Well damaged: YES NO Well locked: Cap on PVC casing: YES NO Well ID visible: YES NO Well	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ea A		994	1-46			
Well Status Well damaged: YES/NO Well locked: YES/NO Cap on PVC casing: YES/NO Standing water, vegetation around monument: YES/NO Well ID visible: YES/NO Well ID visible: YES/NO Well ID visible: YES/NO Odours from well YES/NO Odours from Well YES/NO Odours from Well YES/NO Odours from Well YES/NO Odours from Well YES/NO Odours from Well YES/NO Odours from Well YES/NO Odours from Well YES/NO Odours from Well YES/NO Odours from Well YES/NO Odours from Well YE			Signature(s):	1				
Well damaged: Cement footing damaged: Standing water, vegetation around monument: Water between PVC and protective casing: Comments: Ambient reading (FID): Initial well pressure: RPa Initial vent: Well locked: YES/NO Cap on PVC casing: Well ID visible: YES/NO Monument damaged: YES/NO Odours from well YES/NO Monument damaged: YES/NO Odours from well YES/NO Odours from well Well pressure: kPa Initial vent: Nily Initial pulse / Pulse > 5 s / Continuous Gas Flow rate: % 440 L/hr or % 3000L/hr OR % 10 000 Well pressure after initial vent: kPa	BHID: ALG ZOG					Monitoring Date / Time:	10/06/2008	<u>. </u>
Well damaged: Cement footing damaged: Standing water, vegetation around monument: Water between PVC and protective casing: Comments: Ambient reading (FID): Initial well pressure: RPa Initial vent: Well locked: YES/NO Cap on PVC casing: Well ID visible: YES/NO Monument damaged: YES/NO Odours from well YES/NO Monument damaged: YES/NO Odours from well YES/NO Odours from well Well pressure: kPa Initial vent: Nily Initial pulse / Pulse > 5 s / Continuous Gas Flow rate: % 440 L/hr or % 3000L/hr OR % 10 000 Well pressure after initial vent: kPa	Well Status							
Cement footing damaged: Standing water, vegetation around monument: Water between PVC and protective casing: Comments: Ambient reading (FID): Initial well: Cap on PVC casing: Well ID visible: YES NO Monument damaged: YES NO Odours from well YES NO Monument damaged: YES NO Odours from well YES NO Well pressure: No Monument damaged: YES NO Monument damaged: YES NO Odours from well YES NO Well pressure: No Monument damaged: YES NO Monument damaged: YES NO Monument damaged: YES NO Odours from well YES NO Well pressure: No Monument damaged: YES NO Odours from well YES NO Well pressure: No Monument damaged: YES NO Odours from well YES NO Odours from			VES/SO		-	Well locked:	·	(VES/NO
Standing water, vegetation around monument: Water between PVC and protective casing: Comments: Ambient reading (FID): Initial well pressure: KPa Initial vent: Gas Flow rate: Well ID visible: YES/NO Monument damaged: YES/NO Monument damaged: YES/NO Monument damaged: YES/NO Odours from well YES/NO Monument damaged: YES/NO Odours from well YE	_		// N					×
Water between PVC and protective casing: Comments: Monument damaged: YES/NO Ambient reading (FID): ppm Initial well: pressure: RPa			1 1			•		
Comments: Odours from well YES/NO Ambient reading (FID): ppm Initial well pressure: kPa Initial vent: Nilly Initial pulse / Pulse > 5 s / Continuous Gas Flow rate: % 440 L/hr or % 3000L/hr OR % 10 000 Well pressure after initial vent: kPa	Standing water, vegetation around	monument:	1 /			Well ID visible:	•	
Comments: Odours from well YES/(60)	Water between PVC and protective	casing:	YESMO			Monument damaged:		YES/NO_)
Initial well pressure:	Comments:	-	_	•		Odours from well		YES/NO)
Initial well pressure:	1							_
Initial well pressure:	:			-		•		
Initial vent:	Ambient reading (FID):	/	ppm			-		
Gas Flow rate: — % 440 L/hr or % 3000L/hr OR % 10 000 Well pressure after initial vent: O kPa	Initial well pressure:	0	kPa					
Well pressure after initial vent:	Initial vent:		Nily Initial pul	se / Pulse > 5 s /	Continuous	-		
	Gas Flow rate:		% 440 L/hr	or	% 3000L/b	r OR	% 10 000	
Standing Water Level (SWL): (mBTOC)	Well pressure after initial vent:	0	kPa					
	Standing Water Level (SWL):		(mBTOC)					

Readings

				Land	fill Gas An	alyser		
Cumulative	Cumulative time	Maximum Vacuum on Well	Recovery Time - to equilibrate to atmospheric	. CH ₄	CO ₂	02	Flow rate at time	Comments
volume (L)*	vented (min)	(psi)	pressure (min)	(%)	(%)	(%)	of sampling	<u></u>
Initial	-	-	-	0.1	0.9	18.6.	4100	well called not
•					-			well could not be purped due to
								high water level
								high water level
	-							taking in water
				! !				`
								·
		·						
							<u> </u>	

^{*} where one tank volume = 12 L

Volume of Gas: 4.2 L/m air in 50mm

Unit conversions

1 kPa = 0.145 psi 1 psi = 6.90 kPa

¹ Measured as methane equivalents

Project: ICCC		NS	Location: Cooks Cove	Area B	
Sampler (s): AG	Signature(s):	P/	Project Manager:	L.Jenkins	
BHID: SUGGO			Monitoring Date / Time:	10/06/2008	
Well Status					<i></i>
Well damaged:	YES/NO		Well locked:		(YE)NO
Cement footing damaged:	YES NO		Cap on PVC casing:		YESVNO
Standing water, vegetation around monument:	YES/NO		Well ID visible:		YES NO.
Water between PVC and protective casing:	YE\$/NO/		Monument damaged:	•	YESANO
Comments:	\ /		Odours from well		YES NO
	•		81.		_
·					
Ambient reading (FID):	ppm				
Initial well pressure:	kPa				
Initial vent:	Nil / Initial pulse / Pul	se > 5 s / Continuous			
Gas Flow rate:	% 440 L/hr or	% 3000L/hr	OR	% 10 000	
Well pressure after initial vent:	(RP)2	_	4	•	
Standing Water Level (SWL):	(mBTOC)	_			

CES Project Code: CESOSO 706 - BCC

Readings

		········	"	Land	fill Gas An	alyser		
Cumulative volume (L)*	Cumulative time vented (min)	Maximum Vacuum on Well (psi)	Recovery Time - to equilibrate to atmospheric pressure (min)	CH ₄ (%)	CO ₂ (%)	O ₂ (%)	Flow rate at time of sampling	Comments
Initial	-	-	•	0.1	2.7	186		
10		-20	(0.1	11.6	6.6		
20		-20	l	0.1	12 · 1	6.2		185
30		-20	-	0.2	11.9	6.0		
40		-20	1	0	11.9	6.1		
50		20	•	0.1	11.9	6.1		
·			•					
			·			:		**
								Market St. St. St.

^{*} where one tank volume = 12 L

Volume of Gas: 4.2 L/m air in 50mm

Unit conversions

¹ Measured as methane equivalents

Client:

SUBSURFACE GAS FIELD DATA SHEET

Project: <i>XCC</i>		Location: Cooks Cove	Arca B	
Sampler (s): AG	Signature(s):	Project Manager:	L.Jenkins	
BHID: BLG YOU		Monitoring Date / Time	: 10/06/2008	
Well Status				
Well damaged:	YES/NO	Well locked:		YESANO
Cement footing damaged:	YES/🚱	Cap on PVC casing:		YESANO
Standing water, vegetation around monum	ent: YES/NO	Well ID visible:		YESNO
Water between PVC and protective casing:	YES(NO)	Monument damaged:		YESANO
Comments:	,	Odours from well	•	YESANO
		•		
Ambient reading (FID):	ppm			
Initial well pressure:	kPa			
Initial vent:	Nil/ Initial pulse / Pulse	> 5 s / Continuous		
Gas Flow rate:	% 440 L/hr or	% 3000L/hr OR	% 10 000	
Well pressure after initial vent:	kPa			
Standing Water Level (SWL):	(inBTOC)			

CES Project Code:

(ES030706-

Keadings								
				Land	fill Gas Ana	alyser		
Cumulative volume (L)*	Cumulative time vented (min)	Maximum Vacuum on Well (psi)	Recovery Time - to equilibrate to atmospheric pressure (min)	CH ₄ (%)	CO ₂ (%)	O ₂ (%)	Flow rate at time of sampling	Comments
Initial	-	-	ı	0.2	7.2	19.3		
ાં		-20	_	0	0.4	₹0·5		
20		-20	_	0.2	0.3	20.8		
3ა		- 20	-	0.2	0.2	20.8		
40		-20	1	0.2	0.2	20.9		
50		-20		0.2	0.2	20.8		
		-						
	,		*	, , ,				
			-					

^{*} where one tank volume = 12 L

Volume of Gas: 4.2 L/m air in 50mm

Unit conversions

¹ Measured as methane equivalents

Client: Project:

SUBSURFACE GAS FIELD DATA SHEET

(mBTOC)

Sampler (s): AG		Signature(s):			Project Manager:	L.Jenkins	
BHD: BLG 40	3				Monitoring Date / Time:	10/06/2008	
Well Status		~~					
Well damaged:		YES(NO)			Well locked:		(YE\$/NO
Cement footing damaged:		YES/NO			Cap on PVC casing:		YESANQ
Standing water, vegetation around	monument:	YES/NO)			Well ID visible:		YES/NO)
Water between PVC and protectiv	e casing:	YES NO			Monument damaged:		YESANO
Comments:					Odours from well		YESANÓ_
Ambient reading (FID):	,	ppm					
Initial well pressure:	0	kPa					
Initial vent:		Nily/ Initial pu	ilse / Pulse	> 5 s / Continuous	<u>-</u>		
Gas Flow rate:	0	% 440 L/hr	or	% 3000L/l	or OR	% 10 000	
Well pressure after initial vent:	0	kPa	· · · · · ·	₹		 -	

CES Project Code: CESOSO306- BCC

Location: Cooks Cove

Standing Water Level (SWL):

				Land	fill Gas An	alyser		
Cumulative volume (L)*	Cumulative time vented (min)	Maximum Vacuum on Well (psi)	Recovery Time - to equilibrate to atmospheric pressure (min)	CH ₄ (%)	CO ₂ (%)	O ₂ (%)	Flow rate at time of sampling	Comments
Initial	-		-	0.2	1.5	19.7		
0		-20		0.2	<u>برا</u> -	194		
20		-20	1	0·1	1.5	19.3		
30		720		0.1	1.4	19.4		
40		-20	(0-1	1.4	19.4		r
							÷ .	
							i i kare	
		•						-
			-					

^{*} where one tank volume = 12 L

Unit conversions 1 kPa = 0.145 psi

1 psi = 6.90 kPa

¹ Measured as methane equivalents

Volume of Gas: 4.2 L/m air in 50mm

Client: Boyds Cooks Cove		CES Project Code: (GJ	COS 6706 ~ JCC
Project: ICC		Location: Cooks Cove	Area B
Sampler (s): AG	Signature(s):	Project Manager:	L.Jenkins
BH ID: 1366 404		Monitoring Date / Time:	10/06/2008
Well Status	6		
Well damaged:	YES/NO \	Well locked:	(YES)NO (YES)NO
Cement footing damaged:	YES/NO	Cap on PVC casing:	
Standing water, vegetation around monument:	YES NO	Well ID visible:	YESMO
Water between PVC and protective casing:	YES NO	Monument damaged:	YESANO
Comments:	\circ	Odours from well	YE S ÃNO
Ambient reading (FID):	ppm		
			*
Initial well pressure:	kPa		
Initial vent:	Nil / Initial pulse / Pulse	> 5 s / Continuous	
Gas Flow rate:	% 440 L/hr or	% 3000L/hr OR	% 10 000
Well pressure after initial vent:	kPa	-	
Standing Water Level (SWL):	(mBTOC)		
		A P	

Readings				Land	fill Gas Ans	ılyser		
Cumulative volume (L)*	Cumulative time vented (min)	Maximum Vacuum on Well (psi)	Recovery Time - to equilibrate to atmospheric pressure (min)	CH₄ (%)	CO₂ (%)	O ₂ (%)	Flow rate at time of sampling	Comments
Initial	-		-	0.1	1.2	19.4		
(0)		_20		0.2	1.3	19-7.		
20		_20	(0.1	1.7	19.5.		
30		_ 20		9.5	1.2	,		
(60		-20	1 -	0.1	1.2	19-5.		
						i		- · · · · · · · · · · · · · · · · · · ·
								- 104 No. 114
								· · · · · · · · · · · · · · · · · · ·
		1						

^{*} where one tank volume = 12 L

¹ Measured as methane equivalents

Volume of Gas: 4.2 L/m air in 50mm

Unit conversions
1 kPa = 0.145 psi
1 psi = 6.90 kPa

MONITORING WELL DEVELOPMENT FIELD DATA SHEET

Contractor	
Client: Boyels Cooks Cove	 t Code: CES os o 206 - BCC
Project: Closwah Coll Course	Location: Area A
Sampler (s): "Tenhuis" Signature(s):	Project Manager: Defrozzi

Well Development Record

Date	Well IDD	Development Method (s)	Standing Water Level (before/after)	Depth to Bottom of Well Water Volume Removed (before/after) (L)		Description and comments (eg. Turbidity, odours, free-phase product, changes through development process)
2)/5/08 Amuzoz	A MW 203	Footrelie	1.54/1.55	2.45/2.45	100	Good recours. Hes oder
21/5/08	AMV ROS	FU	0-44/20.04	2.04/2004	83	Proces the organic octor.
81.5.08	AMW 207	FU	1:46/2.51	2.51/2.5	7	Brown behal odowled Rugel to chy every 1 L. Very stow recovery.
21.5.08 Amuros	Amuroq	77	0.67/0.00	249/2.42	ુ ડેંગ,	Boun tutich selowless
21/5/68	AMW 202	FU	067/0.67	2.52/252	A1500 75	Bour pade bour V. subed / history
21.5.08	21.5.08 AMW201 FV	ju ju	0.40/0.50	2.40/2.41	28	brown / pale brown burbon delaw loss
21.5.04	AMW 28 FU	EU	0.90/2.30	2.43/2.43	(10	purged to dry every 24.
21.5.08	ABHIOI	70	1.31/2.50	3.25 3.95	40	puzzel to dis every to L.
21.5.08	P8 H 2185	77	1.42/1.50	3.96/3.96	60	Brown V. turbed will be order
Note 1: B = Baller; SB = Sur	ge Block; AIR = Air	sparging/air lift; NLII	-T = Nitrogen gas sparging/lift:	Note 1: B = Baller, SB = Surge Block; AIR = Air sparging/air lift; NLIFT = Nitrogen gas sparging/lift; PUMP = Pumping/over pumping	1	

MONITORING WELL DEVELOPMENT FIELD DATA SHEET

Client: Usuals Cooks Cove	CES Project Code: CECOFO706 · CCC
Project: "Kograf Golf Course	Location: Area A
Sampler (s): "Ton hear' Signature(s):	Project Manager: Petroezi
Well Development Record	

Well Development Record

Date	Well ID	Development Method (s)	Standing Water Level (before/after)	Depth to Bottom of Well Water Yolume Removed (before/after)		Description and comments (eg. Turbidity, odours, free-phase product, changes through development process)
23/5/68	A0#2100	EV	1.54/6.25	1.54/6.25 6.50/6.50	30	Pale boom habout ordenless very slow occount.
23/5/08	A8H2INO	FV	1.69/	1.88/-	l	Not enough water to duelop.
					-	
					-	
-		·				
			-			
Note 1: B = Bailer; SB = Su	ırge Block; AIR = Air	sparging/air lift; NLII	FT = Nitrogen gas sparging/lift	Note 1: B = Bailer; SB = Surge Block; AIR = Air sparging/air lift; NLIFT = Nitrogen gas sparging/lift; PUMP = Pumping/over pumping	Bu	

Calibration Record Sheet
Meter: TPS 90-FLMV Multiparameter Instrument
Serial no: S3676 (old unit) and T0001 (new unit)

5A 4.00 7.09	25. 25. 7 25. 25. 7 27. 25. 7
0 3 7 8 8 8 8	

EARTH SCIENTISTS

Calibration Record Sheet
Meter: TPS 90-FLMV Multiparameter Instrument
Serial no: S3676 (old unit) and T0001 (new unit)

	<u></u>			_	_									<u>.</u>	<u>د</u> ر د	25	16.6	0		٥,	2/6	\$0 × -0 9	30/	727	77.70		70	16/0F/08	Date		
																			3	ීල්		9	57.51koy59/08	\$ C	5 8	1 1 1 2 C		 -		CALIBRATION	
										.					00	19.30				07 gg			6	ر م	000				Time Cal	ATION	
		-													2	S	12	کر ک	5	5	ZZ AC	5	な	7	3	2	2		Calibrated pl	$\overline{}$	
 															7	<	7	٠	`	1	2	\	7	<u>く</u>		\ \?	7		tick appropr pH 4 pH 6.86	Standard used (pH)	
1	_			,		-	-				-	• •			1	1	1	1	1	1	,	Y	7	1	1	4	1	1	briate)	(Hq) bs	
					-										2.69	1.54	2.28	8	2.76	276	2,76	2.76	2.74	2.76	9-76	2.95ms	2768	2760	uS/cm	Standard used	
-							-			-					7	. <	1	<	(`	<	1	1	<u> </u>	<	<	5	<	<u>옥</u> 등		
	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	_	Eh	
					-				1						*17	2 2	246			, 1,27	140	_	100	_	_			222	. 2	Result	
													2."			0,0	1 1 C	M.6.23) -	999	3/6/08	4.6.00		30 5 00	1/2	12/08/07/18/2	00/2/22		Date	Calibration check) : : :
			-			v)										1	ながら		,		╌	J E	_	J-OUPIN	1	300	\$ \$ \$	ξ - -	1inte	alibration check Checked	1525
		-	<u> </u>		1			_		_		-			$\frac{1}{1}$		_	3 6)		1 0	, 7	-			10	1 5	4	₽¥	Checked	1000
	-		-		-			-	<u>-</u>	-	-					-F			20	 - -		2 5	7	11.		- 10	2 0 2 0 3 0	300	91.4		=
-	-				-	<u>. :</u>							-			- i -			0.70	17			01	1 0	١_		ر ان ان		PH /	밀	Callora
-	1		-			<u> </u>		-					-	-			. ,		(ı	(1		(1		j	n ud	pH EC	HOH CHECK I
-																	2.55	7.75%	2760		7.62	ر ا ا	22		7-75ms	2.Al mS	1	3.20	50,000	EC.	90000
-			 - 							-					·		246	192	225			وبر د	223		2, 2, 2, 1,	2,52	110	22/		T F	ŀ
		<u>-</u>				-1			- 		· ·			,			3	TS 2	FMI	13	500	77	7	_	7	7	757	137	1 M4	•	
		-							,								2 M	2		450	13 Y	2	 		<i>b</i> ₂	3	7	7		Comments	
						,														,										nts	

Appendix 5 Boreholes Logs Project ID: CES050706-BCC

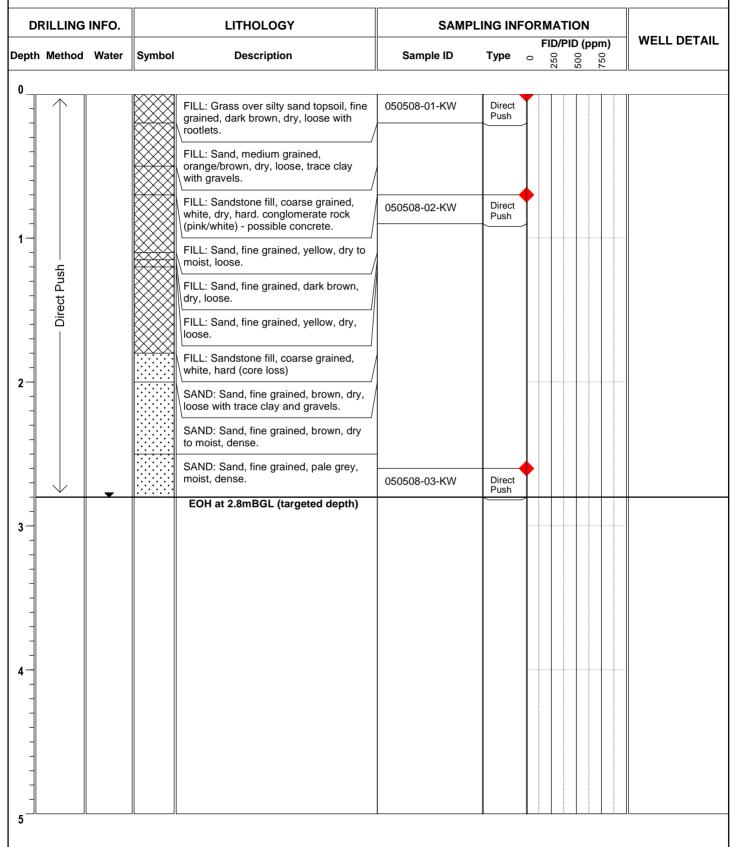
Project: ESA

Easting: 329867.686

Elevation: 2.97

Northing: 6243591.190

Client: Boyd Cooks Cove


Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

CONSULTING

SCIENTISTS.

Location: Cooks Cove - Area A

Environmental Log: ABH201

Drill Company: Macquarie Drilling

Drill Model: Mac200

Hole Diameter (mm): 50

Date Commenced: 05/05/2008

Date Completed: 05/05/2008

Logged/checked by: K.Weir/L.Jenkins

Sheet: 1 of 1

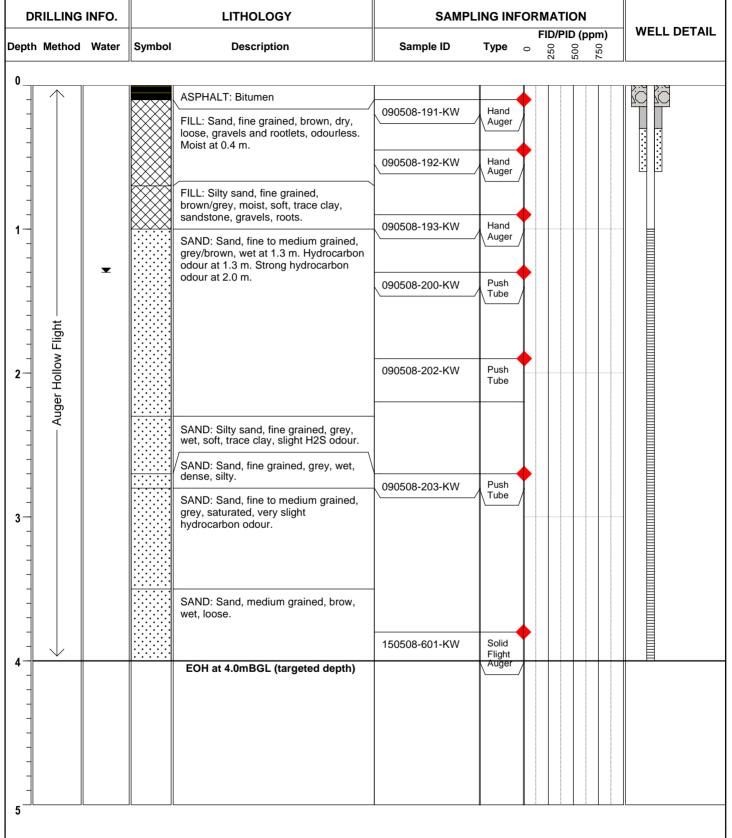
Easting: 329924.428

Elevation: 1.74

Project: ESA

Client:

Northing: 6243586.055



Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Location: Cooks Cove - Area A

Boyd Cooks Cove

ABH202 Environmental Log:

Macquarie Drilling **Drill Company:**

Mac200

Date Completed:

09/05/2008

Drill Model:

Date Commenced:

15/05/2008

Hole Diameter (mm): 150

Logged/checked by:

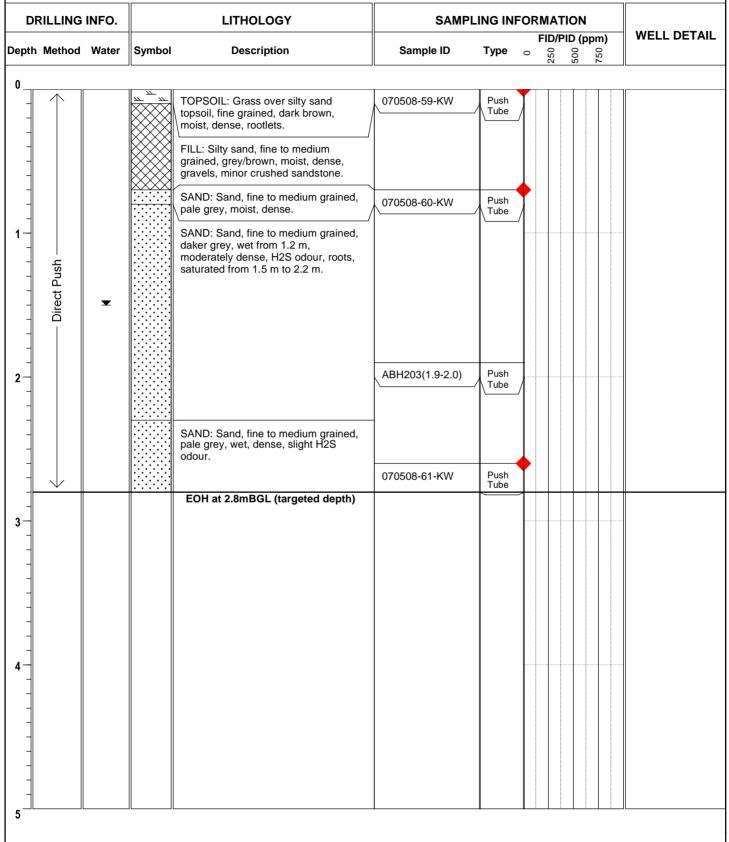
K.Weir/L.Jenkins

Boyd Cooks Cove

Easting: 329763.306

Project: ESA Northing: 6243541.165

Client:


Elevation: 1.23

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Location: Cooks Cove - Area A

ABH203 Environmental Log:

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm):

07/05/2008 **Date Commenced:**

Date Completed: 07/05/2008

Logged/checked by: K.Weir/L.Jenkins

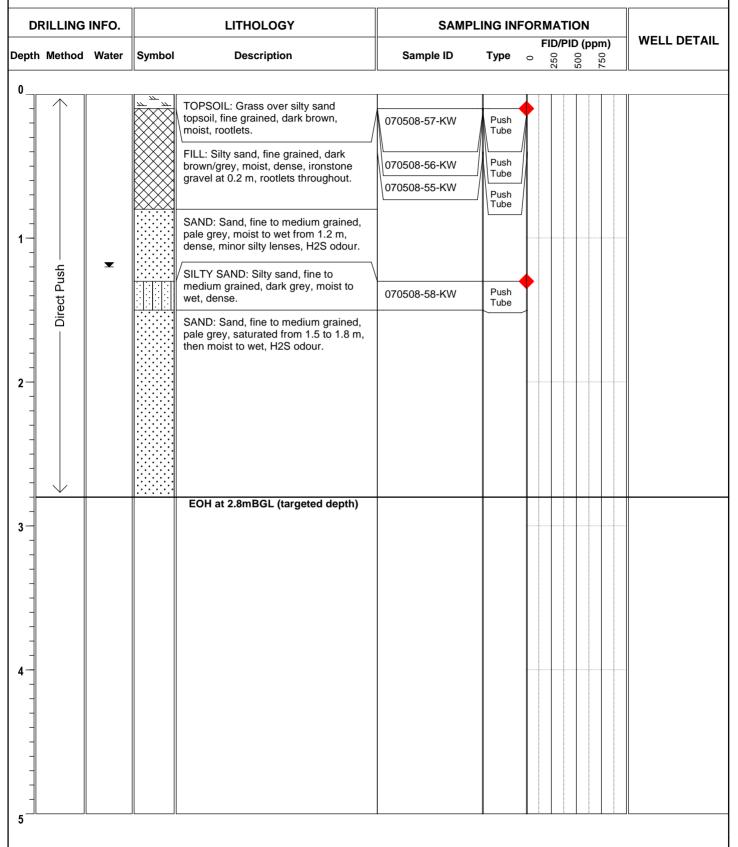
Boyd Cooks Cove

Easting: 329799.291

Project: ESA

Client:

Northing: 6243532.840


Elevation: 1.06

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Location: Cooks Cove - Area A

Environmental Log: ABH204

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm): 50

07/05/2008 **Date Commenced:**

Date Completed: 07/05/2008

Logged/checked by: K.Weir/L.Jenkins

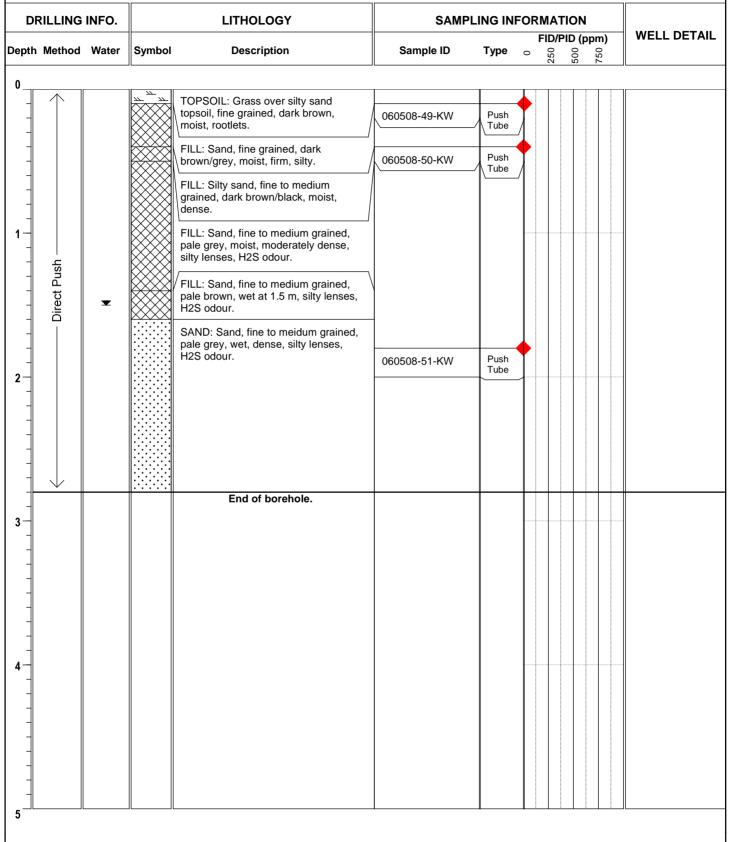
Easting: 329831.695

Northing: 6243544.297

Elevation: 1.19

ESA Boyd Cooks Cove Client:

Project:


Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

CONSULTING

SCIENTISTS.

Location: Cooks Cove - Area A

ABH205 Environmental Log:

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm): 50

06/05/2008 **Date Commenced:**

Date Completed: 06/05/2008

Logged/checked by: K.Weir/L.Jenkins

Easting:

329880.449

Northing: 6243542.211

Project: ESA

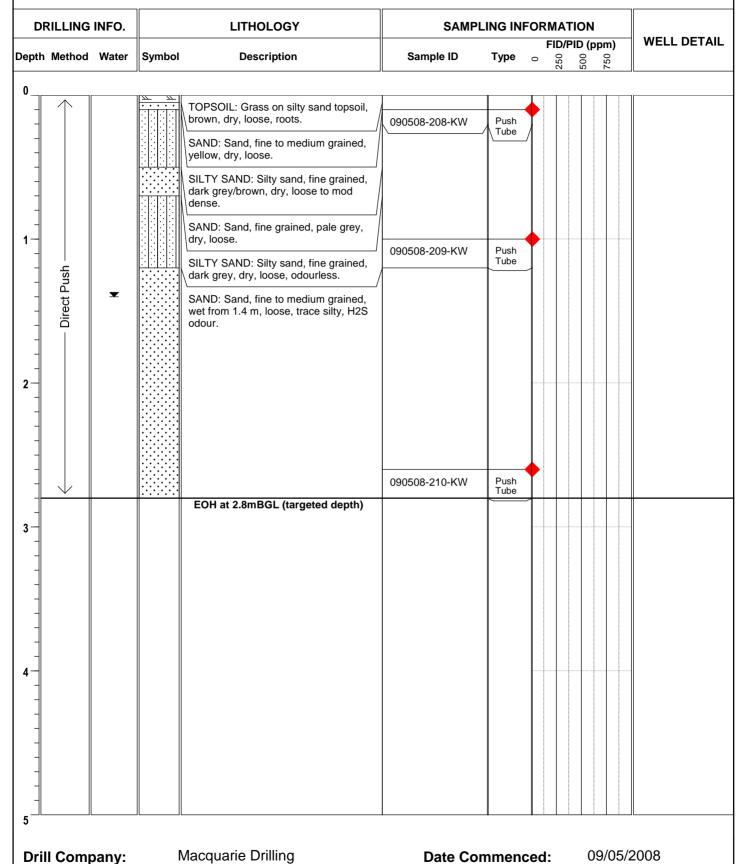
Drill Model:

Hole Diameter (mm): 50

Mac200

Client:

Elevation: 2.68



Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Location: Cooks Cove - Area A

Boyd Cooks Cove

Environmental Log: ABH206

Date Completed:

Logged/checked by:

09/05/2008

K.Weir/L.Jenkins

ESA

Project:

Easting: 329925.011

Northing: 6243539.904

CONSULTING SCIENTISTS

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Boyd Cooks Cove Client:

Elevation: 3.72

Location: Cooks Cove - Area A **Environmental Log: ABH207**

DRILLING INFO.			LITHOLOGY		SAMPLING INFORMATION							l
oth	Method	Water	Symbol	Description	Sample ID	Туре	F	FID/PID (ppm)			1)	WELL DETAIL
-			Cymbol		Gample 15	1 700		250	200	750		
	<u> S</u>			ASPHALT: Bitumen		T						
1	۲. P				-1							
1	Direct Pus			FILL: Roadbase and gravel with crushed sandstone, dry, odourless.	090508-207-KW	Push Tube						
-				SANDSTONE: Sandstone,								
1				white/orange, dry, hard. EOH at 0.4mBGL (Refusal on sandstone								
				bedrock)								
4					_							
4												
1												
1												
1												
4												
+												
1												
1												
1												
1												
4												
+												
\parallel												
1												
1												
1												
4												
\parallel												
+												
1												
4												
\parallel												
1												
1												
]						1						
1						1						
4												
+												
\parallel												
1						1						

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm): 50

09/05/2008 **Date Commenced:**

Date Completed: 09/05/2008

Logged/checked by: K.Weir/L.Jenkins

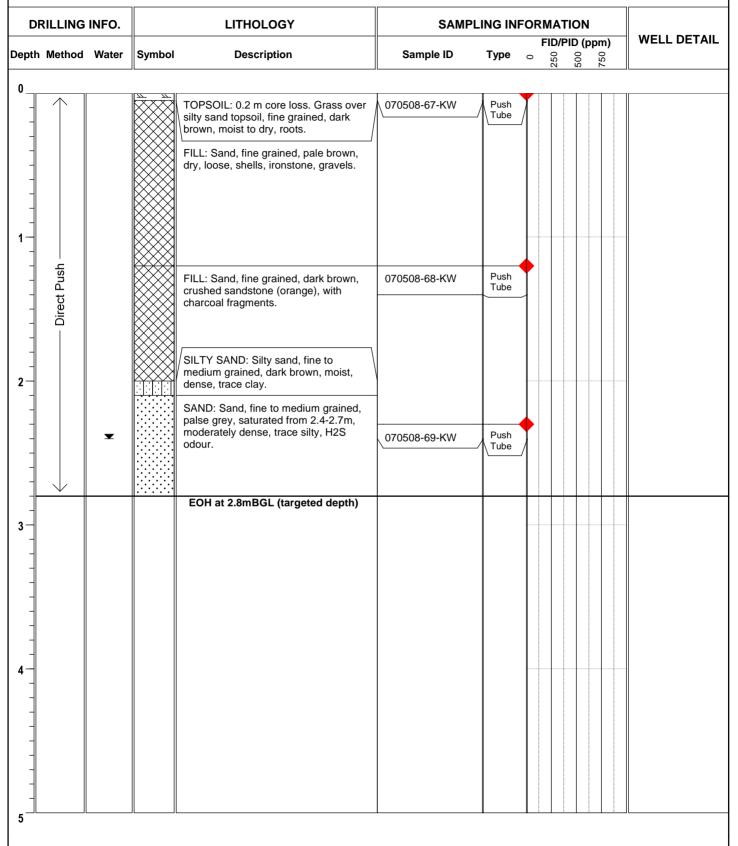
Boyd Cooks Cove

Easting: 329676.926

Project: ESA

Client:

Northing: 6243500.164


Elevation: 2.12

SCIENTISTS. Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

CONSULTING

Location: Cooks Cove - Area A

ABH208 Environmental Log:

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm): 50

07/05/2008 **Date Commenced:**

Date Completed: 07/05/2008

Logged/checked by: K.Weir/L.Jenkins

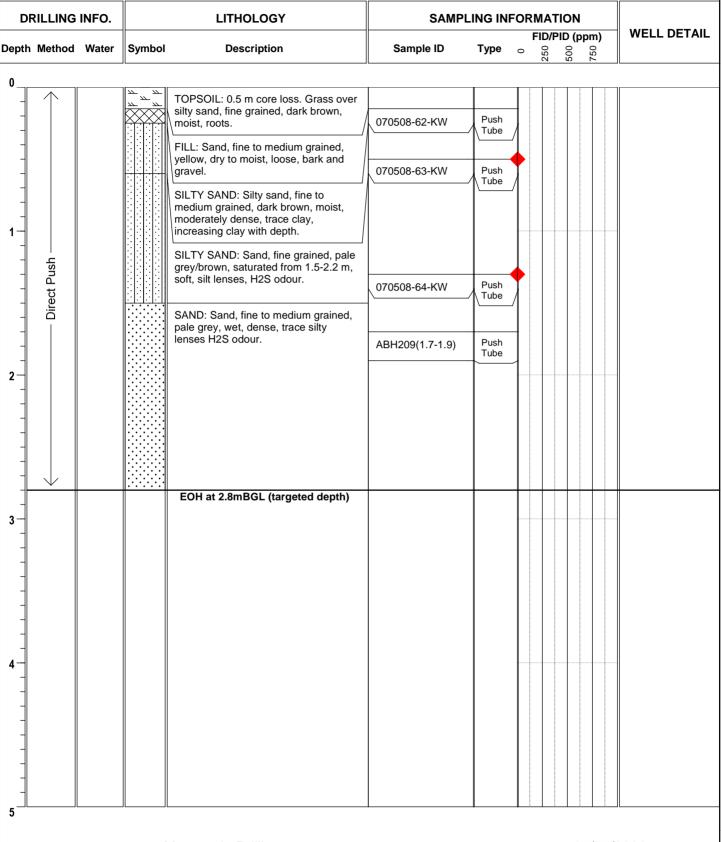
ESA

Project:

60706-BCC **Eas**

Easting: 329738.333

Northing: 6243496.302


CONSULTING EARTH SCIENTISTS

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Client: Boyd Cooks Cove

Elevation: 1.13

Location: Cooks Cove - Area A Environmental Log: ABH209

Drill Company: Macquarie Drilling

Drill Model: Mac200

Hole Diameter (mm): 50

Date Commenced: 07/05/2008

Date Completed: 07/05/2008

Logged/checked by: K.Weir/L.Jenkins

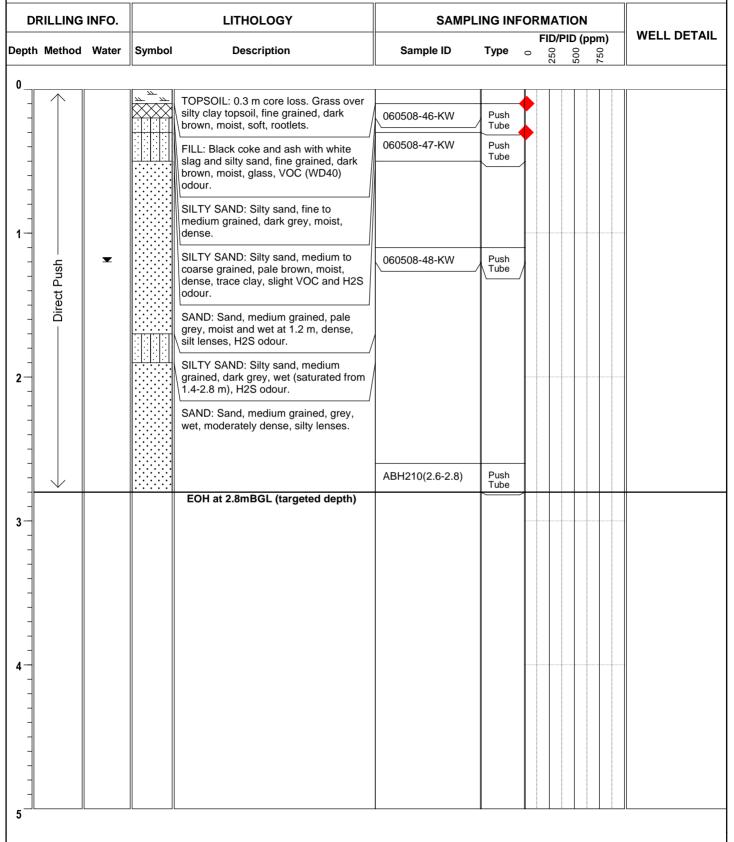
Cooks Cove - Area A

Easting: 329798.581

Project: ESA

Location:

Northing: 6243492.370


Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

CONSULTING

Boyd Cooks Cove Client:

Elevation: 0.86

ABH210 Environmental Log:

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm): 50

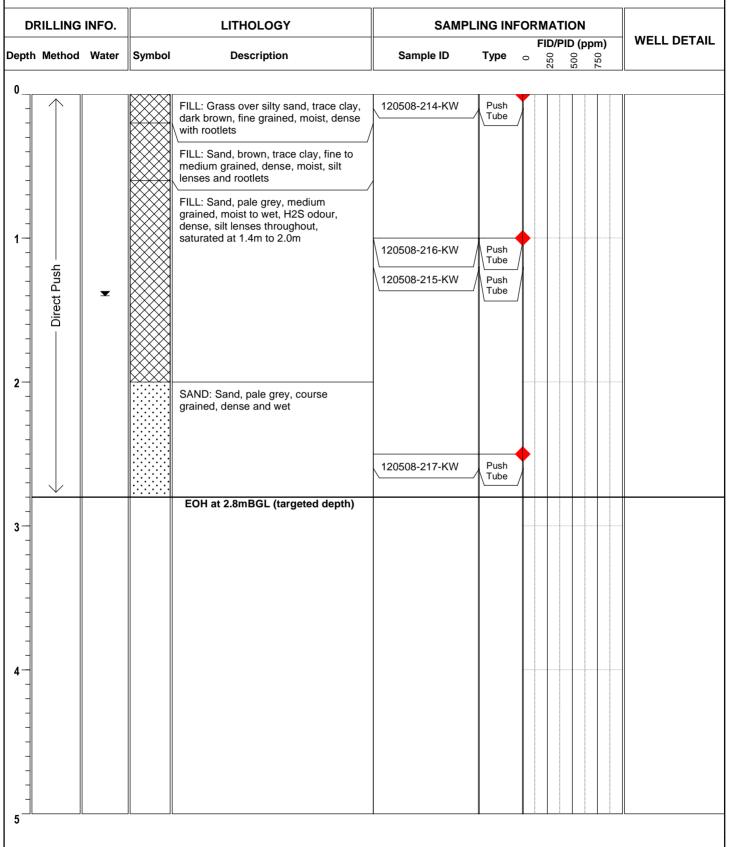
06/05/2008 **Date Commenced:**

Date Completed: 06/05/2008

Logged/checked by: K.Weir/L.Jenkins

Easting: 329832.382

Project: ESA Northing: 6243498.085


Boyd Cooks Cove Client: Elevation: 1.18

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

CONSULTING

SCIENTISTS.

ABH211 Location: Cooks Cove - Area A **Environmental Log:**

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm): 50

12/05/2008 **Date Commenced:**

Date Completed: 12/05/2008

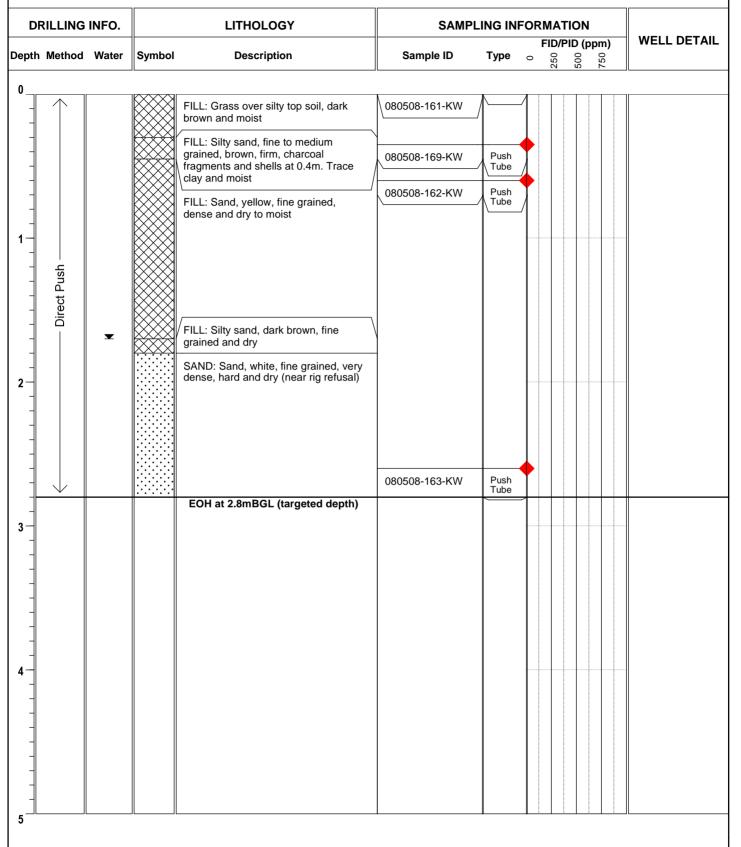
Logged/checked by: K.Weir/L.Jenkins

ESA

Project:

S050706-BCC

Easting: 329878.222


Northing: 6243497.379

Client: Boyd Cooks Cove Elevation: 5.73

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Location: Cooks Cove - Area A Environmental Log: ABH212

Drill Company: Macquarie Drilling

Drill Model: Mac200

Hole Diameter (mm): 50

Date Commenced: 08/05/2008

Date Completed: 08/05/2008

Logged/checked by: K.Weir/L.Jenkins

ESA

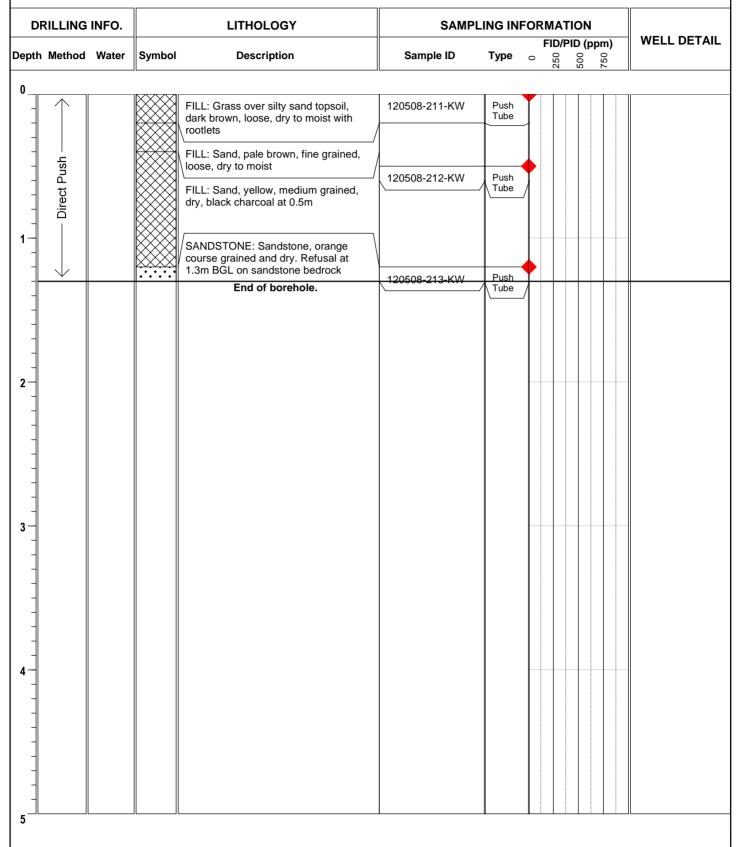
Easting: 329919.200

Elevation: 5.00

Northing: 6243488.726

Boyd Cooks Cove Client:

Project:


Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

CONSULTING

SCIENTISTS.

Location: Cooks Cove - Area A

ABH213 Environmental Log:

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm): 50

Date Commenced: 12/05/2008

Date Completed: 12/05/2008

Logged/checked by: K.Weir/L.Jenkins

Boyd Cooks Cove

Easting: 329655.819

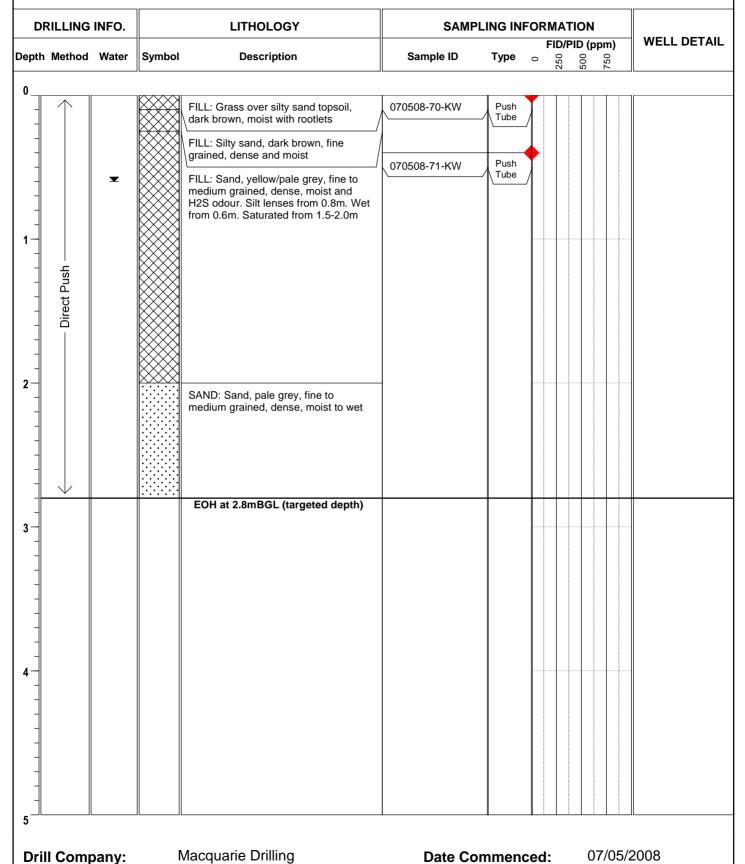
Project: **ESA**

Client:

Drill Model:

Hole Diameter (mm): 50

Mac200


Northing: 6243449.734

Elevation: 0.97

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Location: Cooks Cove - Area A **Environmental Log: ABH214**

Date Completed:

Logged/checked by:

07/05/2008

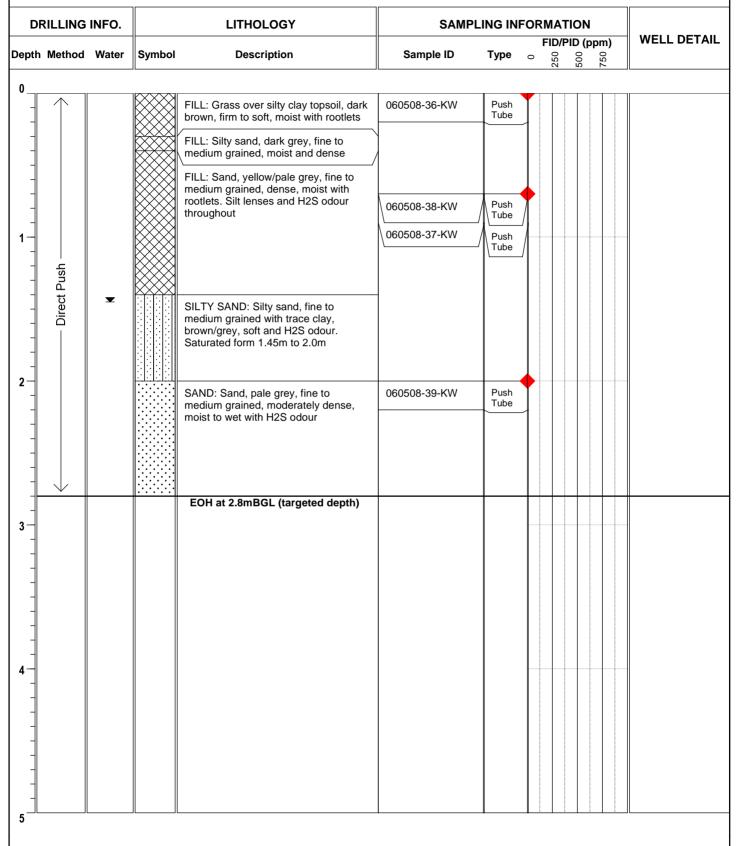
K.Weir/L.Jenkins

Client:

Easting: 329724.248

Elevation: 1.04

Project: Northing: 6243447.953 **ESA**



Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Location: Cooks Cove - Area A

Boyd Cooks Cove

ABH215 Environmental Log:

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm): 50

06/05/2008 **Date Commenced:**

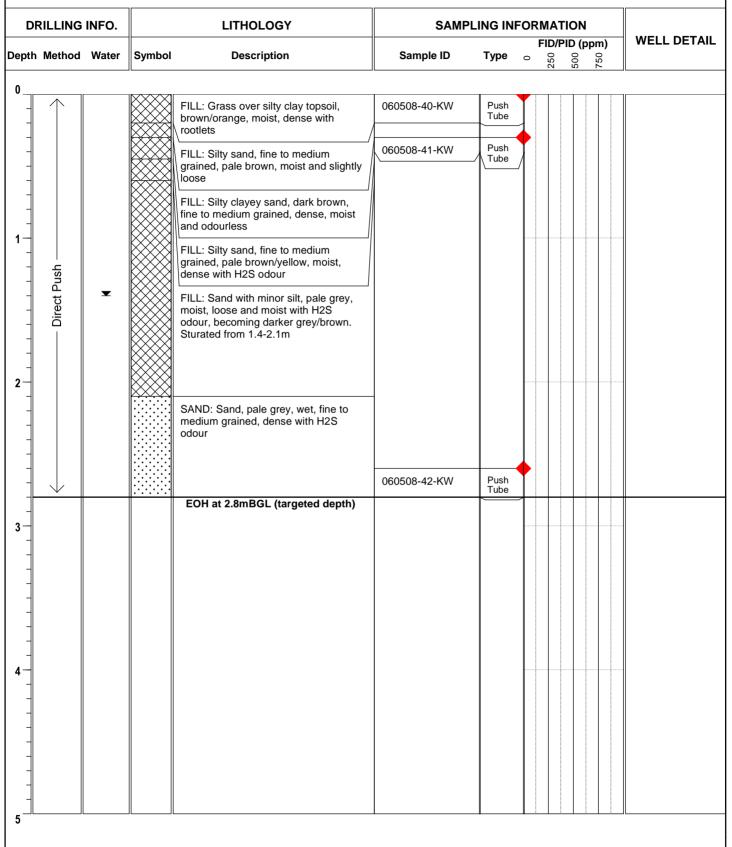
Date Completed: 06/05/2008

Logged/checked by: K.Weir/L.Jenkins

Project: ESA

Client:

Easting: 329754.370


Northing: 6243446.681

Boyd Cooks Cove Elevation: 0.97

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Location: Cooks Cove - Area A Environmental Log: ABH216

Drill Company: Macquarie Drilling

Drill Model: Mac200

Hole Diameter (mm): 50

Date Commenced: 06/05/2008

Date Completed: 06/05/2008

Logged/checked by: K.Weir/L.Jenkins

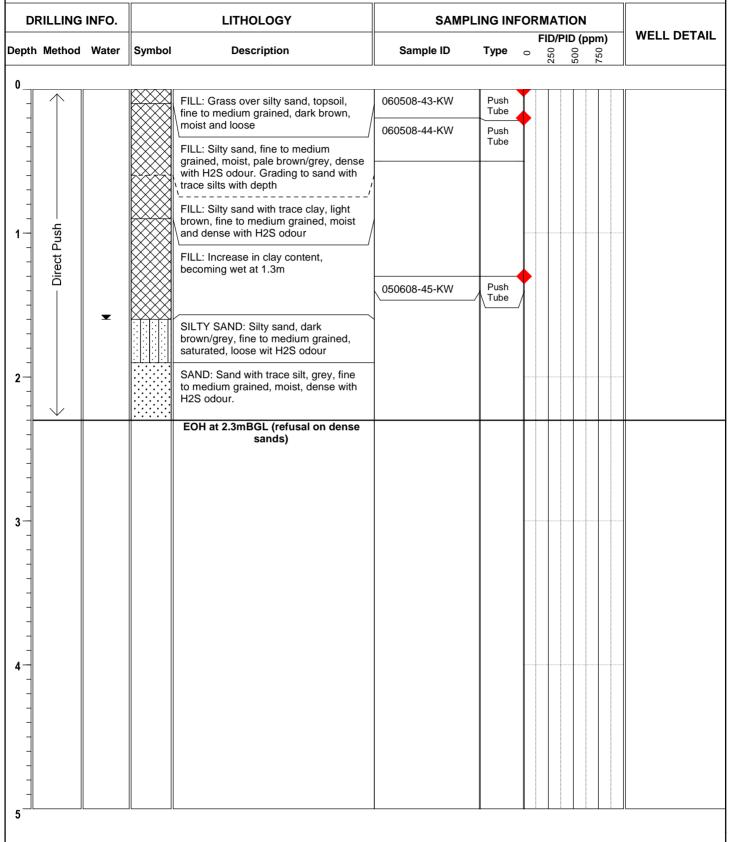
Easting: 329814.547

Client:

Northing: 6243438.850

Project: ESA

Elevation: 0.93



Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Location: Cooks Cove - Area A

Boyd Cooks Cove

ABH217 Environmental Log:

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm): 50

06/05/2008 **Date Commenced:**

Date Completed: 06/05/2008

Logged/checked by: K.Weir/L.Jenkins

Boyd Cooks Cove

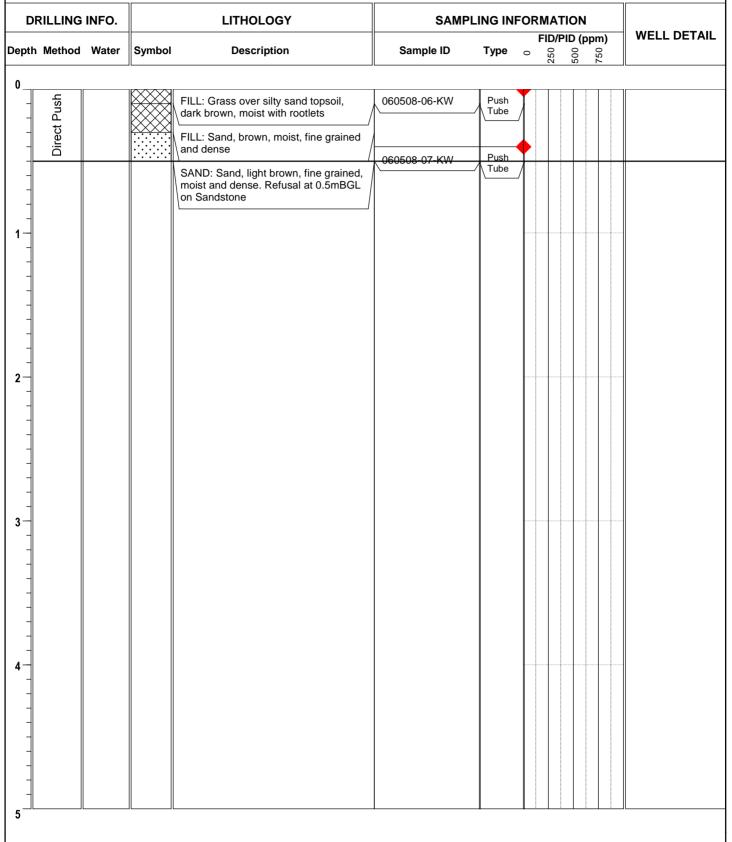
Easting: 329845.698

Project: **ESA**

Client:

Northing: 6243452.655

Elevation: 1.39


Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

CONSULTING

SCIENTISTS.

Location: Cooks Cove - Area A

ABH218 Environmental Log:

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm): 50

Date Commenced: 06/05/2008

Date Completed: 06/05/2008

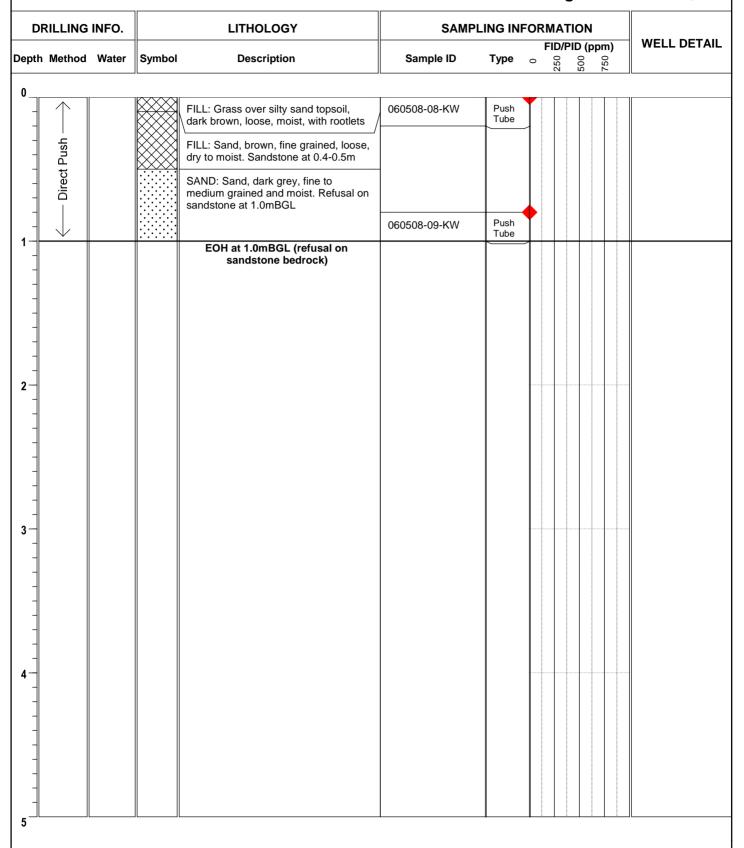
Logged/checked by: K.Weir/L.Jenkins

Easting: 329884.676

Elevation: 2.50

Project: **ESA** Northing: 6243447.707

Boyd Cooks Cove Client:


Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

CONSULTING

SCIENTISTS.

Location: Cooks Cove - Area A

ABH219 Environmental Log:

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm): 50

Date Commenced: 06/05/2008

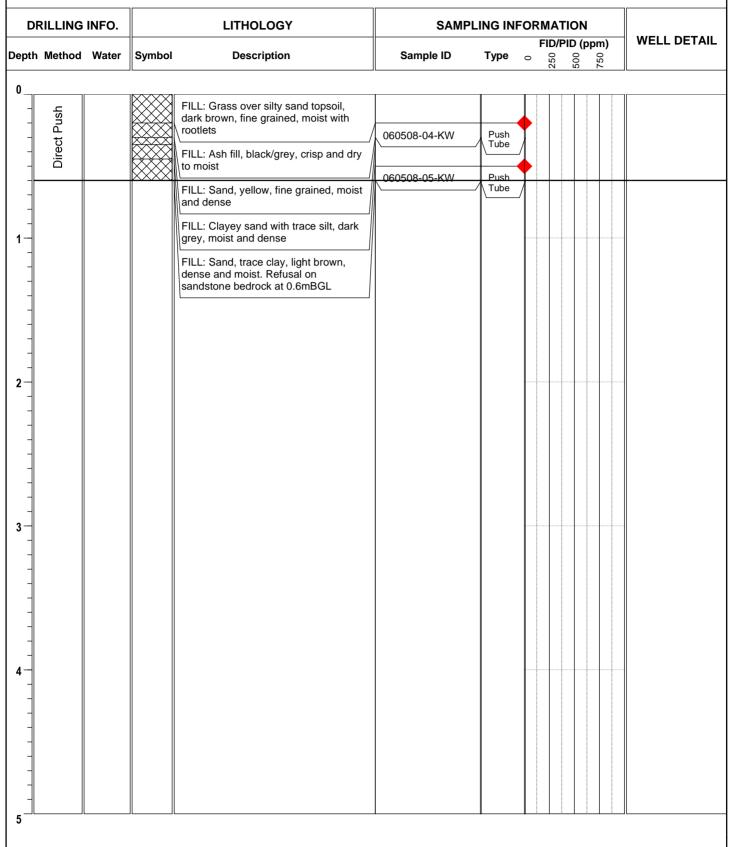
Date Completed: 06/05/2008

Logged/checked by: K.Weir/L.Jenkins

Easting: 329924.044

Elevation: 2.25

Project: **ESA**


Northing: 6243450.645

Boyd Cooks Cove Client:

SCIENTISTS. Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

CONSULTING

Location: Cooks Cove - Area A **Environmental Log: ABH220**

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm): 50

Date Commenced: 06/05/2008

Date Completed: 06/05/2008

Logged/checked by: K.Weir/L.Jenkins

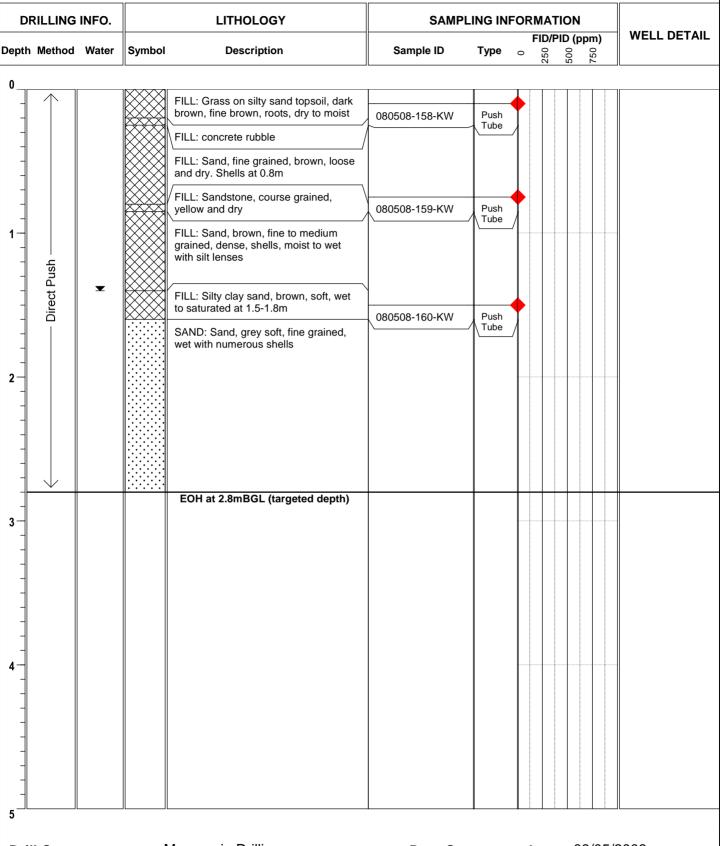
ESA

Project:

329994.603

Easting:

Northing: 6243450.997


CONSULTING SCIENTISTS.

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Boyd Cooks Cove Client:

Elevation: 1.31

Location: Cooks Cove - Area A **ABH221 Environmental Log:**

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm): 50

08/05/2008 **Date Commenced:**

Date Completed: 08/05/2008

Logged/checked by: K.Weir/L.Jenkins

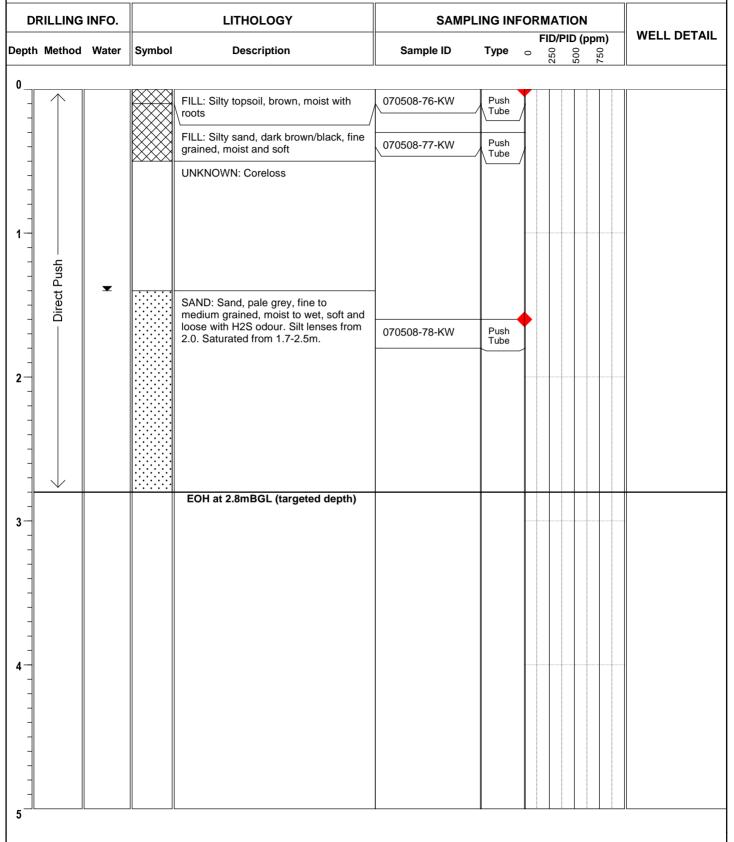
CES050706-BCC

Easting: 329565.810

Project: ESA

Client:

Northing: 6243401.446


Boyd Cooks Cove Elevation: 0.94

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Location: Cooks Cove - Area A

Environmental Log: ABH222

Drill Company: Macquarie Drilling

Drill Model: Mac200

Hole Diameter (mm): 50

Date Commenced: 08/05/2008

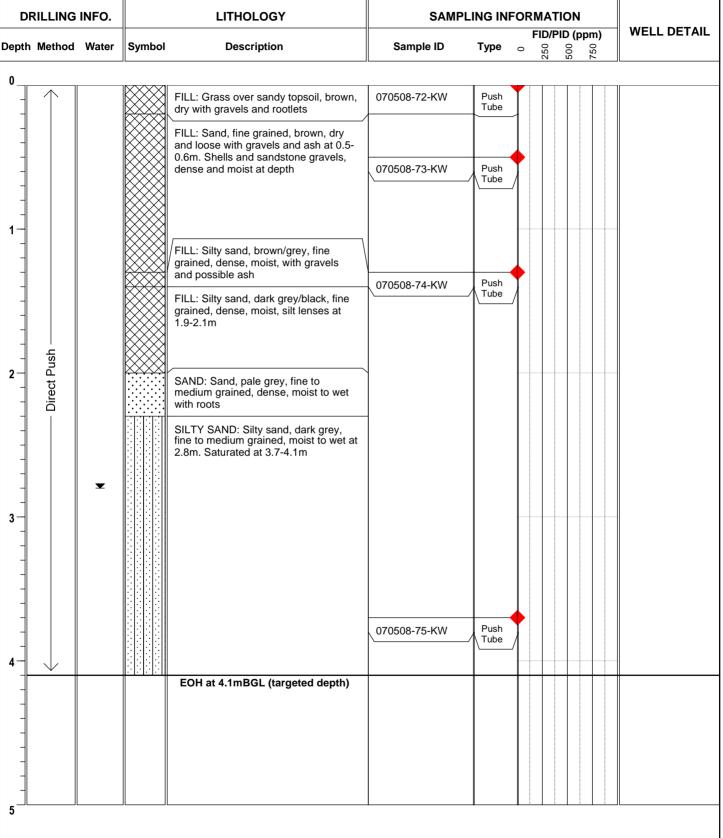
Date Completed: 08/05/2008

Logged/checked by: K.Weir/L.Jenkins

Easting: 329606.336

Project: ESA

Client:


Northing: 6243406.270

Boyd Cooks Cove Elevation: 2.09

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Location: Cooks Cove - Area A **ABH223 Environmental Log:**

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm): 50

08/05/2008 **Date Commenced:**

Date Completed: 08/05/2008

Logged/checked by: K.Weir/L.Jenkins

ESA

Project:

Location:

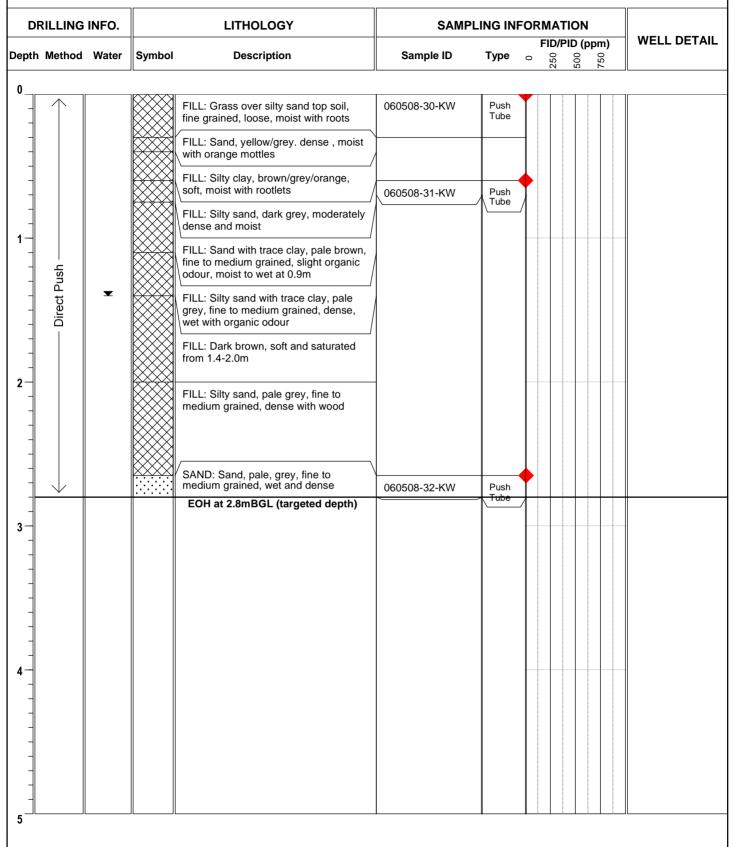
Easting:

Northing: 6243404.105

Boyd Cooks Cove Client:

Cooks Cove - Area A

329657.034


Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

CONSULTING

SCIENTISTS.

Elevation: 1.16

ABH224 Environmental Log:

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm):

06/05/2008 **Date Commenced:**

Date Completed: 06/05/2008

Logged/checked by: K.Weir/L.Jenkins

. OLO000700 D

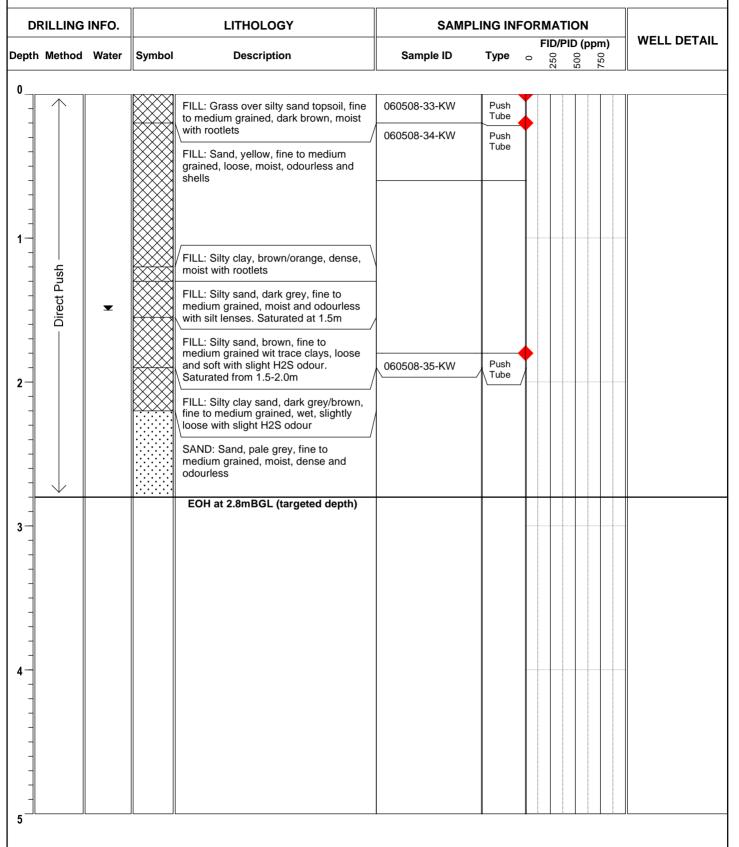
Easting: 329694.665

Northing: 6243404.713

•

EARTH SCIENTISTS

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399


Project: ESA

Client:

Boyd Cooks Cove

Elevation: 1.32

Location: Cooks Cove - Area A Environmental Log: ABH225

Drill Company: Macquarie Drilling

Drill Model: Mac200

Hole Diameter (mm): 50

Date Commenced: 06/05/2008

Date Completed: 06/05/2008

Logged/checked by: K.Weir/L.Jenkins

Easting: 329755.651

Elevation: 1.32

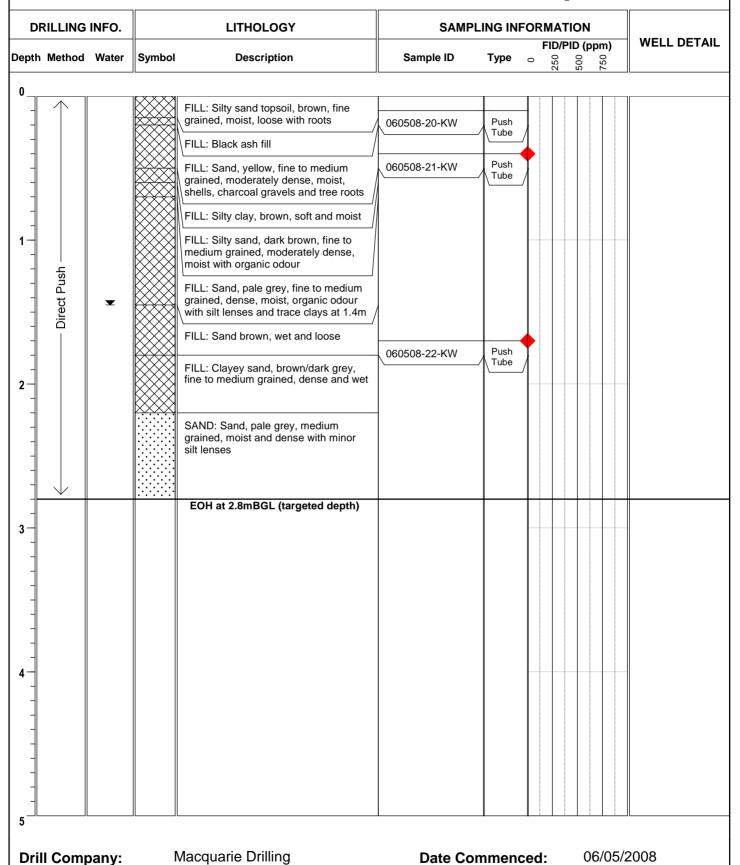
Northing: 6243402.717

ESA Boyd Cooks Cove Client:

Project:

Drill Model:

Hole Diameter (mm):


Mac200

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Location: Cooks Cove - Area A

ABH226 Environmental Log:

Date Completed:

Logged/checked by:

06/05/2008

K.Weir/L.Jenkins

Easting: 329798.506

Project: ESA

Client:

Northing: 6243404.901

Boyd Cooks Cove Elevation: 1.03

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Location: Cooks Cove - Area A **Environmental Log: ABH227**

DRILLING INFO.			LITHOLOGY		SAMF	MELL SETA			
epth	Method	Water	Symbol	Description	Sample ID	Type c	FID/	PID (ppm) 092	WELL DETAIL
0									
-	\uparrow			FILL: Grass over silty sand topsoil, brown, moist and loose					
-			-	FILL: Silty clay, brown/grey, soft and moist with minor gravels	060508-19-KW	Push Tube			
-		•		FILL: Silty sand, dark brown/grey, fine to medium grained moderately dense and moist	060508-18-KW	Push			
1-	Direct Push ————————————————————————————————————			FILL: Sand, pale grey, medium grained, moderately dense with trace silt lenses	060508-17-KW	Push			
				FILL: Clayey silt sand, dark grey with organic odour					
				FILL: Silty sand, brown/grey, moist and moderately dense					
2-				FILL: Grading to silty clayey sand	_				
				SAND: Sand, pale grey, fien to medium grained, wet with slight organic odour					
-	<u> </u>			EOH at 2.8mBGL (targeted depth)					
-									
-									
1									

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm): 50

06/05/2008 **Date Commenced:**

Date Completed: 06/05/2008

Logged/checked by: K.Weir/L.Jenkins

ESA

Project:

Drill Model:

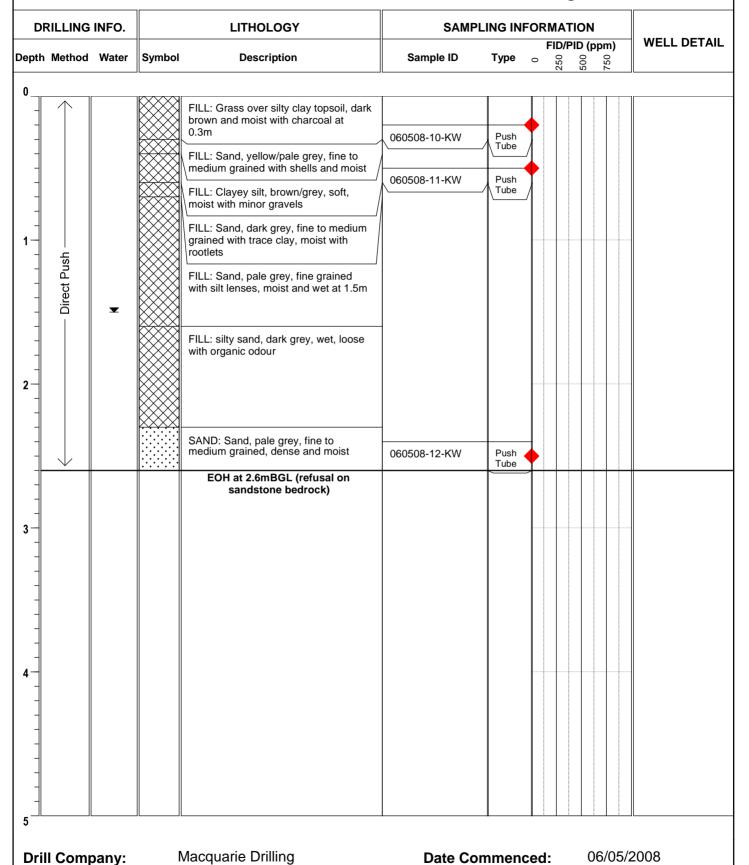
Hole Diameter (mm): 50

Mac200

Easting: 329849.080

Elevation: 1.10

Northing: 6243400.702


Boyd Cooks Cove Client:

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Location: Cooks Cove - Area A

ABH228 Environmental Log:

Date Completed:

Logged/checked by:

06/05/2008

K.Weir/L.Jenkins

ESA

Project:

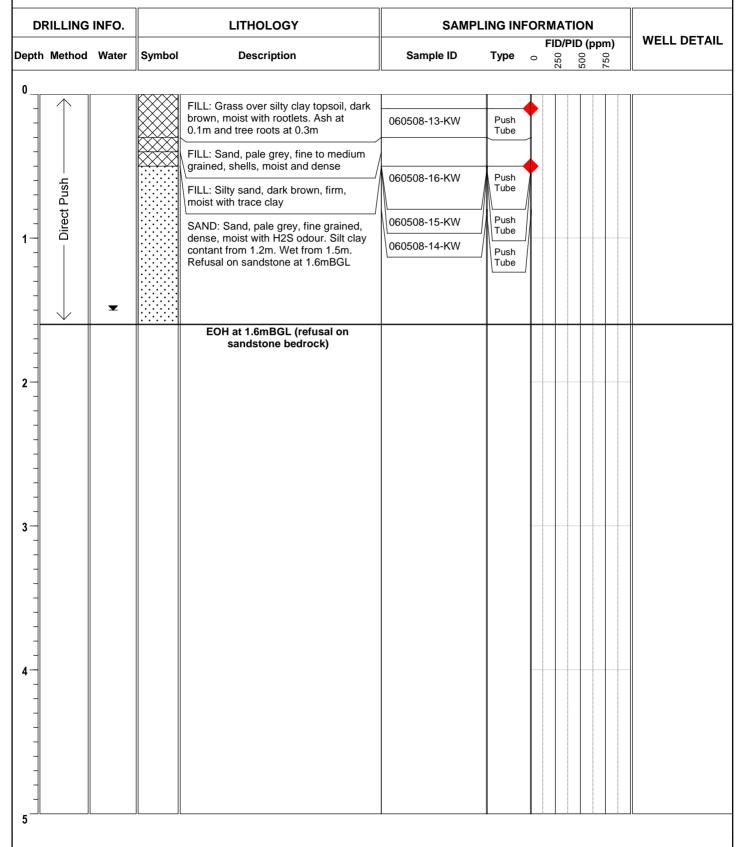
Client:

CE2020106-BCC

Boyd Cooks Cove

Easting: 329888.140

Northing: 6243401.205


Elevation: 0.76

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Location: Cooks Cove - Area A

Environmental Log: ABH229

Drill Company: Macquarie Drilling

Drill Model: Mac200

Hole Diameter (mm): 50

Date Commenced: 06/05/2008

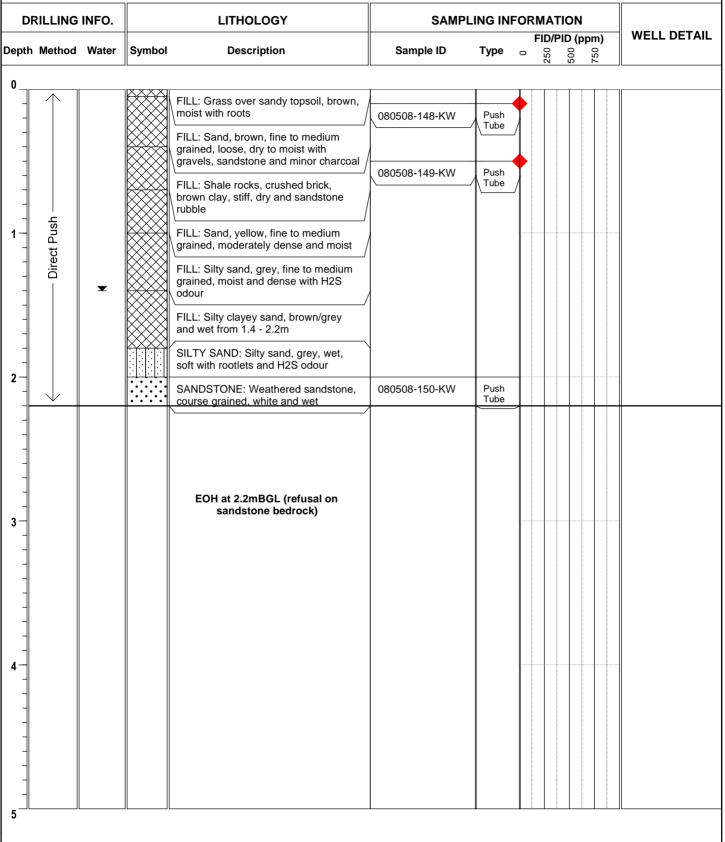
Date Completed: 06/05/2008

Logged/checked by: K.Weir/L.Jenkins

Easting: 329918.449

Northing: 6243403.763

CONSULTING SCIENTISTS.


Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Project: ESA

Client:

Boyd Cooks Cove Elevation: 1.23

Location: Cooks Cove - Area A **ABH230 Environmental Log:**

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm): 50

08/05/2008 **Date Commenced:**

Date Completed: 08/05/2008

Logged/checked by: K.Weir/L.Jenkins

ESA

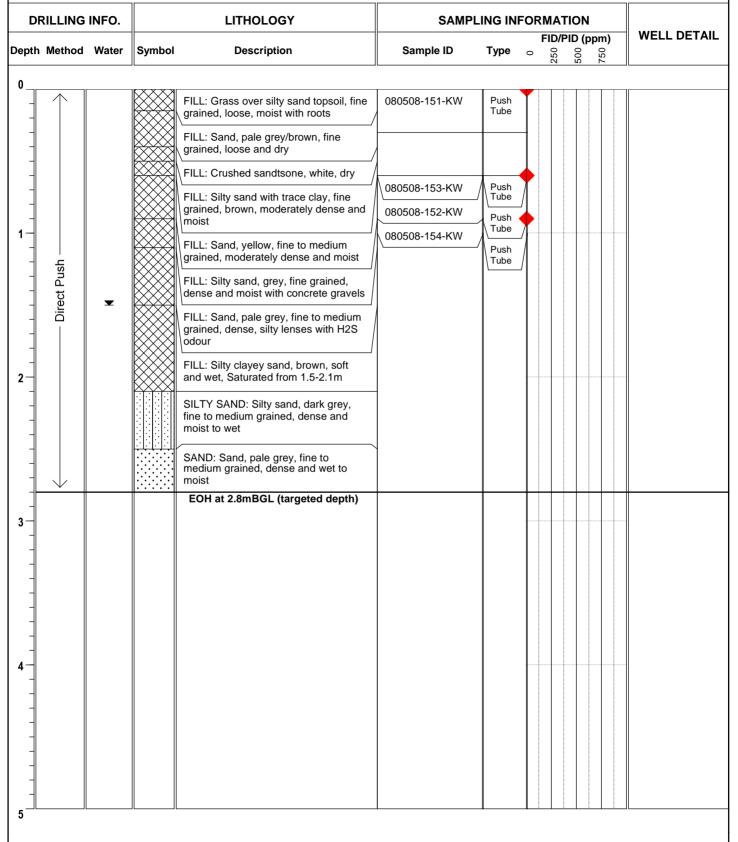
Project:

329973.047 Easting:

Elevation: 0.97

Boyd Cooks Cove Client:

Northing: 6243405.760


Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

CONSULTING

SCIENTISTS.

Location: Cooks Cove - Area A

ABH231 Environmental Log:

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm):

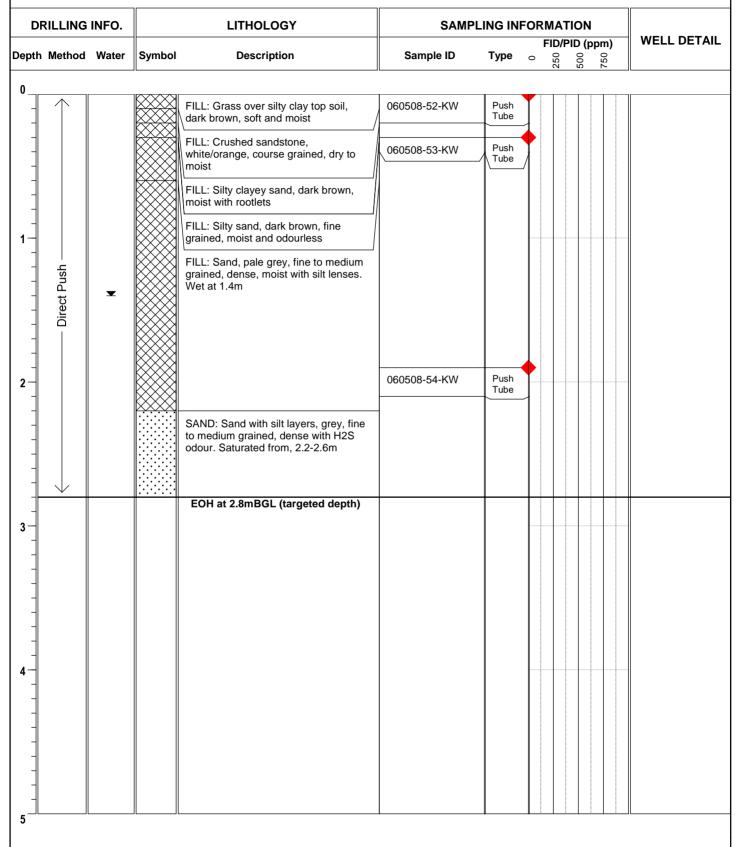
08/05/2008 **Date Commenced:**

Date Completed: 08/05/2008

Logged/checked by: K.Weir/L.Jenkins

Easting: 329835.915

Elevation: 1.30


Project: ESA **Northing:** 6243574.015

Boyd Cooks Cove Client:

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Location: Cooks Cove - Area A **Environmental Log: ABH232**

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm): 50

06/05/2008 **Date Commenced:**

Date Completed: 06/05/2008

Logged/checked by: K.Weir/L.Jenkins

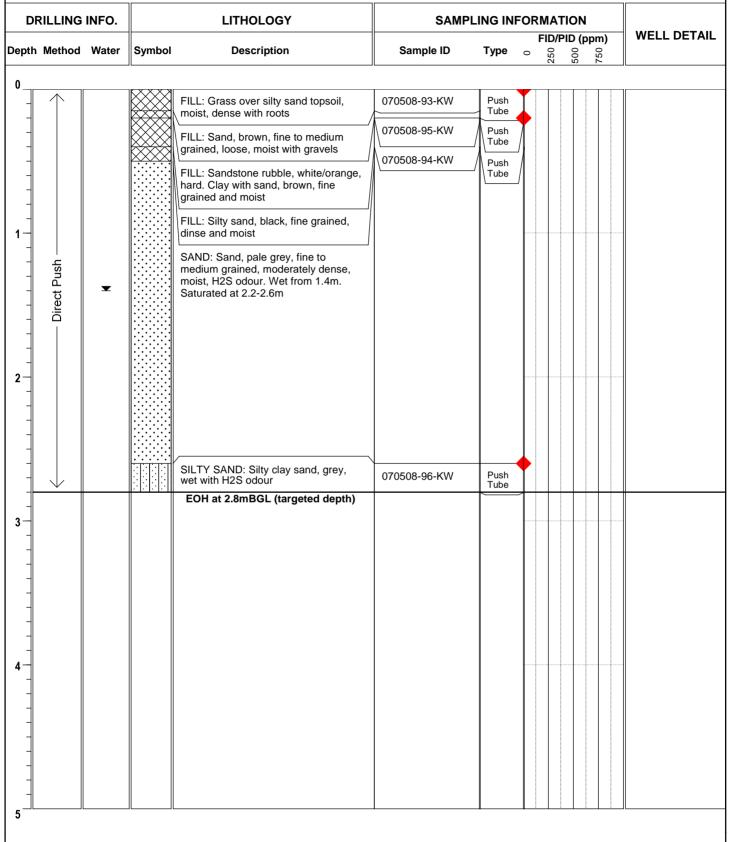
Project: ESA

Easting: 329498.372

Northing: 6243360.060

Elevation: 1.27

Client: Boyd Cooks Cove


ortimig. 02+3300.0

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Location: Cooks Cove - Area A

Environmental Log: ABH233

Drill Company: Macquarie Drilling

Drill Model: Mac200

Hole Diameter (mm): 50

Date Commenced: 07/05/2008

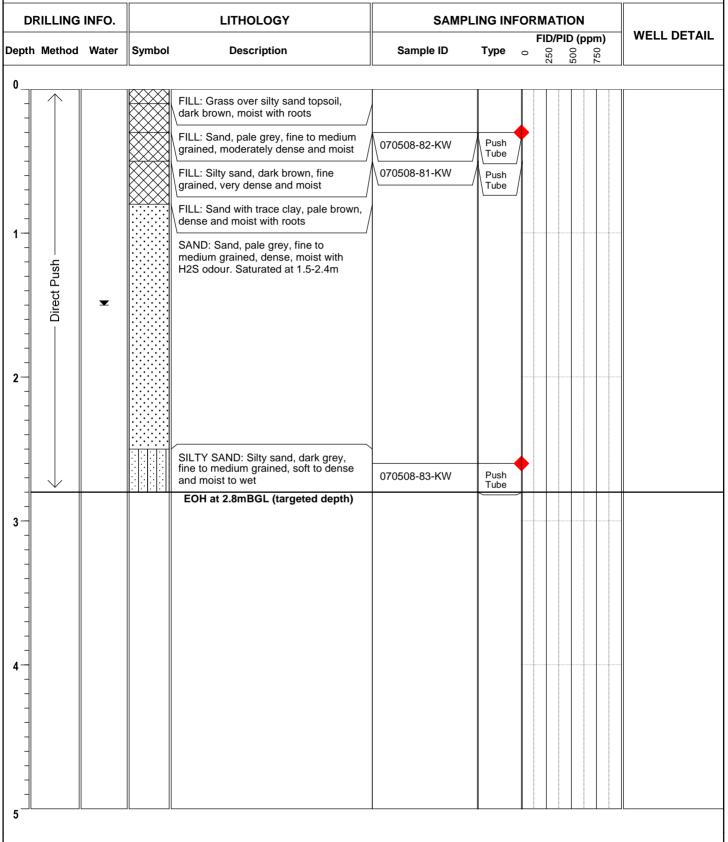
Date Completed: 07/05/2008

Logged/checked by: K.Weir/L.Jenkins

ESA

Project:

Easting: 329568.152


Northing: 6243360.562

Boyd Cooks Cove Elevation: 0.85 Client:

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Location: Cooks Cove - Area A **ABH234 Environmental Log:**

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm):

07/05/2008 **Date Commenced:**

Date Completed: 07/05/2008

Logged/checked by: K.Weir/L.Jenkins

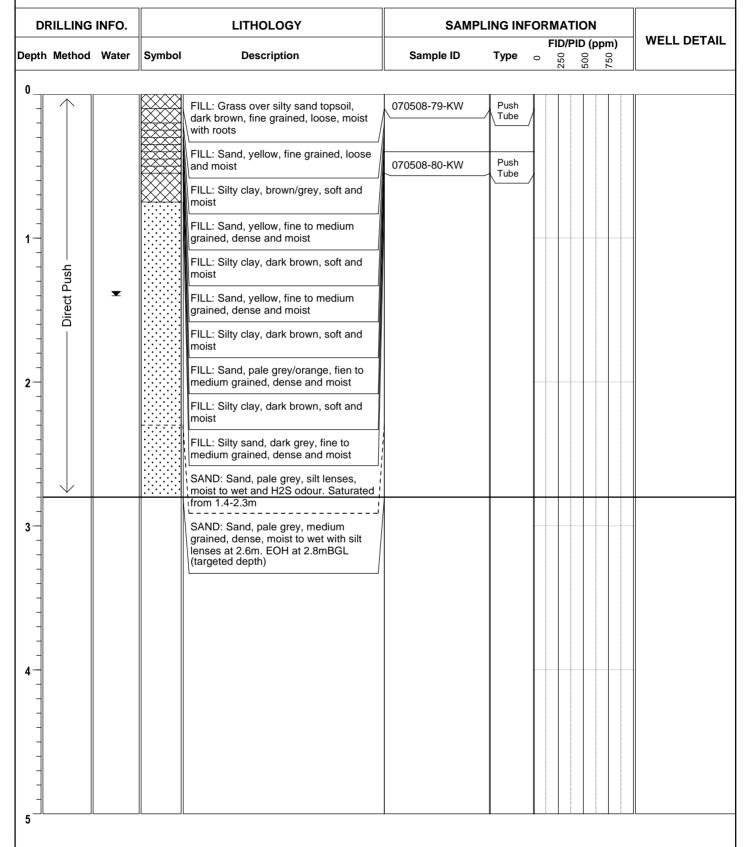

Easting: 329611.110

Elevation: 1.14

Project: ESA

Client:

Northing: 6243354.212



Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Location: Cooks Cove - Area A

Boyd Cooks Cove

ABH235 Environmental Log:

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm):

07/05/2008 **Date Commenced:**

Date Completed: 07/05/2008

Logged/checked by: K.Weir/L.Jenkins

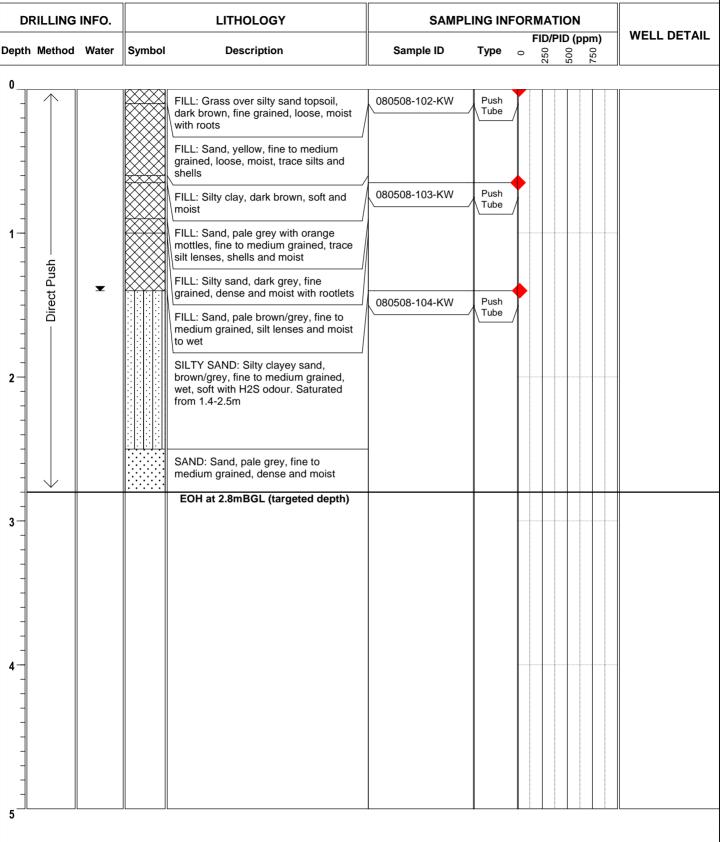
Cooks Cove - Area A

Easting: 329665.268

Project: ESA

Location:

Northing: 6243343.476



Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Boyd Cooks Cove Client:

Elevation: 1.25

ABH236 Environmental Log:

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm):

08/05/2008 **Date Commenced:**

Date Completed: 08/05/2008

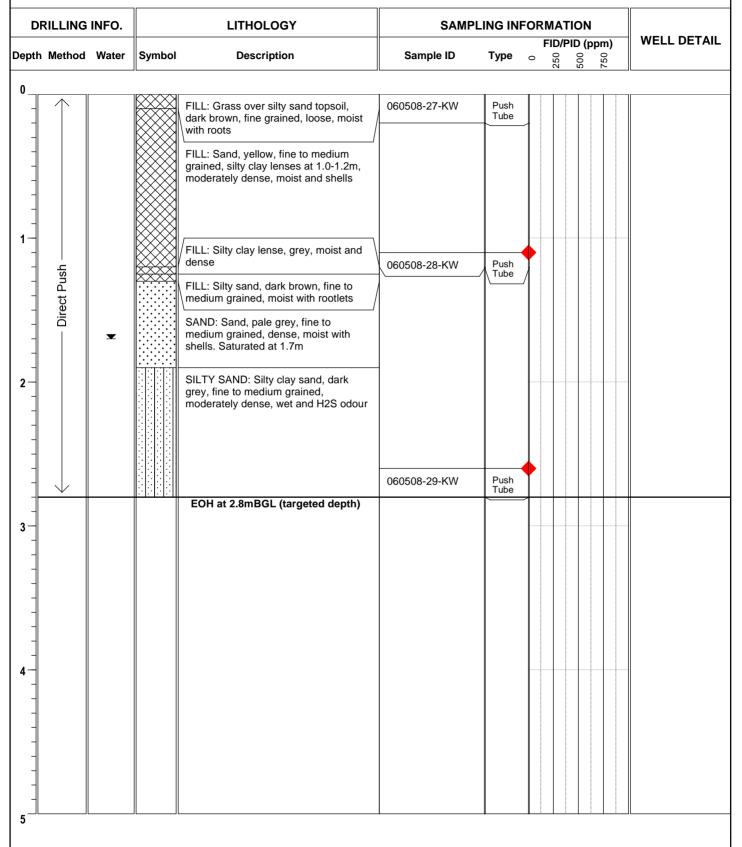
Logged/checked by: K.Weir/L.Jenkins

Easting: 329703.000

Project: ESA

Northing: 6243361.425

Boyd Cooks Cove Client:


Elevation: 1.40

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Location: Cooks Cove - Area A

ABH237 Environmental Log:

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm):

06/05/2008 **Date Commenced:**

Date Completed: 06/05/2008

Logged/checked by: K.Weir/L.Jenkins

Cooks Cove - Area A

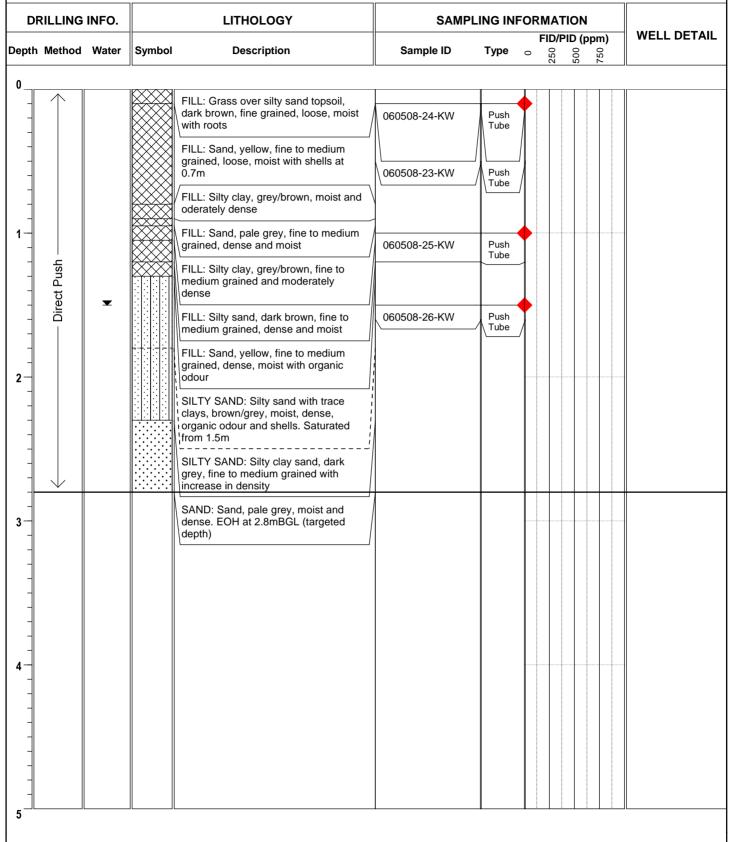
Easting:

329743.172

CONSULTING

SCIENTISTS.

Project: ESA Northing: 6243375.462


Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Boyd Cooks Cove Client:

Location:

Elevation: 1.22

ABH238 Environmental Log:

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm): 50

06/05/2008 **Date Commenced:**

Date Completed: 06/05/2008

Logged/checked by: K.Weir/L.Jenkins

CE3030700-BCC

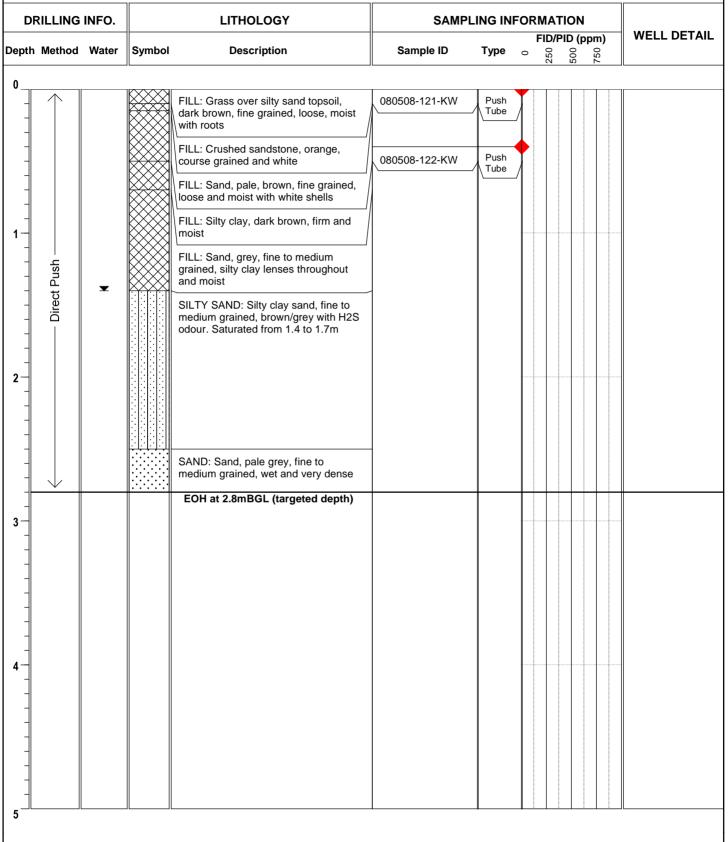
Easting: 329791.277

CONSULTING EARTH SCIENTISTS

Project: ESA

Client:

Northing: 6243361.707


Elevation: 1.04

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Location: Cooks Cove - Area A

Boyd Cooks Cove

Environmental Log: ABH239

Drill Company: Macquarie Drilling

Drill Model: Mac200

Hole Diameter (mm): 50

Date Commenced: 08/05/2008

Date Completed: 08/05/2008

Logged/checked by: K.Weir/L.Jenkins

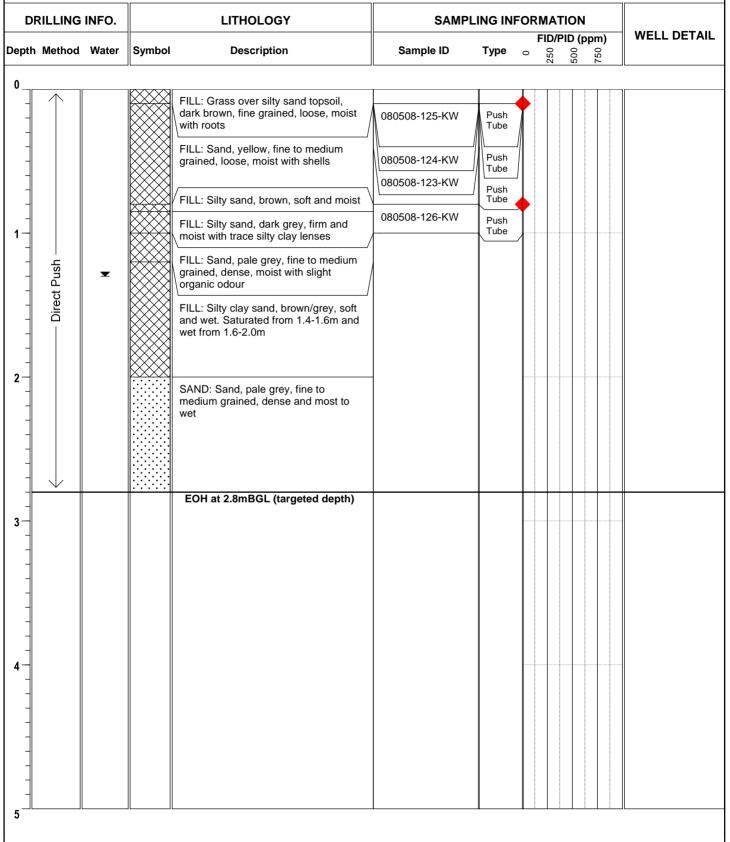
Boyd Cooks Cove

Easting: 329850.039

Project: ESA

Client:

Northing: 6243371.561


Elevation: 1.04

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Location: Cooks Cove - Area A

ABH240 Environmental Log:

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm): 50

08/05/2008 **Date Commenced:**

Date Completed: 08/05/2008

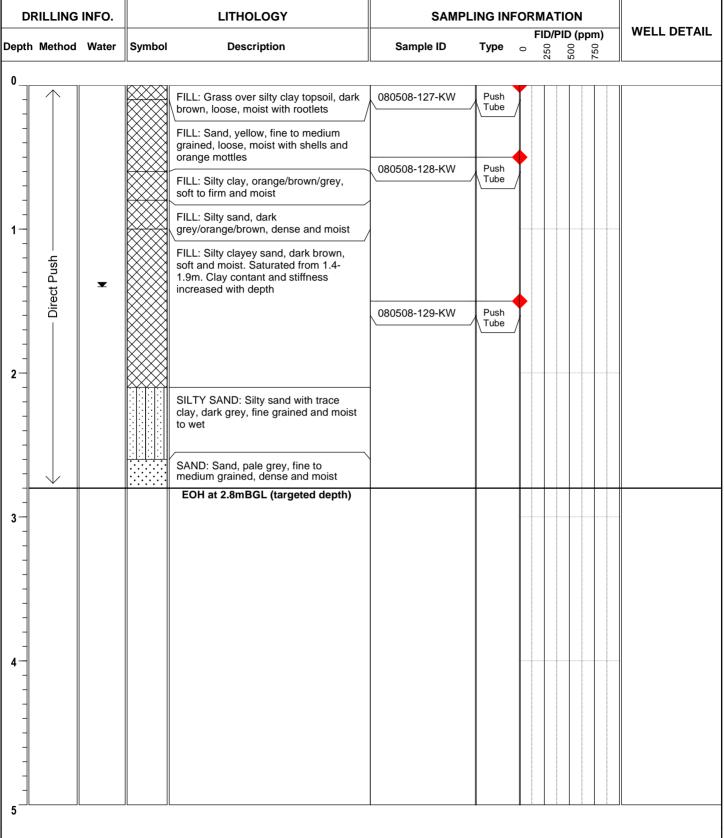
Logged/checked by: K.Weir/L.Jenkins

Easting: 329885.967

Project: ESA

Client:

Northing: 6243340.325


Boyd Cooks Cove Elevation: 0.79

SCIENTISTS. Jones Bay Wharf 19-21, Lower Level Suite 121

26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

CONSULTING

Location: Cooks Cove - Area A **ABH241 Environmental Log:**

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm): 50

08/05/2008 **Date Commenced:**

Date Completed: 08/05/2008

Logged/checked by: K.Weir/L.Jenkins

020007000

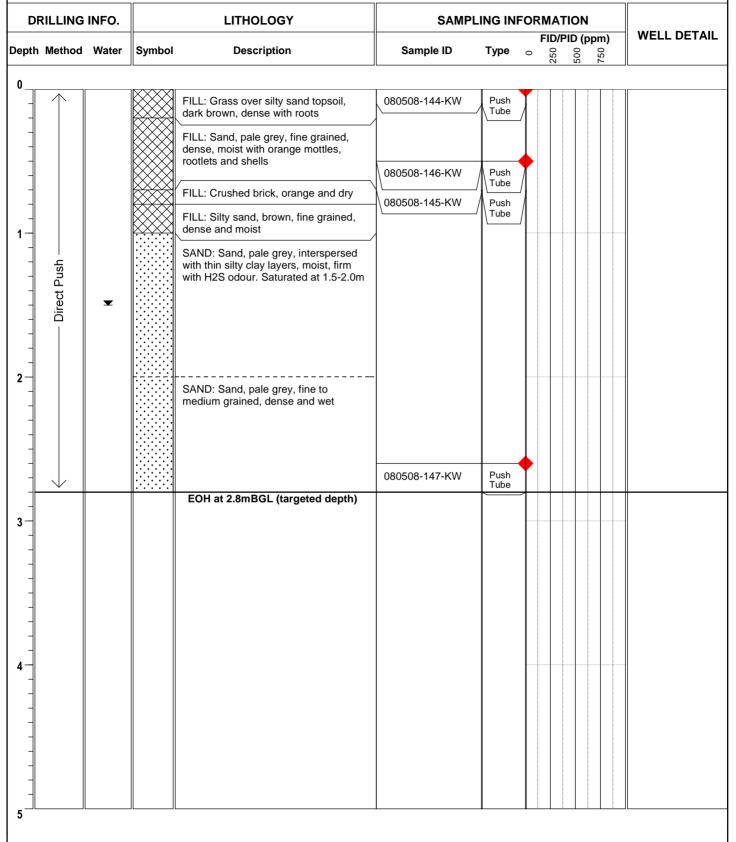
Boyd Cooks Cove

Easting: 329921.058

Project: ESA

Client:

Northing: 6243367.814


Elevation: 0.68

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Location: Cooks Cove - Area A

Environmental Log: ABH242

Drill Company: Macquarie Drilling

Drill Model: Mac200

Hole Diameter (mm): 50

Date Commenced: 08/05/2008

Date Completed: 08/05/2008

Logged/checked by: K.Weir/L.Jenkins

ESA

Project:

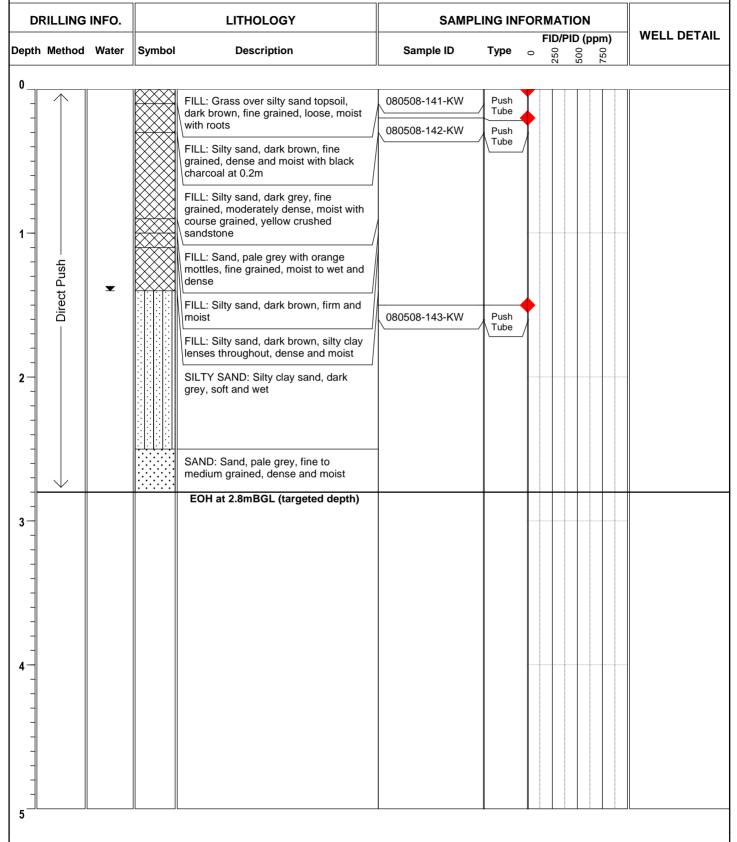
Client:

Boyd Cooks Cove

Easting: 329975.701

Northing: 6243350.352

Elevation: 0.82



26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

CONSULTING

Location: Cooks Cove - Area A

ABH243 Environmental Log:

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm): 50

08/05/2008 **Date Commenced:**

Date Completed: 08/05/2008

Logged/checked by: K.Weir/L.Jenkins

ESA

Easting: 329477.016

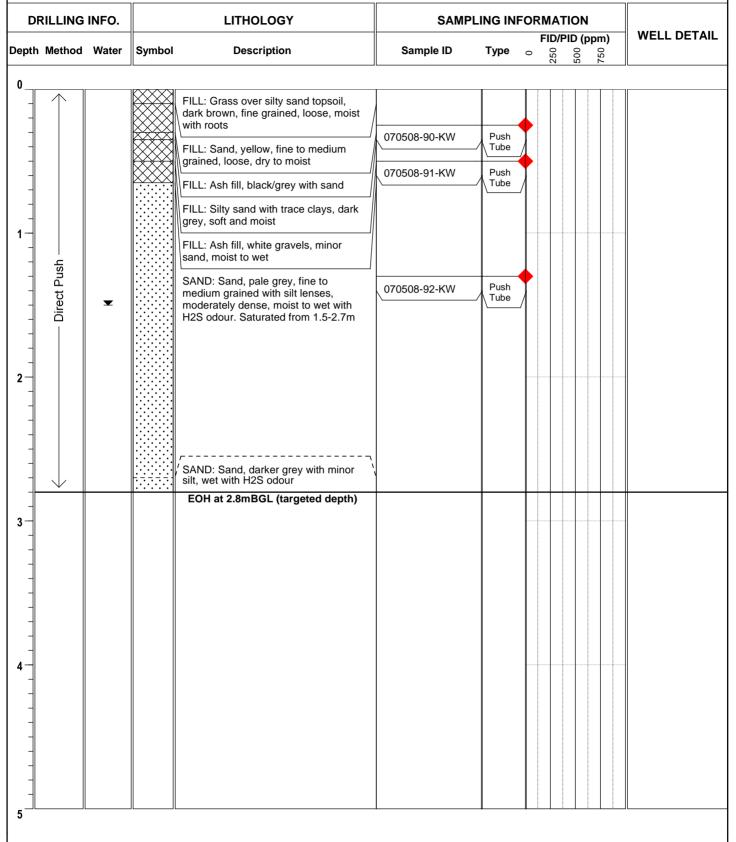
Elevation: 1.37

Northing: 6243318.888

Project:

Client:

1111**9.** 0243310.00



Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Location: Cooks Cove - Area A

Boyd Cooks Cove

Environmental Log: ABH244

Drill Company: Macquarie Drilling

Drill Model: Mac200

Hole Diameter (mm): 50

Date Commenced: 08/05/2008

Date Completed: 08/05/2008

Logged/checked by: K.Weir/L.Jenkins

ESA

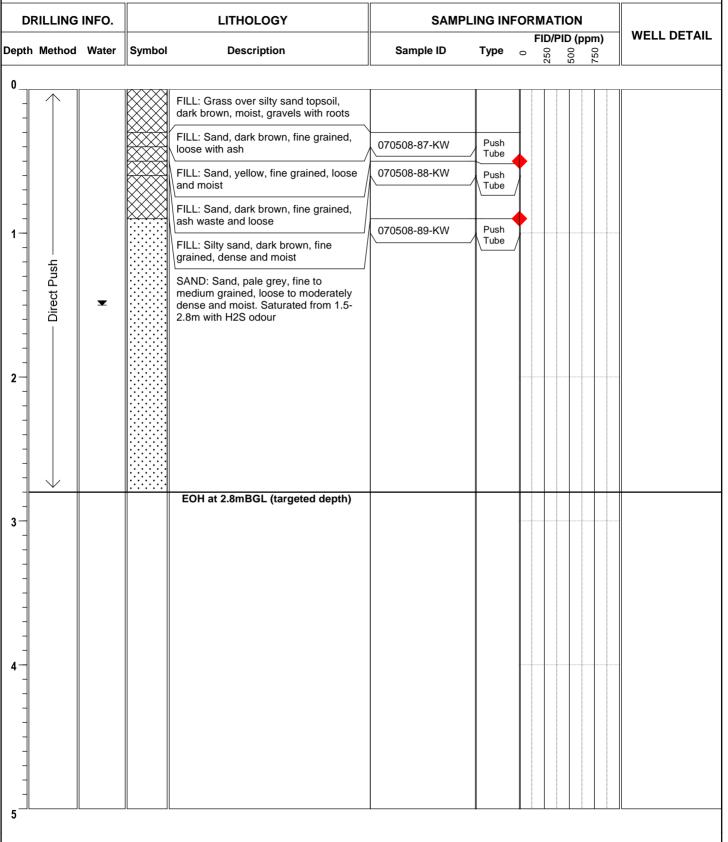
Project:

. CE3030700-DCC

Easting: 329519.186

Northing: 6243321.583

asting: 3295°


CONSULTING EARTH SCIENTISTS

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Client: Boyd Cooks Cove

Elevation: 1.19

Location: Cooks Cove - Area A Environmental Log: ABH245

Drill Company: Macquarie Drilling

Drill Model: Mac200

Hole Diameter (mm): 50

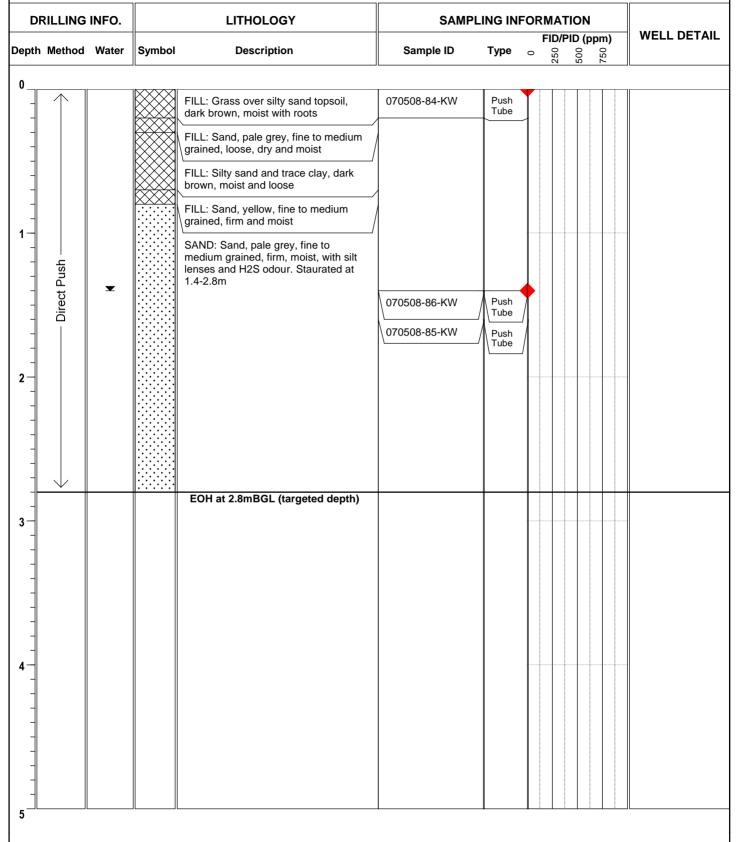
Date Commenced: 07/05/2008

Date Completed: 07/05/2008

Logged/checked by: K.Weir/L.Jenkins

Easting: 329557.512

Project: ESA Northing: 6243322.832


Boyd Cooks Cove Client:

Elevation: 0.94

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Location: Cooks Cove - Area A **Environmental Log: ABH246**

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm): 50

07/05/2008 **Date Commenced:**

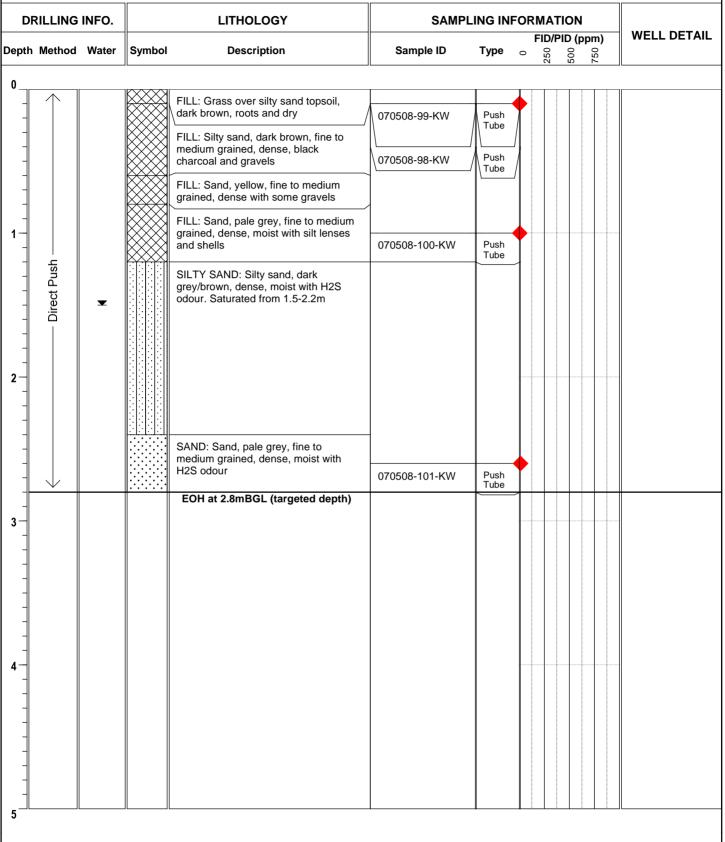
Date Completed: 07/05/2008

Logged/checked by: K.Weir/L.Jenkins

Easting: 329615.280

Project: ESA

Client:


Northing: 6243323.531

Boyd Cooks Cove Elevation: 1.60

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Location: Cooks Cove - Area A **ABH247 Environmental Log:**

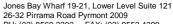
Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm):

07/05/2008 **Date Commenced:**

Date Completed: 07/05/2008

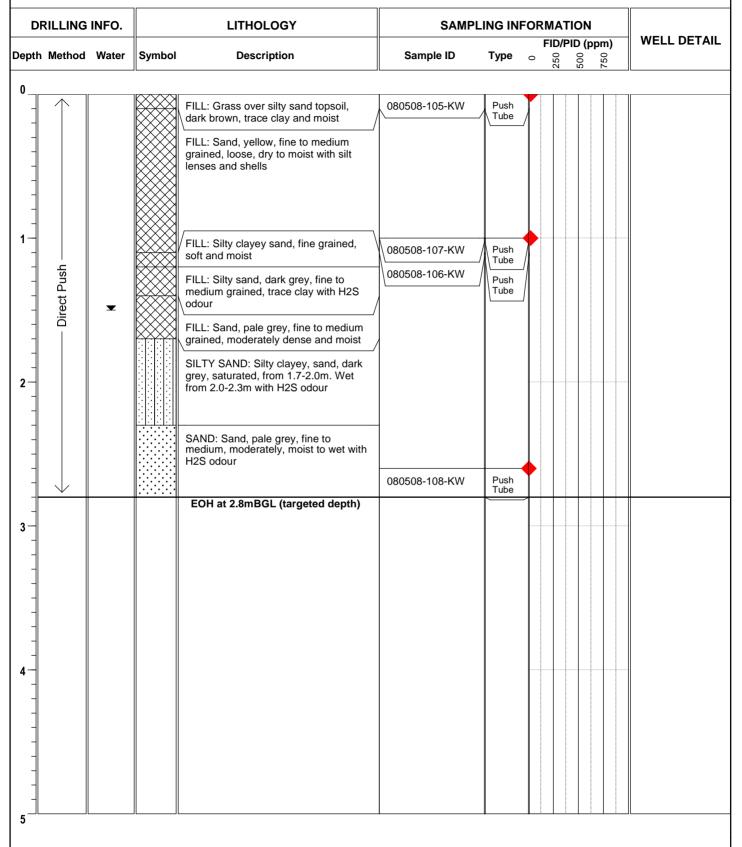

Logged/checked by: K.Weir/L.Jenkins

ESA

Project:

Northing: 6243309.430

Easting: 329653.717


Boyd Cooks Cove Elevation: 1.26 Client:

26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

CONSULTING

SCIENTISTS.

Location: Cooks Cove - Area A **ABH248 Environmental Log:**

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm):

08/05/2008 **Date Commenced:**

Date Completed: 08/05/2008

Logged/checked by: K.Weir/L.Jenkins

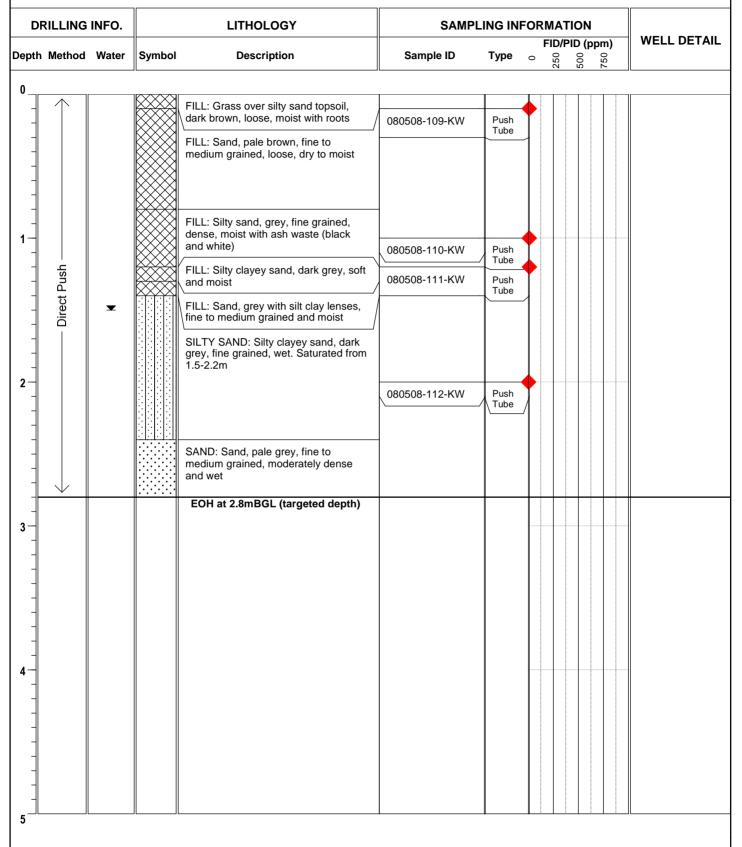
Eas

Easting: 329700.709

Northing: 6243313.382

CONSULTING EARTH SCIENTISTS

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399


Client: Boyd Cooks Cove

ESA

Project:

Elevation: 1.25

Location: Cooks Cove - Area A Environmental Log: ABH249

Drill Company: Macquarie Drilling

Drill Model: Mac200

Hole Diameter (mm): 50

Date Commenced: 08/05/2008

Date Completed: 08/05/2008

Logged/checked by: K.Weir/L.Jenkins

CL3030700-DCC

Boyd Cooks Cove

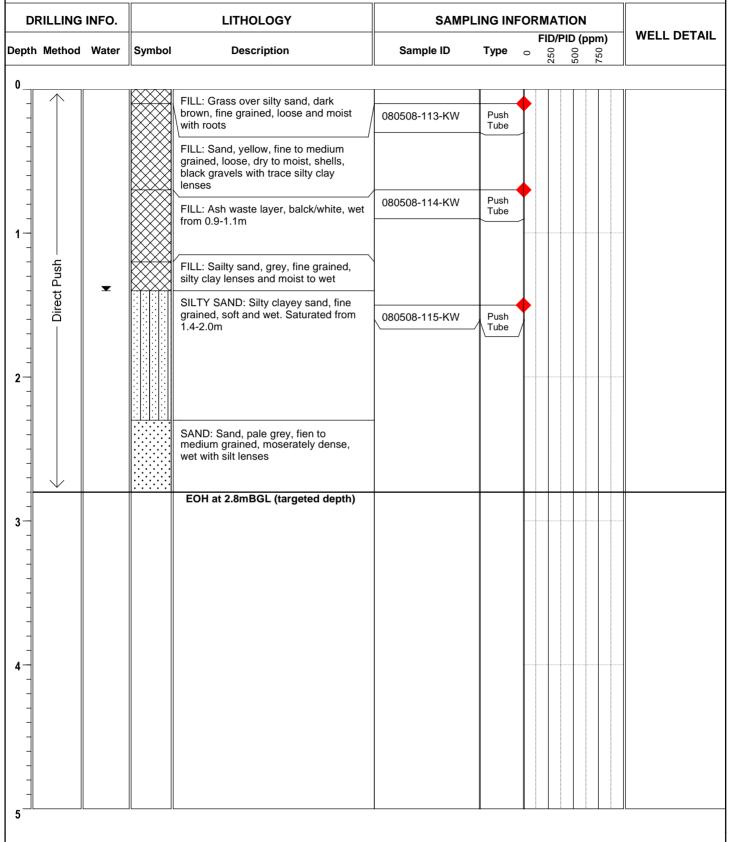
Easting: 329744.618

Elevation: 1.28

Project: ESA

Client:

Northing: 6243326.767


North

CONSULTING EARTH SCIENTISTS

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Location: Cooks Cove - Area A

Environmental Log: ABH250

Drill Company: Macquarie Drilling

Drill Model: Mac200

Hole Diameter (mm): 50

Date Commenced: 08/05/2008

Date Completed: 08/05/2008

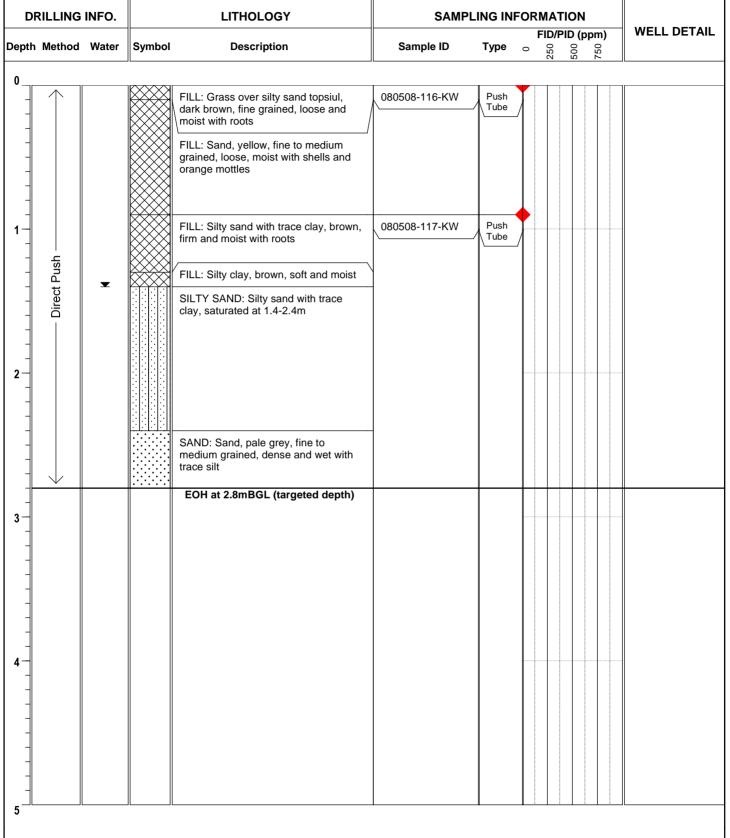
Logged/checked by: K.Weir/L.Jenkins

Client:

Boyd Cooks Cove

Easting: 329785.264

Elevation: 1.28


Project: Northing: 6243325.035 **ESA**

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Location: Cooks Cove - Area A

ABH251 Environmental Log:

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm):

08/05/2008 **Date Commenced:**

Date Completed: 08/05/2008

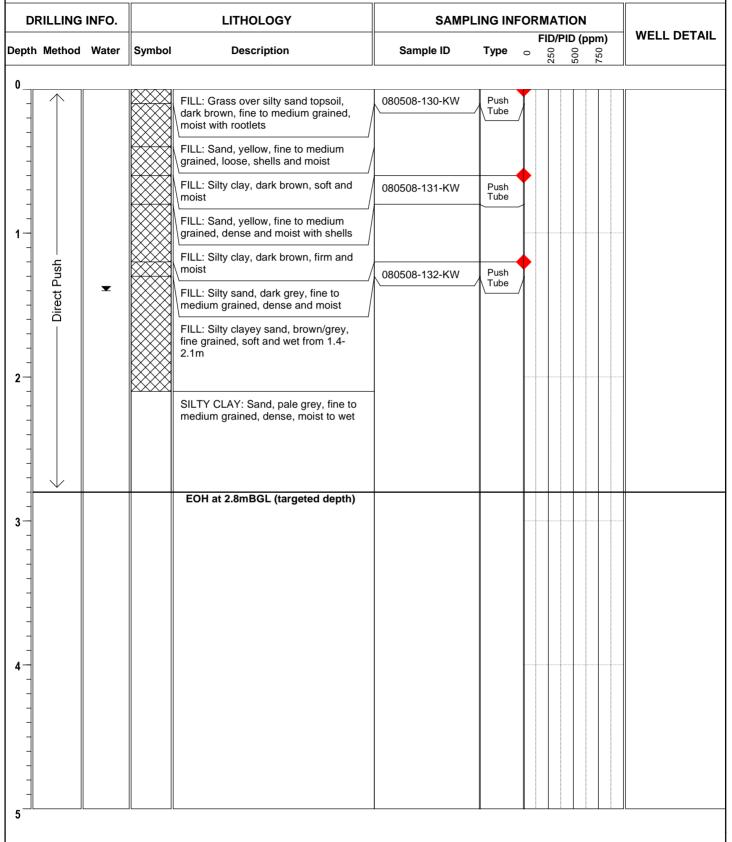
Logged/checked by: K.Weir/L.Jenkins

Project: **ESA** Easting: 329839.757

Northing: 6243324.867

Elevation: 0.93

Boyd Cooks Cove Client:


Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

CONSULTING

SCIENTISTS.

Location: Cooks Cove - Area A

ABH252 Environmental Log:

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm):

08/05/2008 **Date Commenced:**

Date Completed: 08/05/2008

Logged/checked by: K.Weir/L.Jenkins

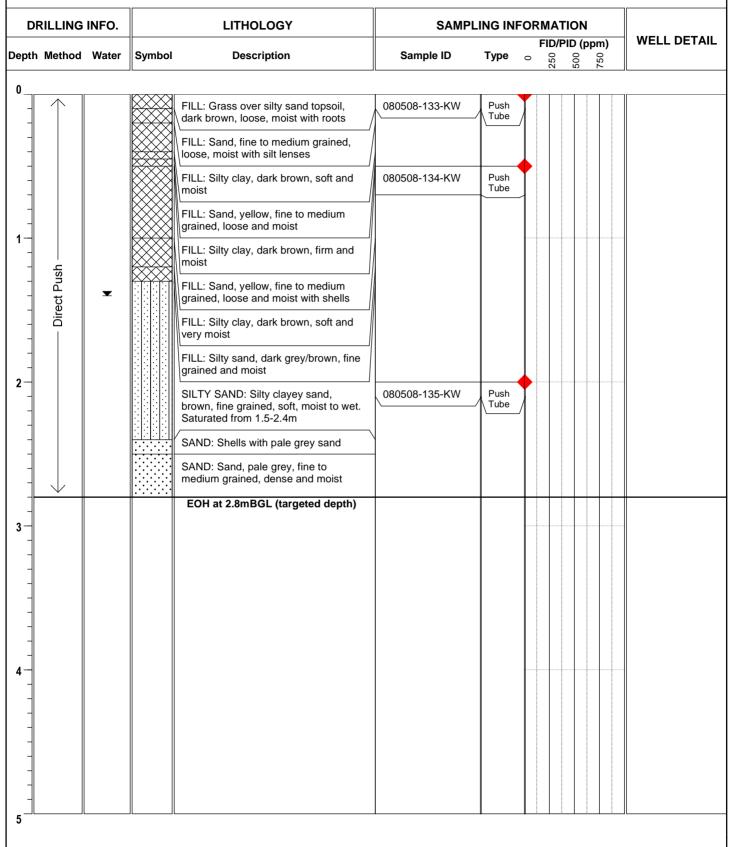
Easting: 329882.049

Project: ESA

Location:

Northing: 6243319.073

Boyd Cooks Cove Elevation: 0.83 Client:


Cooks Cove - Area A

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

ABH253 Environmental Log:

CONSULTING

SCIENTISTS.

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm):

08/05/2008 **Date Commenced:**

Date Completed: 08/05/2008

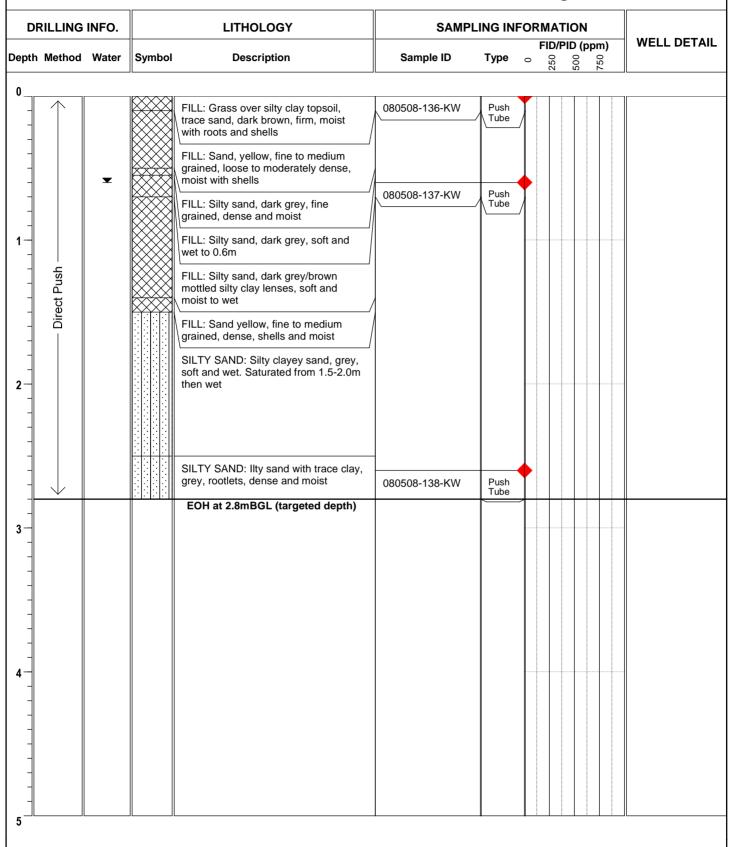
Logged/checked by: K.Weir/L.Jenkins

ESA

Project:

Easting: 329933.287

Northing: 6243310.216


CONSULTING SCIENTISTS.

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Boyd Cooks Cove Client:

Elevation: 0.82

Location: Cooks Cove - Area A **ABH254 Environmental Log:**

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm): 50

08/05/2008 **Date Commenced:**

Date Completed: 08/05/2008

Logged/checked by: K.Weir/L.Jenkins

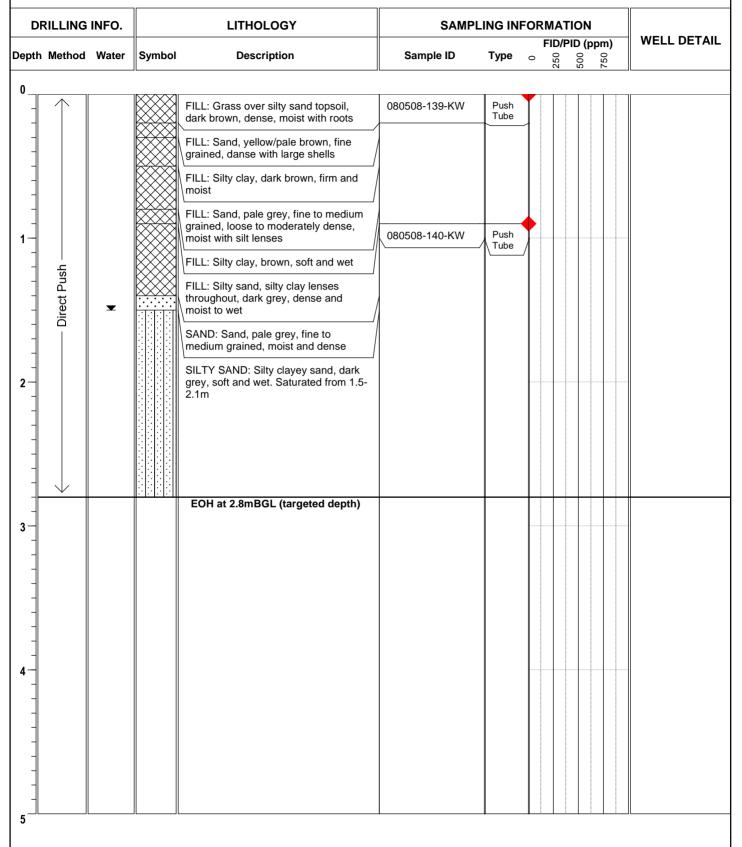
Boyd Cooks Cove

Easting: 329978.015

Elevation: 0.77

Project: **ESA**

Client:


Northing: 6243308.488

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Location: Cooks Cove - Area A

ABH255 Environmental Log:

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm):

08/05/2008 **Date Commenced:**

Date Completed: 08/05/2008

Logged/checked by: K.Weir/L.Jenkins

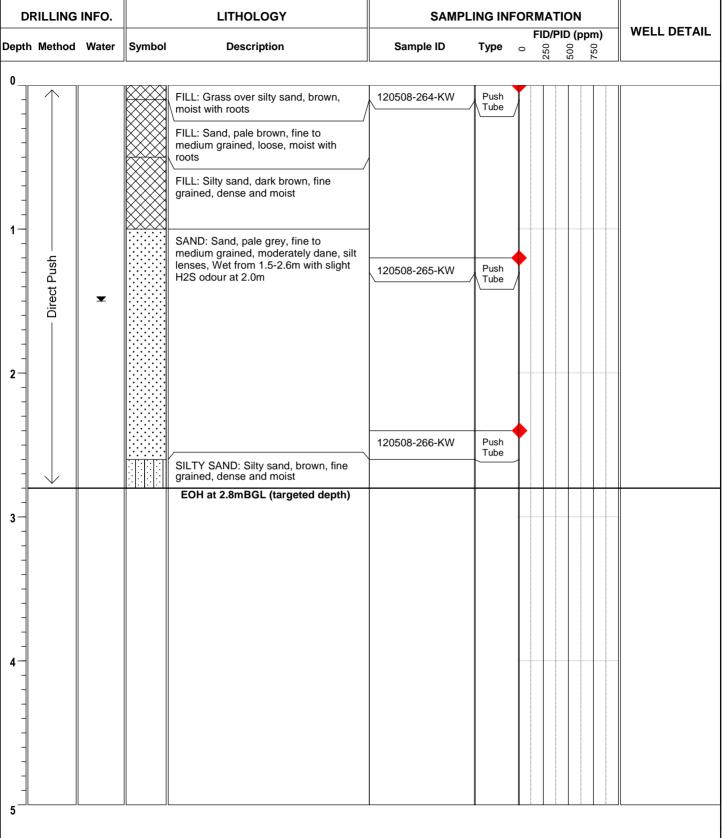
Easting:

329467.368

Northing: 6243267.568

Project: ESA

SCIENTISTS.


CONSULTING

Boyd Cooks Cove Client:

Elevation: 1.04

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Location: Cooks Cove - Area A **Environmental Log: ABH256**

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm):

12/05/2008 **Date Commenced:**

Date Completed: 12/05/2008

Logged/checked by: K.Weir/L.Jenkins

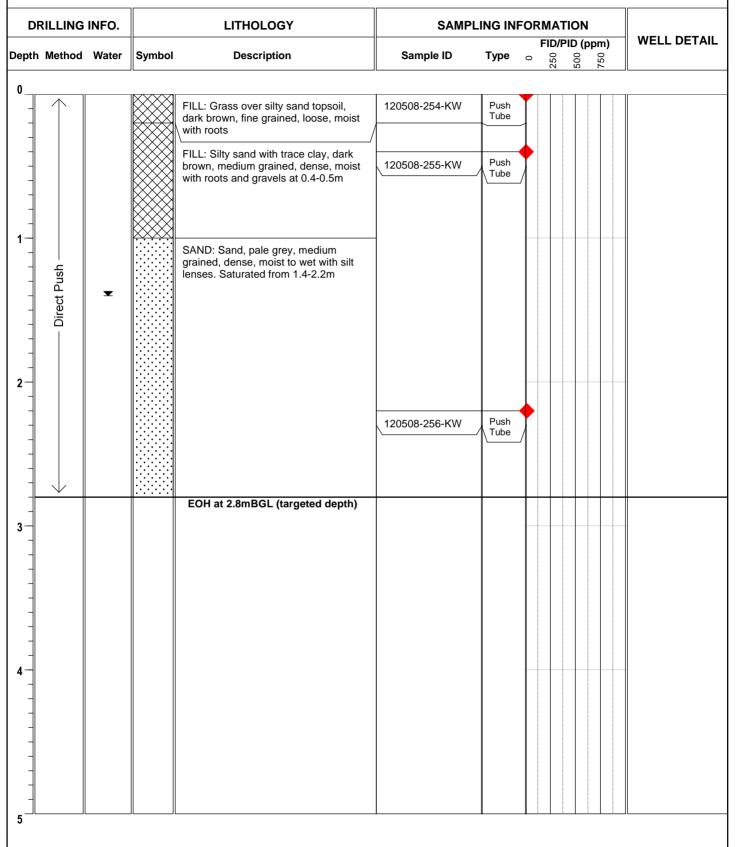
ESA

Project:

Easting: 329513.168

Elevation: 1.65

Boyd Cooks Cove Client:


Northing: 6243272.842

SCIENTISTS. Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

CONSULTING

Location: Cooks Cove - Area A

ABH257 Environmental Log:

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm): 50

12/05/2008 **Date Commenced:**

Date Completed: 12/05/2008

Logged/checked by: K.Weir/L.Jenkins

ESA

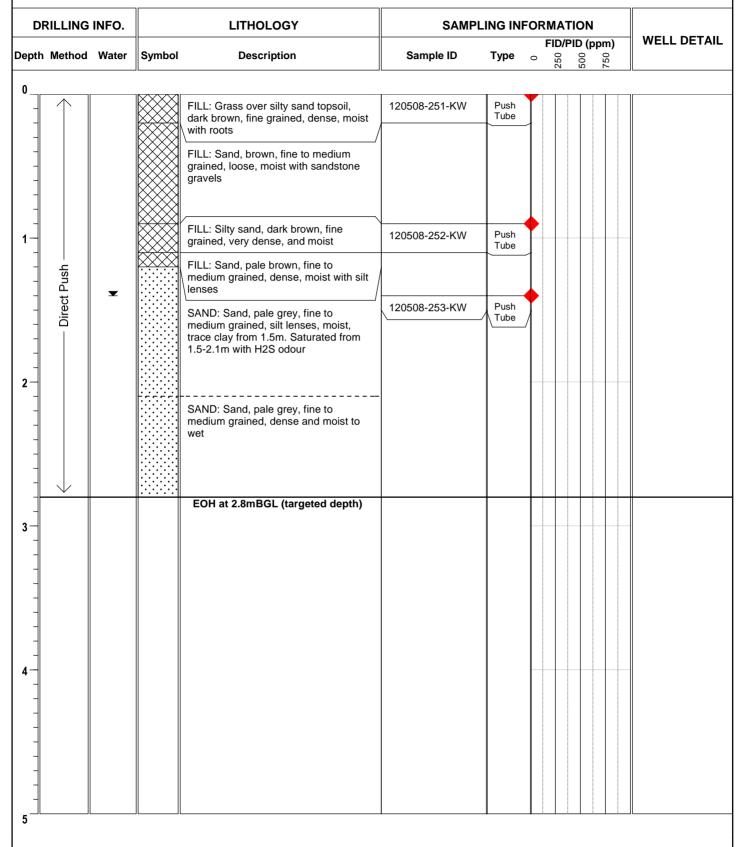
Project:

Client:

Boyd Cooks Cove

Easting: 329554.256

Northing: 6243257.574


Elevation: 1.21

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Location: Cooks Cove - Area A

ABH258 Environmental Log:

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm): 50

12/05/2008 **Date Commenced:**

Date Completed: 12/05/2008

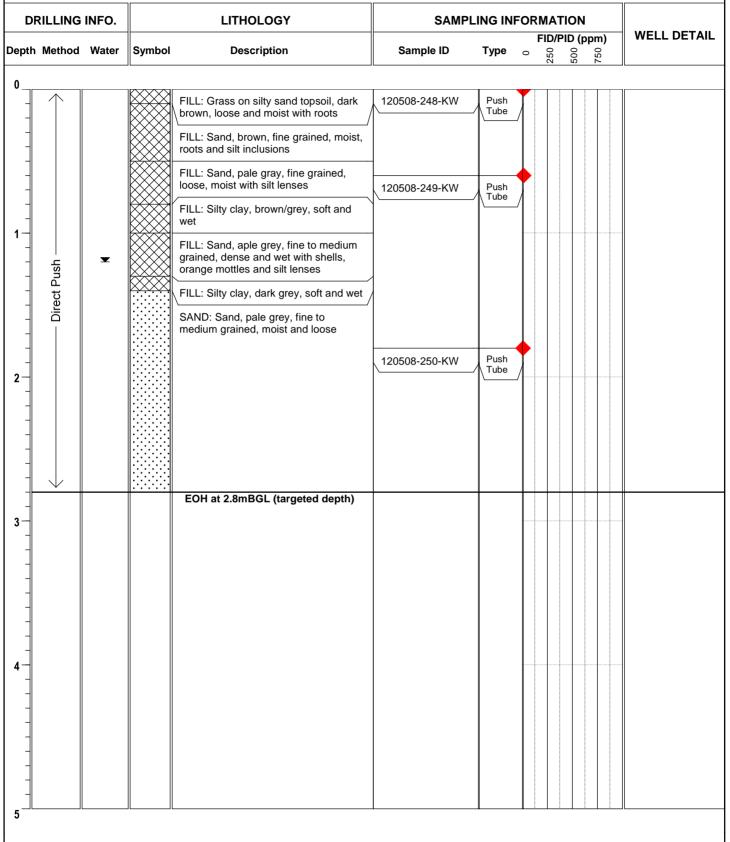
Logged/checked by: K.Weir/L.Jenkins

Easting: 329604.740

CONSULTING SCIENTISTS.

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Boyd Cooks Cove Client:


ESA

Project:

Elevation: 1.21

Northing: 6243280.712

Location: Cooks Cove - Area A **ABH259 Environmental Log:**

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm): 50

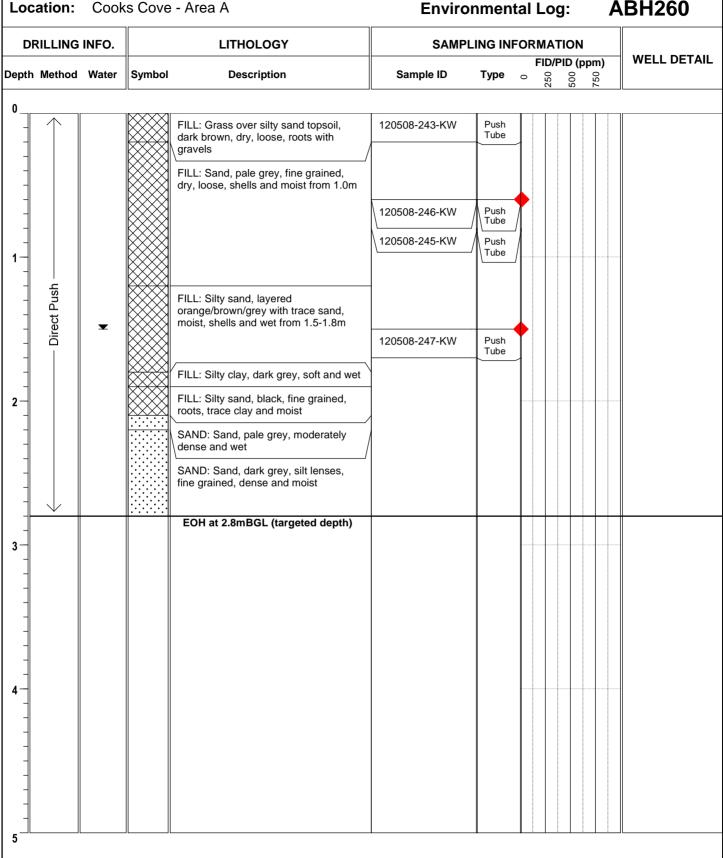
12/05/2008 **Date Commenced:**

Date Completed: 12/05/2008

Logged/checked by: K.Weir/L.Jenkins

Easting: 329656.650

Project: ESA Northing: 6243268.514


Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

CONSULTING

SCIENTISTS.

Boyd Cooks Cove Client:

Elevation: 1.74

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm): 50

12/05/2008 **Date Commenced:**

Date Completed: 12/05/2008

Logged/checked by: K.Weir/L.Jenkins

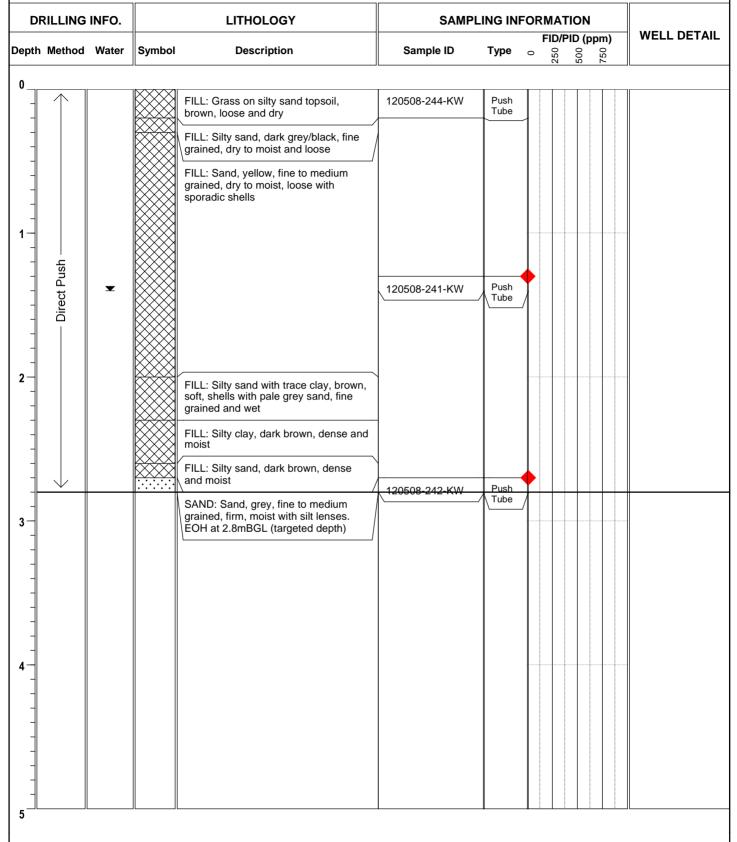
Easting: 329700.965

Project: ESA

Client:

Northing: 6243271.449

Boyd Cooks Cove


Elevation: 3.04

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Location: Cooks Cove - Area A

ABH261 Environmental Log:

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm):

12/05/2008 **Date Commenced:**

Date Completed: 12/05/2008

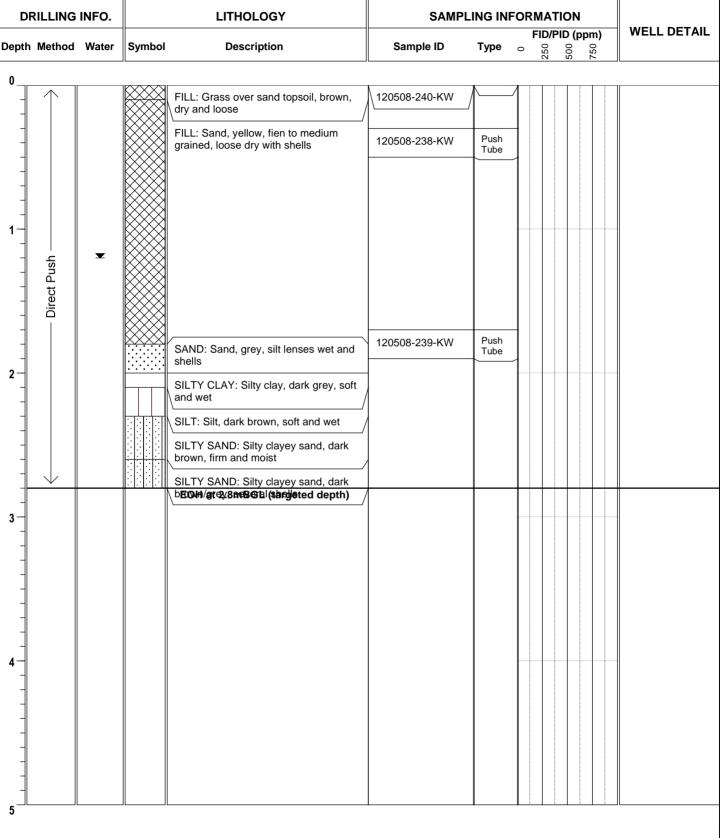
Logged/checked by: K.Weir/L.Jenkins

Easting: 329744.916

Northing: 6243270.357

Project: **ESA**

Location:


SCIENTISTS. Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

CONSULTING

Boyd Cooks Cove Client:

Elevation: 1.53

Cooks Cove - Area A **Environmental Log: ABH262**

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm): 50

12/05/2008 **Date Commenced:**

Date Completed: 12/05/2008

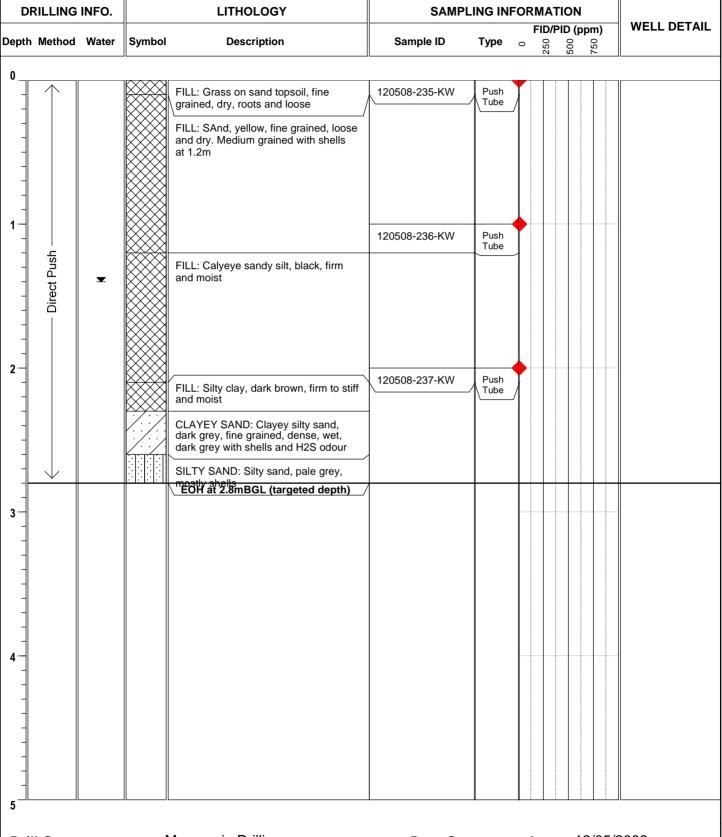
Logged/checked by: K.Weir/L.Jenkins

Boyd Cooks Cove

Easting: 329790.581

Project: ESA

Client:


Northing: 6243269.523

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Elevation: 0.56

Location: Cooks Cove - Area A **ABH263 Environmental Log:**

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm):

12/05/2008 **Date Commenced:**

Date Completed: 12/05/2008

Logged/checked by: K.Weir/L.Jenkins

CE3030706-BCC

Cooks Cove - Area A

Easting: 329834.351

Project: ESA

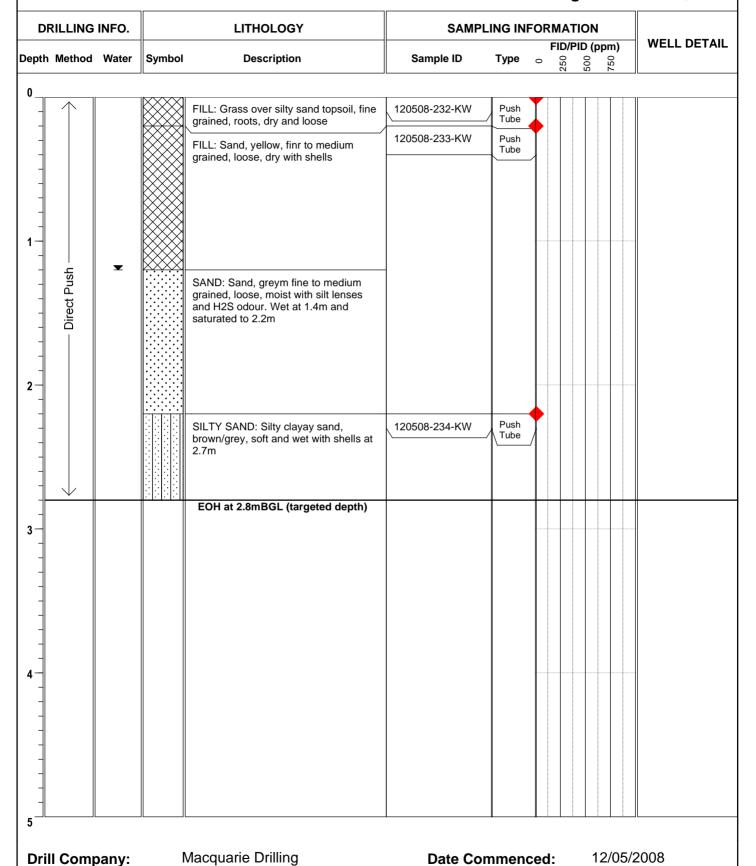
Northing: 6243275.328

EARTH SCIENTISTS

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Client: Boyd Cooks Cove

Location:


Drill Model:

Hole Diameter (mm):

Mac200

Elevation: 1.15

Environmental Log: ABH264

Date Completed:

Logged/checked by:

12/05/2008

K.Weir/L.Jenkins

Easting: 329879.674

Project: ESA

Client:

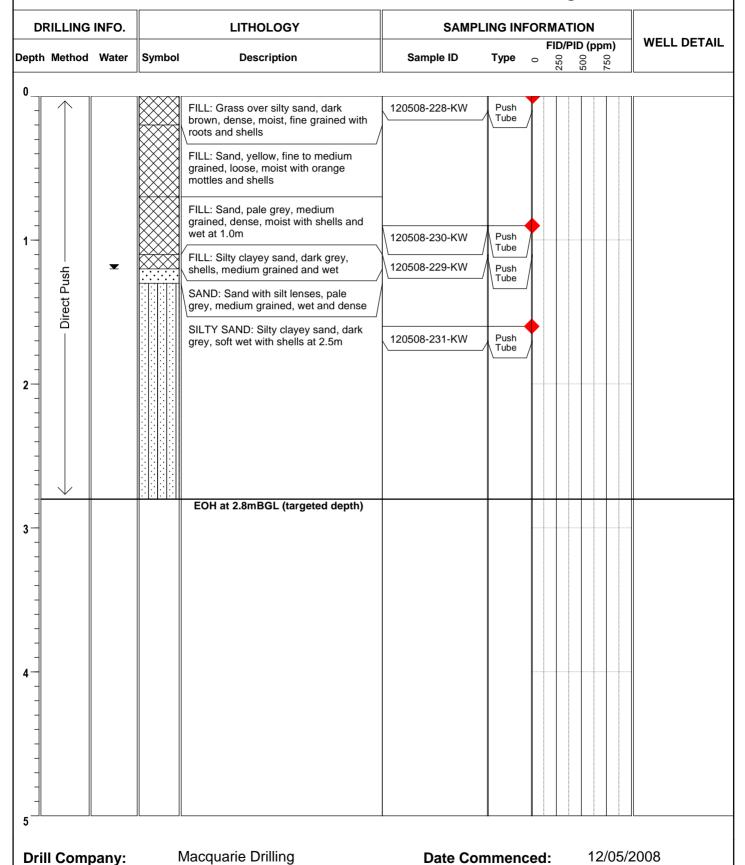
Drill Model:

Hole Diameter (mm):

Mac200

Northing: 6243269.251

Elevation: 0.98



Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Location: Cooks Cove - Area A

Boyd Cooks Cove

ABH265 Environmental Log:

Date Completed:

Logged/checked by:

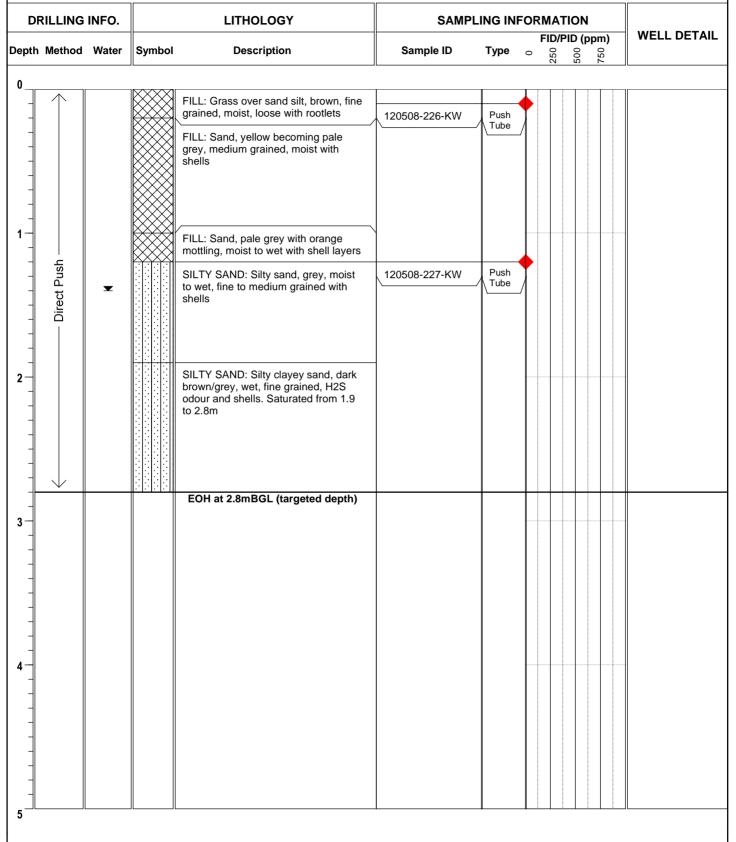
12/05/2008

K.Weir/L.Jenkins

Easting: 329923.654

Elevation: 0.89

Project: ESA Northing: 6243270.129


Boyd Cooks Cove Client:

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Location: Cooks Cove - Area A

ABH266 Environmental Log:

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm):

12/05/2008 **Date Commenced:**

Date Completed: 12/05/2008

Logged/checked by: K.Weir/L.Jenkins

CL3030700-DCC

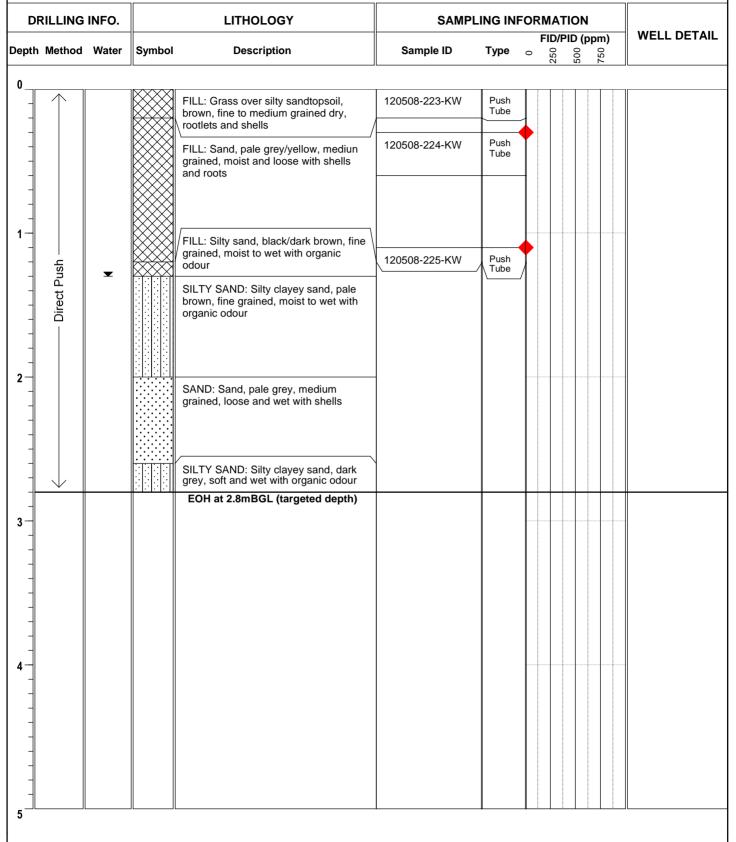
Easting: 329967.925

Project: ESA

Northing: 6243267.861

Client: Boyd Cooks Cove

Elevation: 0.84


Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

CONSULTING

SCIENTISTS.

Location: Cooks Cove - Area A

Environmental Log: ABH267

Drill Company: Macquarie Drilling

Drill Model: Mac200

Hole Diameter (mm): 50

Date Commenced: 12/05/2008

Date Completed: 12/05/2008

Logged/checked by: K.Weir/L.Jenkins

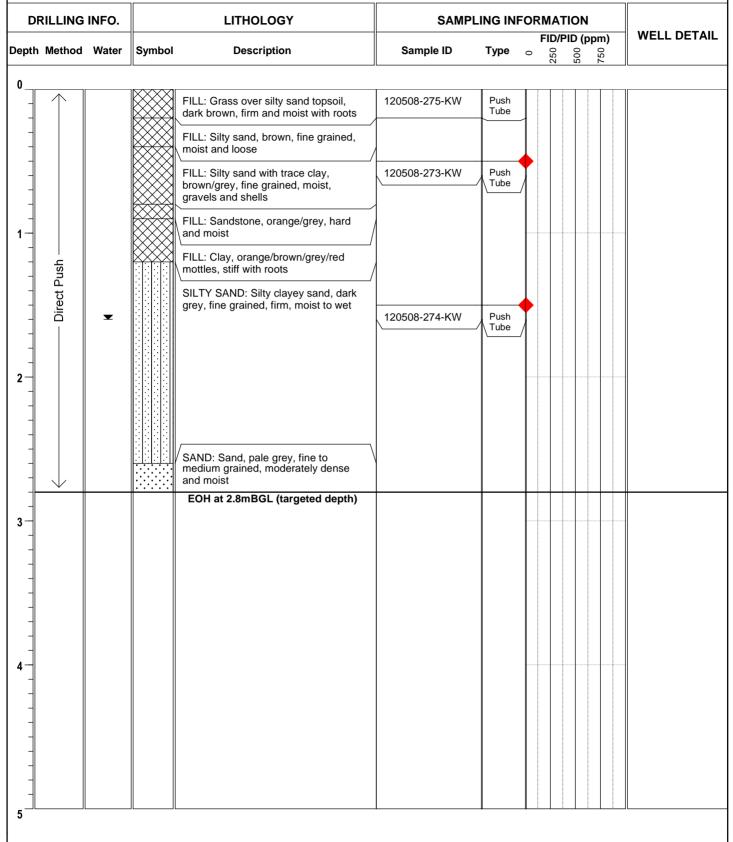
Boyd Cooks Cove

Easting: 329593.088

Project: ESA

Client:

Northing: 6243240.023


Elevation: 1.23

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Location: Cooks Cove - Area A

ABH268 Environmental Log:

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm):

12/05/2008 **Date Commenced:**

Date Completed: 12/05/2008

Logged/checked by: K.Weir/L.Jenkins

Project: ESA

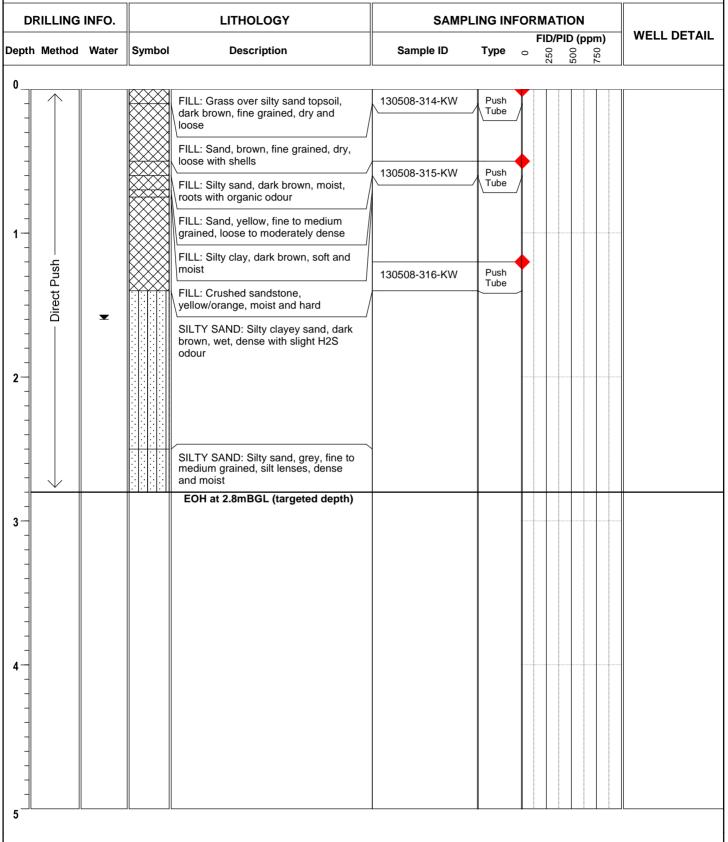
Easting: 329604.835

Northing: 6243226.073

Elevation: 1.78

Client: Boyd Cooks Cove

ig. 0243220.0


SCIENTISTS

Jones Bay Wharf 19-21, Lower Level Suite 121
26-32 Pirrama Road Pyrmont 2009
PH: (02) 8569 2200 FAX: (02) 9552 4399

CONSULTING

Location: Cooks Cove - Area A

Environmental Log: ABH269

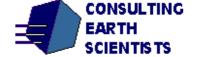
Drill Company: Macquarie Drilling

Drill Model: Mac200

Hole Diameter (mm): 50

Date Commenced: 13/05/2008

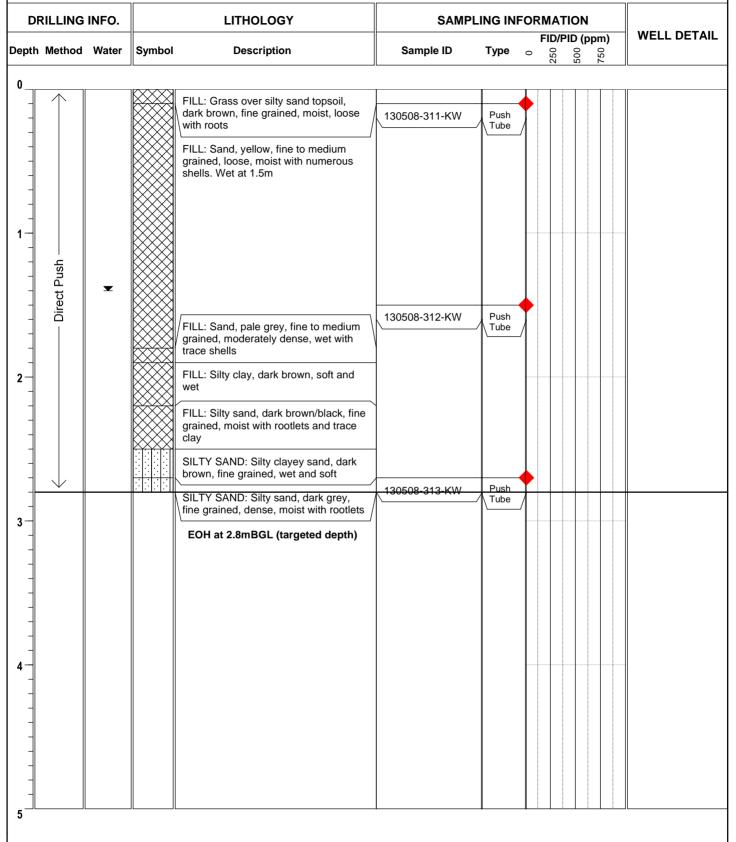
Date Completed: 13/05/2008


Logged/checked by: K.Weir/L.Jenkins

Project: ESA Easting: 329651.860

Northing: 6243217.683

Elevation: 1.77


Boyd Cooks Cove Client:

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Location: Cooks Cove - Area A

ABH270 Environmental Log:

Macquarie Drilling **Drill Company:**

Drill Model: Mac200

Hole Diameter (mm): 50

13/05/2008 **Date Commenced:**

Date Completed: 13/05/2008

Logged/checked by: K.Weir/L.Jenkins

OL0000700 B

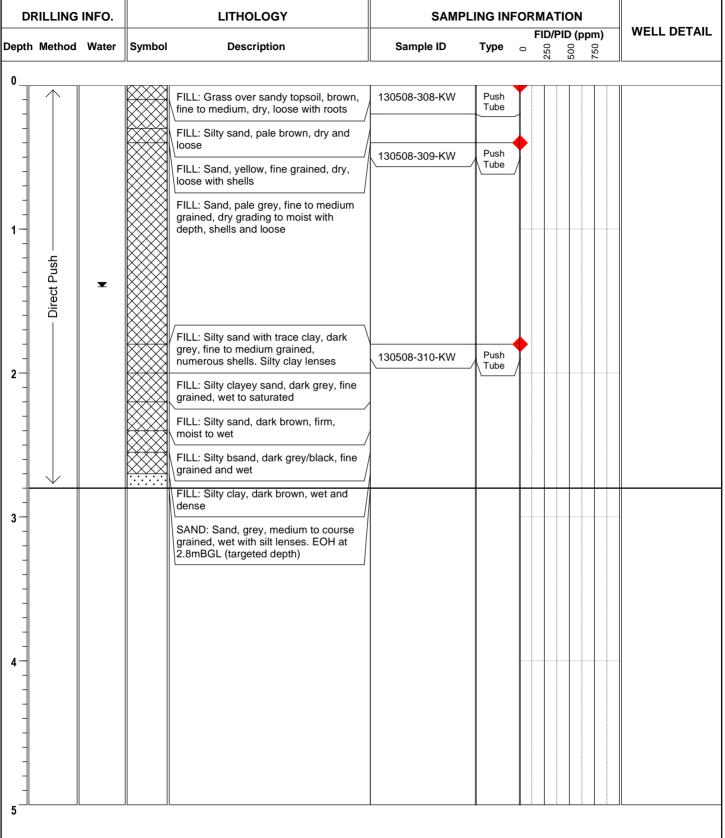
Easting: 329701.581

Elevation: 2.04

Project: ESA

Northing: 6243235.471

Client: Boyd Cooks Cove


orthing. 6243233.4

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Location: Cooks Cove - Area A

Environmental Log: ABH271

Drill Company: Macquarie Drilling

Drill Model: Mac200

Hole Diameter (mm): 50

Date Commenced: 13/05/2008

Date Completed: 13/05/2008

Logged/checked by: K.Weir/L.Jenkins

S050706-BCC

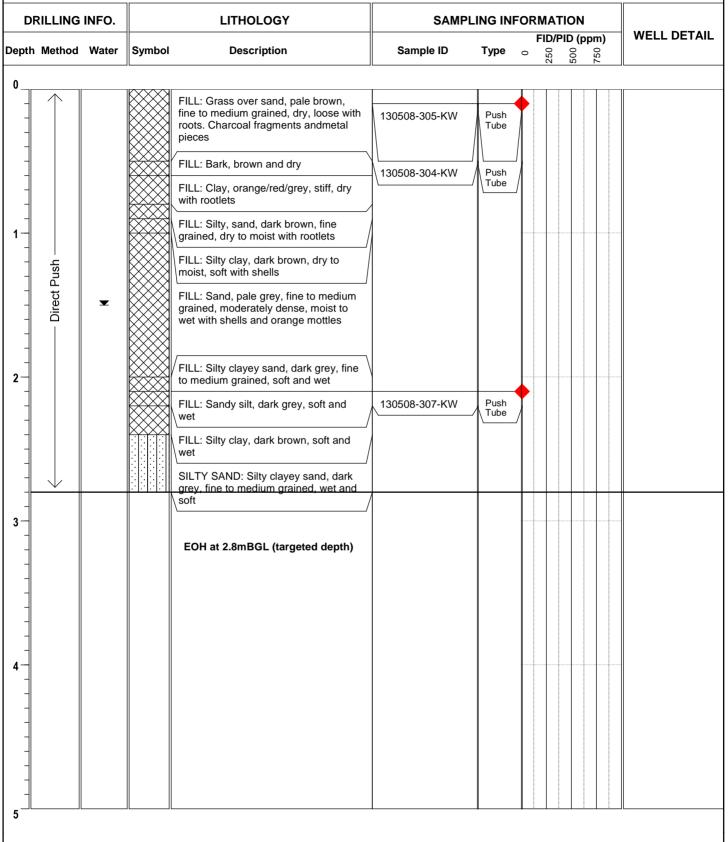
Easting: 329748.078

Elevation: 2.32

Project: ESA

Northing: 6243224.958

Client: Boyd Cooks Cove


illig. 02+022+.0

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Location: Cooks Cove - Area A

Environmental Log: ABH272

Drill Company: Macquarie Drilling

Drill Model: Mac200

Hole Diameter (mm): 50

Date Commenced: 13/05/2008

Date Completed: 13/05/2008

Logged/checked by: K.Weir/L.Jenkins

Boyd Cooks Cove

Easting: 329799.533

Project:

Northing: 6243215.432

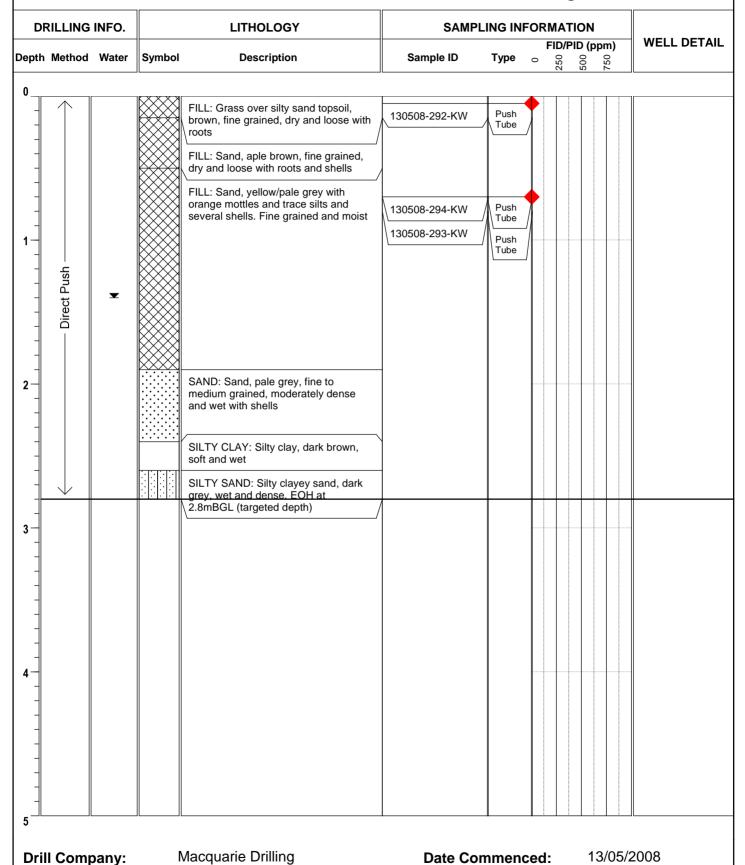
ESA

Client:

Drill Model:

Hole Diameter (mm): 50

Mac200


Elevation: 1.66

Jones Bay Wharf 19-21, Lower Level Suite 121 26-32 Pirrama Road Pyrmont 2009 PH: (02) 8569 2200 FAX: (02) 9552 4399

Location: Cooks Cove - Area A

ABH273 Environmental Log:

Date Completed:

Logged/checked by:

13/05/2008

K.Weir/L.Jenkins